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Gases and
Liquids

ALL MATTER exists in one of three states of aggregation, solid,
liquid, or gaseous. A solid may be defined as a body possessing both
definite volume and definite shape at a given temperature and pressure.
Further, to be classed as a solid the body must be crystalline, i.c., the
atoms, molecules, or ions composing the body must be arranged in a
definite geometric configuration characteristic of the substance in ques-
tion. A liquid in bulk, on the other hand, has a definite volume but no
definite shape, while a gas has neither definite shape nor volume. Liquids
and gases arc both termed fluids. A liquid, insofar as it fills the container,
will always adopt the shape of the container in which it is placed, but will
retain its definite volume, while a gas will always fill completely any con-
tainer in which it may be confined.

Thedistinctions among the three states of matter are not always as
clear cut as the above definitions would imply. For example, a liquid at
the critical point is indistinguishable from its vapor. Again, such sub-
stances as glass or asphalt, although exhibiting many of the properties of
a solid, will, under certain conditions of temperature, become plastic and
exhibit properties not ascribed to pure solids. For this reason such sub-
stances are usually considered to be supercooled liquids with very high
viscosity.

The particular state of aggregation of a substance is determined by
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the temperature and pressure under which it exists. However, within
certain limits of temperature and pressure a substance may exist in more
than one state at the same time. In fact, under special conditions a sub-
stance may exist in all three states simultaneously. Thus at 4.57 mm Hg
pressure and at 0.010°C, ice, water, and water vapor may all be present
simultaneously, and all be stable. This subject of simultaneous existence
in more than one state will be discussed more completely in various places
in the book.

IDEAL AND REAL GASES

For purposes of discussion, it is convenient to classify all gases into two
vypes, namely, (a) ideal gases, and (b) nonideal or real gases. An ideal gas
1s one that obeys certain laws which will be presented shortly, while a
real gas is one that obeys these laws only at low pressures.

In ideal gases the volume occupied by the molecules themselves is
negligible compared with the total volume at all pressures and tempera-
tures, and the intermolecular attraction is extremely small under all con-
ditions. For nonideal or real gases both of these factors are appreciable,
the magnitude of each depending on the nature, the temperature, and the
pressure of the gas. We can easily see that an ideal gas must be a hypo-
thetical gas, as all actual gases must contain molecules which occupy a
definite volume and exert attractions between each other. However, very
often the influence of these factors becomes negligible, and the gas may
then be considered to be ideal. We shall find that the latter condition will
obtain in particular at low pressures and relatively high temperatures,
conditions under which the “free’” space within the gas is large and the
attractive forces between molecules small.

GENERALIZATIONS OF IDEAL GAS BEHAVIOR

Through the study of gases there have been evolved certain laws or
zeneralizations which are the starting point in any discussion of gas
behavior. These are: (a) Boyle’s law, (b) Charles’s or Gay-Lussac’s law,
(¢) Dalton’s law of partial pressures, and (d) Graham’s law of diffusion.
Another generalization is Avogadro’s principle, but this will be considered
later.

BOYLE’S LAW

In 1662 Robert Boyle reportad that the volume of a gas at constant
temperature decreased with increasing pressure, and that, within the
limits of his experimental accuracy, the volume of any definite quantity of



Boyle’s Law 7

gas at constant temperature varied inversely as the pressure on the gas. This
highly important generalization is known as Boyle’s law. Expressed mathe-
matically, this law states that at constant temperature V < 1/P, or that

V=7
where V is the volume and P the pressure of the gas, while K, is a propor-
tionality factor whose value is dependent on the temperature, the weight
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Figure 1-1. Isothermal plot of P vs. V according to Boyle’s law (1 mole of gas).

of the gas, its nature, and the units in which P and V are expressed. On
rearrangement this equation becomes

PV = K, )]

from which it follows that if in a certain state the pressure and volume
of the gas are P; and V,, while in another state they are P; and Vs, then

at constant temperature

P1V1=K1=P2V2
B D (@)

and =7,

When the pressure of a gas is plotted against the volume in accordance
with Eq. (1), we obtain a family of curves such as that shown in Figure
1-1. Each curve is a hyperbola with a different value of K,. Since for a
given weight of gas K, varies only with temperature, each curve corre-
sponds to a different fixed temperature and is known as an isotherm
(constant temperature plot). The higher curves correspond to the higher
temperatures.
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THE CHARLES OR GAY - LUSSAC LAW

Charles in 1787 observed that the gases hydrogen, air, carbon dioxide,
and oxygen expanded an equal amount upon being heated from 0 to 80°C
at constant pressure. However, it was Gay-Lussac in 1802 who first found
that for all gases the increase in volume for each degree centigrade rise in
temperature was equal approximately to 1473 of the volume of the gas at
0°C. A more precise value of this fraction is 1573.15. If we designate by
Vo the volume of a gas at 0°C and by V its volume at any temperature
t°C, then in terms of Gay-Lussac’s finding V may be written as

t
V=Vot gz Vo

14
= Vo (1 + 2733)

(21305 +
= V"( 973.15 ) ®)

We may define now a new temperature scale such that any temperature ¢
on it will be given by T = 273.15 4 ¢, and 0°C by T, = 273.15. Then
Eq. (3) becomes simply .

vy_r
Vo T,

or generally % = % (4)
1 1

This new temperature scale, designated as the absolute or Kelvin scale
of temperature, is of fundamental importance in all science. In terms of
this temperature scale, q. (4) tells us that the volume of a definite quantity
of gas at constant pressure is directly proportional to the absolute temperature,
or that

V = K,T (5)

where K, is a proportionality factor determined by the pressure, the
nature and amount of gas, and the units of V. The above statement and
Eq. (5) are expressions of Charles’s or Gay-Lussac’s law of volumes.

According to Eq. (5) the volume of a gas should be a straight line func-
tion of the absolute temperature at any constant pressure. Such a plot of
V vs. T at selected pressures is shown in IFigure 1-2. Since for a given
amount of gas K, will have different values at different pressures, we
obtain a series of straight lines, onc for cach constant pressure. Ilach
constant pressure line is called an isobar. For every isobar the slope is the
greater the lower the pressure.
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Figure 1-2. Isobaric plots of V vs. T according to Charles’s law (1 mole of gas).

Equation (5) suggests also that if we were to cool a gas to 0°K
(—273°C), its volume would become zero. However, no such phenomenon
is ever encountered, for usually long before 0°K is approached a gas
liquefies or solidifies. Again, as will be shown in the following, under such
drastic conditions the equation itself cannot be considered to hold.

THE COMBINED GAS LAW

The two laws discussed give the separate variation of the volume of a
gas with pressure and with temperature. To obtain the simultaneous
variation of the volume with temperature and pressure, we proceed as
follows. Consider a quantity of gas at P,, V,, and T, and suppose that
it is desired to obtain the volume of the gas, Vs, at P, and T First, let us
compress (or expand) the gas from P, to P, at constant temperature T'1.
The resulting volume V, then will be, according to Boyle’s law,

V. _ P
V. P,

_ VP,
Vz - IJ2 (6)

If the gas at V., Py, and T, is heated now at constant pressure P, from
T, to T, the final state at P, and T’ will have the volume V given by
Charles’s law, namely,

Voo Tn
V. T
v, = VoTs

T,
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Substituting into this relation the value of V, from Kq. (6), V» becomes
_Vv.Ty,  PV\T,

/Y = = — —
Ve= 70 = pT
and on rearranging terms we see that
PV, _ PV, _ e
T - T, constant = K (7

i.e., the ratio PV/T for any given state of a gas is a constant. Conse-
quently we may drop the subscripts and write for any gas which obeys
Boyle’s and Charles’s laws

PV = KT (8)

Equation (8) is known as the combined gas law. It gives the complete
relationship between the pressure, volume, and temperature of any gas as
soon as the constant K is evaluated. That Boyle’s and Charles’s laws are
merely special cases of Eq. (8) is easily shown. When T is constant, Eq. (8)
reduces to PV = constant, or Boyle’s law. Again, when /” is constant,
Eq. (8) becomes

K

or Charles’s law.

THE GAS CONSTANT

The numerical value of the constant K in Eq. (8) is determined by
the number of moles! of gas involved and the units in which P and V are
expressed; but it is totally independent of the nature of the gas. Equation (8)
shows that for any given pressure and temperature an increase in the
quantity of gas increases the volume, and thereby also correspondingly
the magnitude of K. In other words, K is directly proportional to the
number of moles of gas involved. For convenience this constant may be
replaced, therefore, by the expression K = nR, where n is the number of
moles of gas occupying volume V" at P> and 7', while R is the gas constant
per mole. Thus expressed, R becomes a universal constant for all gases and
Eq. (8) takes the final form

PV = nRT (9)

Iiquation (9) is the ideal gas equation, one of the most important rela-
tions in physical chemistry. It conncets directly the volume, temperature,
pressure, and number of moles of a gas, and permits all types of gas

1 A mole is the mass of a substance in gramms cqual numerically to its molecular
weight.
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calculations as soon as the constant R is known. R may be found from the
fact that 1 mole of any ideal gas at standard conditions, i.e., at 0°C and
1 atm pressure, occupies a volume of 22.413 liters. If we express then the
volume in liters and the pressure in atmospheres, R follows from Eq. (9) as

PV 11X 22413

—_ e = I T = N - —1 —1
R v L 1% 273.15 0.08205 liter-atm degree—! mole

This value of R can be used only when volume is taken in liters and pres-
sure in atmospheres. For other combinations of units R will have other
values. Thus, if the pressure be expressed in atmospheres while the volume
in cubic centimeters, B becomes

_1X22413

k= 1 X 273.15

= 82.05 cc-atm degree~! mole™!

Since pressure is force per unit area and volume is area times length,
it immediately follows that the units of PV /nT and hence of R are

force )
rv. _ p = area X area X length _ force X length _ work degree™!
nT 7 moles X degrees  moles X degrees mole~!

Consequently R may be expressed in any set of units representing work
or energy. Although in gas calculations in the metric system the units
given above are the most useful, there is necessity in other types of cal-
culations to employ R in some alternate energy units. These are usually
ergs, joules, and calories.

To obtain R in ergs the pressure must be expressed in dynes per square
centimeter and the volume in cubic centimeters. For the volume at
standard conditions we have V = 22413 cc. Again, a pressure of 1 atm
is the pressure of a column of mercury 76 c¢m high and 1 em? in cross
section at 0°C. The total volume of such a column is thus 76 ce, and the
mass 76 X 13.595, where the latter quantity is the density of mercury at
0°C. The pressure in dynes per square centimeter will be then this mass
multiplied by the acceleration of gravity, 980.66 cm sec~2. Inserting these
values of ¥V and P into the expression for R, we find that

_ (76 X-13.595 X 980.66)(22,413)

R 1% 273.15

= 8.314 X 107 ergs degree~! mole™!

- Further, since 1-joule = 107 ergs, and 1 calorie = 4.184 joules, we arrive
also at

R = 8.314 joules degree—! mole™!
_ 8314

= —_—— = —1 —1
1184 1.987 cal degree~! mole

It should be clearly understood that, although R may be expressed in
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different units, for pressure-volume calculations involving gases R must
always be taken in the same units as those used for pressure and volume. To
facilitate calculations, Table 1-1 gives a summary of the values of R in
various units.

TaBLE 1-1. VALUEs oF R IN Variovs UNITs

Tem-
Vol-  pera-
Pressure ume ture n R

Atmospheres liters °K gram-moles 0.08205 liter-atm (°K)~! (g-mole)—!

Atmospheres cc °K gram-moles 82.05 cc-atm (°K)~! (g-mole)~!
Dynes/cm? ce °K gram-moles 8.314 X 107 ergs (°K)~! (g-mole)~!
mm Hg ce °K gram-moles 62,360 cc-mm Hg (°K)™! (g-mole)™!
R in joules °K gram-moles 8.314 joules (°K)~! (g-mole)—!

R in calories °K gram-moles 1.987 cal (°K)™! (g-mole)™!

CALCULATIONS INVOLVING IDEAL GAS LAW

The ideal gas law may be employed to find any one of the variables
P, V, T, or n from any specified set of three of these. As an illustration,
suppose that we want to ascertain the volume occupied by 10.0 g of
oxygen at 25.0°C and 650 mm Hg pressure. From the data we know that

10.0

n = 32—0 = 0.312 mole

T = 273.2 + 25.0 = 298.2°K
650

D — = 3

I 760 0.855 atm

R = 0.0821 liter-atm degree=! mole™!
Insertion of these into Eq. (9) yields for the volume

V= nRT _ 0.312 X 0.0821 X 298.2
P 0.855
= 8.94 liters

Similarly, from appropriately specified data the other quantities involved
in the ideal gas equation may be found.

DALTON’S LAW OF PARTIAL PRESSURES

Different gases introduced into the same container interdiffuse or mix
rapidly. Dalton’s law of partial pressures states that at constant tempera-
ture the total pressure exerted by a mixture of gases in a definite volume s
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equal to the sum of the individual pressures which each gas vould exert if
it occupied the same total volume alone. In other words,

Piota = Py + Ps+ P34 - - - (],;{

where the individual pressures, P;, P, P;, etc., are termed the pertial
pressures of the respective gases. The partial pressure of each constituent
may be thought of as the pressure which that constituent would exert if it
were isolated in the same volume and at the same temperature as that
of the mixture. In terms of the partial pressures, Dalton’s law may be
restated as follows: The total pressure of a mizture of gases is equal to the
sum of the partial pressures of the indiwidual components of the mixture.

The significance of Dalton’s law and of the concept of partial pressures
is best brought out by the following example. If we were to take three
1-liter flasks filled respectively with hydrogen at 70 mm Hg pressure,
carbon monoxide at 500 mm, and nitrogen at 1000 mm, all at the same
temperature, and were to force all these gases into a fourth 1-liter flask,
the total pressure within the fourth flask would be

P = Py, + Pco + Pn,
= 70 4+ 500 + 1000
1570 mm Hg

and the pressures of the individual gases within their 1-liter flasks would
be the partial pressures of these gases in the mixture.

Consider now a gaseous mixture composed of n, moles of one gas, n,
moles of another gas, and n; moles of still a third. Let the total volume
be V and the temperature T'. If the conditions of pressure and tempera-
ture are not too extreme, the ideal gas laws would be valid for each gas
in the mixture, and we obtain for the respective partial pressures

’IllRT

l 1 = V (118)

> ‘anT

P, = % (11b)
T

Py = "35 (11c)

According to Dalton’s law the total pressure P thus becomes

> _ anT ’anT n3RT
P==—+—~ 5+

(n, + ne + 'I’L:;)RT
| 4

_ mRT
=T

(12)
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where n, = (n, + n: + n;) = total number of moles of gas in the mix-
ture. We see from Eq. (12), therefore, that the gas laws may be applied to
mixtures as well as to pure gases, and in exactly the same way.

On division of Eqgs. (11a)—(11¢) by Eq. (12) it is found that

p— ﬂ Q!
P, = n, P (12a:
N p
Py=tF (13b)
and P; = % P (13¢)
L

Equations such as (13) are very important in chemical and chemical
engineering calculations, for they relate the partial pressure of a gas te
the total pressure of the mixture. Since the fractions n,/n,, ns/n, and
n3/n, represent the moles of a particular constituent present in the mix-
ture divided by the total number of moles of all gases present, these
quantities are called mol fractions and are designated by the respective
symbols N, N,, N3, etc. Of necessity the sum of all the mol fractions for a
system will have to be unity, namely,

Ni+N:+N;+ - - =1 (14)

In terms of these definitions the partial pressure of any component in a gas
maxture is equal to the mol fraction of that component multiplied by the total
pressure. This is true only when the ideal gas law applies to each con-
stituent of the gas mixture.

AMAGAT’S LAW OF PARTIAL VOLUMES

A law similar to Dalton’s is Amagat’s law of partial volumes. This law
states that in any gas mixture the total volume may be considered to be the
sum of the partial volumes of the constituents of the mizture, i.e.,

V=Vi+Vet+ Vit - (15)

where V' is the total volume while V,, V,, cte., are the partial volumes.
By the partial volume of a constituent is meant the volume which that
constituent would occupy if present alone at the given temperature and
at the total pressure of the mixture. By an argument similar to the onc
employed for partial pressures it is readily shown that, if the ideal gas
laws are again applicable, then '

Vi = NV, V. = N,V, cte. (16)

where V,, V,, cte., are the partial volumes, Ny, N, cte., the mol fractions,
and V the total volume at any pressure and temperature,
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Dalton’s and Amagat’s laws are equivalent and hold equally well with
gases that approximate ideal behavior, i.e., with gases that are not too
close to their condensation temperatures or at too elevated pressures. At
high pressures and near their condensation temperatures gases begin to
exhibit considerable intermolecular attractions and effects which are no
longer general but are specific to the composition and nature of the sub-
stances. Under such conditions deviations appear not only from Eqs. (13)
and (16), but also from Eqgs. (10) and (15). In general, the law of partial
volumes holds somewhat better than the law of partial pressures at high
pressures and low temperatures.

GRAHAM’S LAW OF DIFFUSION

Different gases diffuse through a tube or escape from a container having
a fine opening at different rates dependent on the densities or molecular
weights of the gases. The law governing such diffusions was first enunciated
by Graham in 1829 and bears his name. This law states that at constant
temperature and pressure the rates of diffusion of various gases vary inversely
as the square roots of their densities or molecular weights. Thus, if we let
u; and uq be the rates of diffusion of two gases, and p, and p, be their
respective densities, then

w _ Vs
v py

Again, since at the same pressure and temperature both gases must have
the same molar volume V,, we have also that

w _ Ve _ Vil
U \/plvm \/1—”—1

where M, and M, are the molecular weights of the two gases.

17)

(18)

THE KINETIC THEORY OF IDEAL GASES

All the principles of gas behavior which have been discussed so far
have been arrived at by experiment. The kinetic theory of gases, on the
other hand, attempts to elucidate the behavior of gases by theoretical
means in terms of a postulated “picture” of a gas and certain assumptions
regarding its behavior. The theory was first proposed by Bernoulli in
1738, and was considerably elaborated and extended by Clausius, Max-
well, Boltzmann, van der Waals, and Jeans.

The kinetic theory is based on the foliowing fundamental postulates:
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. Gases are considered to be composed of minute discrete particles

called molecules. For any one gas all molecules are thought to be of
the same mass and size but to differ in these from gas to gas.

. The molecules within a container are believed to be in ceaseless

chaotic motion during which they collide with each other and with
the walls of the container.

The bombardment of the container walls by the molecules gives
rise to the phenomenon we call pressure, i.e., the force exerted on the
walls per unit area is the average force per unit area which the
molecules exert in their collisions with the walls.

Inasmuch as the pressure of a gas within a container does not vary
with time at any given pressure and temperature, the molecular
collisions must involve no energy loss due to friction. In other words,
all molecular collisions are elastic.

The absolute temperature is a quantity proportional to the average
kinetic energy of all the molecules in a system.

At relatively low pressures the average distances between molecules
are large compared with molecular diameters, and hence the attrac-
tive forces between molecules, which depend on the distance of
molecular separation, may be considered negligible.

. Finally, since the molecules are small compared with the distances

between them, their volume may be considered to be negligible com-
pared with the total volume of the gas.

Postulates 6 and 7, by ignoring the size of the molecules and the inter-
actions between them, limit the theoretical treatment to ideal gases.

A mathematical analysis of this concept of a gas leads to fundamental
conclusions that are directly verifiable by experiment. Consider a cubical
container filled with n’ molecules of gas, all the same, and all with molecu-
lar mass m and velocity «. This velocity © may be resolved into its three
components along the x, y, and 2 axes, as is shown in Figure 1-3. If we

z Axis
|
Ul Figure 1-3. Resolution of
Z ~ o
l" velocity along z, y, and z
', axes.
X .
UZA(——\:J" 1t-—-= x Axis
4
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designate these velocity components by u., u,, u., then
u? = ul + ul+ u 19)

where u is called the root-mean-square velocity. Each of these components
may now be treated as though a single molecule of mass m were to move
independently with each of the component velocities in the appropriate
directions z, y, or z. The total effect of these independent motions is
obtained by combining the velocities according to Eq. (19).

Suppose now that the molecule of mass m is moving in the z direction to
the right with velocity u,. It will strike the yz plane with a momentum
mu,, and, since the collision is elastic, it will rebound with velocity —u,
and momentum —mu,. Consequently the change in momentum per mole-
cule per single collision in the z direction is mu, — (—mu.) = 2 mu..
Before the molecule can strike the same wall again it must travel to the
opposite wall, collide with it, rebound, and return. To do this it must
cover the distance 2 I, where [ is the length of the cube edge. Hence the
number of collisions with the right-hand wall which the molecule will
experience per second will be u,/2 [, and thereby the change in momentum
per second for the one molecule on the given wall will be
mu?

-

But the same change in momentum will be experienced also by the same
molecule at the other yz plane, so that the total change in momentum
per molecule per second in the x direction is twice the quantity in Eq. (20),
or

(2 mu) 5% = (20)

mu?

l

A moment’s reflection will show that analogous changes in momentum
take place in the y and z directions, and that these are given by 2 mu/l
and 2 mu?/l per molecule per second. From these the

Change in momentum/second/molecule in z direction = 2 (21)

2 2 2
_21;m,+21;m,,+21;m,

Total change in momentum/molecule/second

(u? + ul + ul)

~3 -3

= u? (22)
by Eq. (19). As there are n’ molecules in the cube, the change in momen-
tum per second for all of them will be Eq. (22) multiplied by »’, or

2 n'mu?

l

Total change in momentum per second =

(23)
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However, the rate of change of momentum is the acting force, f. Again,
pressure is the force per unit area. Consequently,
I _ 2mn'u

P=4="

(24)

where P is the pressure while A is the total arca over which the force is
applied. For the cube in question A = 6 [2, and hence

mn'u?
P = Vil (25)
But 13 is the volume V of the cube, and so
“mn'u?
P = 3V
or PV=%mww (26)

According to Eq. (26) the product PV for any gas should equal one-
third the mass of all the molecules (mn’) multiplied by the square of the
root-mean-square velocity. Although this equation was derived on the
assumption of a cubical vessel, it can be shown that the same result is
obtained no matter what shape of vessel is considered, and consequently
the above deduction must be perfectly general.

DEDUCTIONS FROM KINETIC THEORY OF GASES

Boyle’s Law. We have seen that one of the fundamental postulates of
the kinetic theory is the direct proportionality between the kinetic energy
of the molecules, i.e., 13 mn'u?, and the absolute temperature, namely,
that

%mn'u2 = k,T 27

where k, is a proportionality constant. If now Eq. (26) is multiplied and
divided by 2, we have
2/1
oW o= 22 mn'u?
Pl 3 (2 mn'u )

and hence, on insertion of Eq. (27),

PV = 2kT (28)
At constant temperature Eq. (28) becomes thus I°’T7 = constant, which is
Boyle’s law.
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Charles’s Law. This law holds at constant pressure. If this condition
is imposed on Eq. (28), we get

2k
v=(35)7

which is a statement of Charles’s law.

Avogadro’s Principle. In 1811 Avogadro enunciated the principle
that equal volumes of all gases at the same pressure and temperature contain
equal numbers of molecules. This principle is readily deducible from the
kinetic theory of gases. Since the volumes and pressures are equal, P,V, =
P,V, for two different gases, and hence it follows from Eq. (26) that

%nimlu% = ;—)némzué

Again, as the temperature is also constant, the average kinetic energy
per molecule must be the same, or

lm ul = lm u3
2 1% = 2 2We
Inserting the latter relation into the preceding, we see that
ny = n, (30)

which is a statement of Avogadro’s principle.

The actual number of molecules in a gram-mole of any gas is an iripor-
tant physical constant known as Avogadro’s number, symbol N. This
constant may be arrived at by a number of methods. The best present
value for this quantity is 6.0229 X 102 molecules per gram-mole. Once
this constant is available, the mass of any particular molecule can readily
be computed by merely dividing the molecular weight of the substance
by Avogadro’s number. Thus, since the molecular weight of oxygen is
32.00, the mass of an individual molecule must be

_ 3200
6.023 X 10%

Graham’s Law of Diffusion. Graham’s law also follow:s readily from
the kinetic theory of gases. Since at constant volume and pressure for two
different gases

mo, = 5.31 X 10-22 g/molecule

1 1
snimul = = nimoul

3 3
u?  msng
~then — = 7
u2 ‘m;n,
’
and U [Ttz (31)

- 7
U2 min,
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Further, if n; = n; = N, then

w _ [mN _ M,
w = \NmN =~ N, (32)

Again, since at constant temperature and pressure the molar volumes are
identical, we have also
Ur _ [Pz

Us P1 (33)

where p; and p; are the densities of the two gases. Equations (32) and
(33) are identical with (17) and (18), and are, of course, statements of
Graham’'s law.

All these deductions point to the fact that the theoretical relation
PV = 14 n'mu? is in agreement with the empirical ideal gas law PV =
nRT. Consequently we may write without further hesitation that

PV = %n’mu2 = nRT
and, since n’ = nN,

PV = %n(Nm)u’ = nRT

2
- "”;“ - aRT (34)

where M = Nm is the molecular weight of the gas in question, and n is
the number of moles of gas in the volume V at pressure P and temperature
T.

FURTHER DEDUCTIONS FROM THE KINETIC THEORY

The value of any theory lies not only in its ability to account for known
experimental facts but also in its suggestiveness of new modes of attack.
In this respect the kinetic theory of gases has been very fruitful. We have
seen that Eq. (26), a direct consequence and expression of the theory,
gives all the laws of ideal gas behavior. At the same time, however, many
other highly important relations can be deduced from it, some of which
are outlined in the following.

The Velocity of Gas Molecules. According to the kinetic theory all
molecules at the same temperature must have the same average kinetic

energy, i.e.,
1 1 1

2 — 2 — 2
= MU = 5 Mol = 5 M3lUs, ete.
g it = g Maths = g My,

It follows, therefore, that the higher the mass of a molecule, the more



Further Deductions from the Kinetic Theory 21

slowly must it be moving. It is of considerable interest to ascertain the
actual velocity with which various molecules move. From Eq. (34) we
have that

%nMu2 = nRT
and hence u= %{;—T (35a)

Again, since RT = PV/n, and nM/V = p, the density of the gas in
question at temperature T and pressure P, Eq. (35a) may be written also

as
_ 5P
u—\/p (35b)

By either of these equations the root-mean-square velocity of a gas may
be calculated from directly measurable quantities. In doing this, if R is
expressed in ergs per degree per mole, P in dynes per square centimeter,
and the density in grams per cubic centimeter, then u will be given in
centimeters per second.

To calculate the velocity of hydrogen molecules at 0°C we know that
R = 8.314 X 107 ergs per mole per degree, T = 273.15°K, and M = 2.016.
Hence Eq. (35a) yields for u

_ /ﬂT
YENTM

3 X 8.314 X 107 X 273.15
2.016
= 184,000 cm/sec
68 miles/min

Since hydrogen is the lightest of all elements, this tremendously high
velocity represents an upper limit for rates of molecular motion. For all
other molecules the speeds will be lower in accordance with Graham’s
law. Thus for sulfur dioxide, with M = 64, the velocity at 0°C would be

uso, _ 2
68 64
uso, = 12 miles/min

The Kinetic Energy of Translation. The only type of energy we
have ascribed thus far to gas molecules is that due to molecular motion
along three coordinate axes, i.e., kinetic energy of translation. The amount
of this cnergy is again deducible from Fq. (34). Since from this equa-
tion nRT = nMu?/3, and since the kinetic energy, Ej, is given by



22 Chapter 1: Gases and Liquids
E, = nMu?/2, then for n moles of gas

3/1
E. = "2‘ {\3 nMu’)

N W

nRT (36a)

and per mule
E =

N W

RT (36b)

Consequently, the translational energy of an ideal gas is completely inde-
pendent of the nature or pressure of the gas, and depends only on the
absolute temperature. At, say, 300°K all ideal gases will thus contain per
mole

Ei = g R(300)

=450 R
= 895 cal

or approximately 900 cal of translational kinetic energy.
The average kinetic energy per molecule follows from Eq. (36b) on
division by Avogadro’s number, N, namely,

=220 = 2T (37)

where k = R/N is called the Boltzmann constant, and is equal to 1.3805 X
10-1¢ erg per degree.

Distribution of Molecular Velocities. [or convenience of treat-
ment all molecules in a given gas and at a given temperature were
considered to be composed of molecules moving with a constant root-
mean-square velocity u. Actually, however, all molecules do not possess
the same velocity, for as a result of collisions a redistribution of both
energy and velocity takes place. Maxwell and Boltzmann, utilizing prob-
ability considerations, have in fact shown that the actual distribution of
molecular velocities depends on the temperature and molecular weight of
o gas, and is given by

3/2 Mc
‘% = 4r (%) e-ﬁﬁc’dc (38)
In this equation dn, is the number of molecules out of a total n’ having
velocities between ¢ and ¢ + dc, while M and T are, respectively, the
molecular weight and temperature of the gas. Obviously dn./n’ is the
fraction of the total number of 11:0lecules having velocities between ¢ and
¢ + dec. Equation (38) is known as the Maxwell-Boltzmann distribution
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law for molecular velocities. If Eq. (38) is divided by dc, we get
1 dn MO\ M
= = 2€ = = 2RT 2
P= e dm (2 rRT) ¢ ¢ (38a)

where p may be taken as the probability of finding molecules with the
velocity c.

c—Velocity of Molecules

Figure 1-4. Distribution of molecular velocities in a gas.

Figure 1-4 shows schematic plots of p vs. ¢ for several temperatures
which increase in the order T,, T», T;. From these plots it may be seen
that the probability of a molecule being motionless at any instant is very
small. Further, for incidence of velocities greater than zero the probability
increases with ¢, passes through a maximum, and then falls away more or
less rapidly toward zero again for very high rates of motion. It is evident,
therefore, that both very low and very high speeds are highly improbable,
and that most of the molecules in a gas have velocities grouped about the
most probable velocity corvesponding to the peak of the curve at each
temperature. The most probable velocity is in any gas not a constant, but
shifts toward higher values of ¢ with increase in temperature; i.e., at
higher temperatures higher velocities are more probable than at low.

Mathematical analysis shows that the most probable velocity, «, is not
equal cither to the root-mean-square velocity  or the average velocity of

all the molecules v. If we designate by ¢y, ¢, ¢3, * - * ¢a the individual

velocities of #’ molecules in a gas, then the average velocity v is defined as
c C e

= ¢+ c2 + ns"*- (39)

and the root-mean-square velocity as

2 2 2 .. o2
w = “+%+2+ Cn (40)
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Kinetic theory arguments reveal that these various velocities are related
by the equations
v =0.921u (41)

a= \/g-'u (42)

and hence, on substitution of the value of u from Eq. (35a), we have

“ = \/g (35a)

» = 0.921 %' (43)
or a:v:u =1:1.128:1.224

Since for any specific velocity ¢ the kinetic energy of a gas per mole is
E = Mc?/2, we may substitute this relation into Eq. (38) to obtain the
distribution of kinetic energies in a gas. The result is

% _ 2x
n’ ~ (xRT)¥?

where now dn./n’ is the fraction of the total number of molecules having
kinetic energies between E and E + d&. Again, division of Eq. (45) by
dE yields

E
e ETEUE (45)

E
, _ 1 dnc _ 2% —ﬁEllﬂ (453)

“wWdE -~ GRT)™°
where p’ is the probability for incidence of kinetic energies of translation
of magnitude E. The plots of p’ vs. E obtained from Eq. (45a) are very
similar to those shown in Figure 4.

Frequency of Collisions and Mean Free Path. It can be shown
that in a gas containing n* identical molecules per cubic centimeter, the
number of molecules with which a single gas molecule will collide per
second is ’

V2 xva?n*

where v is the average molecular velocity in centimeters per second and
o the molecular diameter in centimeters. Hence the total number of col-
liding molecules per cubic centimeter per second, Z, must be n* times
this quantity, or

Z = \/2 nvot(n*)? (46)

Further, since each collision involves two molecules, the number of
molecular collisions occurring in each cubic centimeter per second, N.,
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will be one-half this number, namely,

Nc = g = \%éwvaZ(n*)2 (47)

Another important quantity in kinetic theory considerations is the
average distance-a molecule traverses before colliding, or the mean free
path, 1. If a molecule has an average velocity v em per sec, and if within
this period it experiences, as we have seen, 1/2 mvo?n* collisions, then the
average distance between collisions, or mean free path, must be

v
" /2 rvent
1
=V 2rotnt (48)

l

The quantities N., Z, and [ are readily calculable as soon as the molecu-
lar diameters ¢ are available. These are usually obtained from gas vis-
cosity measurements in & manner to be discussed toward the end of the
chapter.

APPLICABILITY OF THE IDEAL GAS LAWS

The concordance between the empirical generalizations embodied in
the expression PV = nRT and the deductions of the kinetic theory of
gases lends considerable credence to our conception of the nature of gases
and their behavior. However, there still remains the question of how com-
pletely and accurately can the expression PV = nRT reproduce the
actual P-V-T relations of gases. To test this point we may resort to the
fact that at constant temperature the combined gas law reduces to
PV = aRT = constant. Hence, as long as T does not vary, the product
PV for a given quantity of gas should remain the same at all pressures. A
plot of PV vs. P at constant T should yield, therefore, a straight line
parallel to the abscissa.

Such a plot of PV vs. P constructed from actual data for several gases
at 0°C is sho\vx} in Figure 1-5. The fact immediately apparent is that PV
is not constant over most of the pressure range shown. The curves are in
general of two types. One, including only hydrogen and helium here,
starts at the value of PV . demanded by PV = nRT for the temperature
in question and increases continually with pressure. In every case the
product PV is greater than demanded by theory. On the other hand, in
the second type the plot starts again at the same point as before, but now
the product PV decreases at first with pressure, passes through a
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minimum characteristic of each gas and the temperature, and then
increases to values which may rise appreciably above the theoretical.
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Figure 1-5. PV vs. P vlot for several gases at 0°C.

Actually, both types of curves are part of a single pattern of behavior
exhibited by all gases. To show this, it is convenient to employ a quantity
2, called the compressibility factor, which is defined as

_ PV

= nRT

For an ideal gas z = 1 at all temperatures and pressures. In the case of

actual gases the compressibility factor may vary with both of these

variables, and hence its deviation from a value of unity is an index of
deviation from ideal behavior.

From the experimental P-V-T data for a gas z may be calculated by
means of Eq. (49), and its variation with temperature and pressure
observed. Figure 1-6 shows a plot of z vs. P for nitrogen at various con-
stant temperatures. Inspection of this plot reveals that all the isotherras
start with z = 1 at P = 0, and change with pressure in a manner depend-
ent on the temperature. However, there is one temperature, in this case
51°C, at which z remains close to unity over an appreciable pressure range.
In fact, between P = 0 and P = 100 atm z changes only from 1.00 to 1.02.
Beyond 100 atm z rises quite rapidly with increasing pressure and attains
values considerably above z = 1. This temperature at which a real gas
obeys the ideal gas law over an appreciable pressure range is called the
Boyle temperature or Boyle point. The Boyle temperature is also a dividing
line in the types of isotherms exhibited by the gas. Above the Boyle point
the gas shows only positive deviations from ideality, and hence all values

(49,
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of z are greater than unity. Below the Boyle temperature, however, the
values of z first decrease with increasing pressure, go through a minimum,
and then increase to values which may climb appreciably above z = 1.
It should also be observed that the lower the temperature the lower
the minima, and that they occur at pressures which vary with the
temperature.
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Figure 1-6. Compressibility factors for nitrogen.

The plots shown in Figure 1-6 are typical of the P-V-T behavior of all
gases when data covering wide ranges of pressure and temperature are
considered. The only differences observed are in the Boyle temperatures
and in the positions of the isotherms on the plots, since these are depend-
ent in each instance on the gas in question. Nevertheless, it is always
found that above the Boyle temperature only positive deviations from
ideality are observed. Below the Boyle temperature, on the other hand,
increase of pressure causes the z values first to decrease below z = 1, to go
through a minimum, and then to increase to values which eventually go
appreciably above z = 1.

In terms of the above discussion a glance at Figure 1-5 should suffice to
indicate that at 0°C hydrogen and helium are already above their Boyle
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temperatures, whereas carbon monoxide and methane are still below
theirs. It is also to be expected that at sufficiently low temperatures
hydrogen and helium should exhibit minima in their z vs. P plots, while at
higher temperatures carbon monoxide and methane should show plots
similar to those of hydrogen and helium at 0°C. Such is actually the case,
as may be seen from the compressibility factor plot for methane given in
Figure 1-7.
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The highly individualistic behavior exhibited by various gases indicates
that in order to represent their P-V-T relations equations of state, i.e.,
equations involving P, V, and T, would be required which would contain
not only these variables but also terms making allowance for the specific
forces operative in each gas. However, P-V-T studies on gases at low
pressures do show that when the pressures are lowered gases begin to
approximate more closely the ideal gas law, and, furthermore, the lower
the pressure the better is the agreement between the observed PV
product and that calculated from the combined gas law. At these low
pressures all gases lose their individualistic behavior and merge to obey
the simple and general expression obtained from the kinetic theory of
gases. For this reason the expression PV = nRT is considered to be a
limating law only, a law which gases obey strictly only when they are
diluted highly -enough so that the volume of the molecules themselves is
negligible compared with the total volume, and the intermolecular attrac-
tive forces are too feeble to exercise any influence on the pressure of the
gas. It may be concluded, therefore, that a gas becomes more ideai as the
pressure is lowered and will become completely ideal as the pressure
approaches zero. This conclusion is confirmed by the fact that, as P
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approaches zero, the compressibility factors at all temperatures go to
z=1.

How far this concordance between the ideal gas law and observation
will extend into the range of higher pressures depends on the nature of
the gas and the temperature. For gases which are permanent at ordinary
temperatures, i.e., which are above their critical temperatures,? such as
hydrogen, nitrogen, oxygen, and helium, this concordance may extend
within 5 per cent or so up to pressures as high as 50 atm. On the other
hand, with easily condensible gases, such as carbon dioxide, sulfur dioxide,
chlorine, and methyl chloride, discrepancies as large as 2 or 3 per cent may
appear at 1 atm pressure. The use of the ideal gas law for such gases is
considerably limited, therefore, when fairly precise calculations are
required. In any case, before using the ideal gas law at any appreciable
pressure it is always advisable to consider the nature of the gas in ques-
tion and how far it is above its critical temperature. The greater this
distance, the wider in general will be the pressure range over which calcu-
lations can be made within a given accuracy.

USE OF COMPRESSIBILITY FACTORS

When the compressibility factors of a gas are known under various
conditions, they may be employed quite readily for making exact gas
calculations. For instance, suppose that the volume of 10 moles of meth-
ane is required at 100 atm pressure and 0°C. At this pressure and tempera-
ture z = 0.783, and hence, according to Eq. (49),

_ znRT
- P
0.783 X 10 X 0.08205 X 273.2
100

v

1.754 liters

The experimentally observed volume is 1.756 liters. Again, suppose that
a certain quantity of methane occupies a volume of 0.138 liter under a
pressure of 300 atm at 200°C, and the volume is required at 600 atm
at 0°C. For 300 atm at 200°C, z; = 1.067, while for 600 atm at 0°C,
21 = 1.367. Since for the lower temperature we have P,V,; = zinRT,
while for the higher one PV, = z;nRT,, then

P1V1 _ zlnRTl _ 31_7‘1
P2V2 - Zz’nRTz - 22T2 (50)

2 The critical temperature is the highest temperature at which a gas may be liquefied.
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and hence on substitution of the given values we get

_ ZlTl P2V2
N ESCS

=(L%7XW&3(%OXQB%

1.067 X 473.2 600
0.051 liter

THE VAN DER WAALS EQUATION OF STATE

Because of the deviation of real gases from the ideal gas law, many
attempts have been made to set up equations of state which will reproduce
more satisfactorily the P-V-T relations of gases. Of these equations one
of the earliest and best known is that of van der Waals,

The van der Waals equation differs from the ideal gas law in that it
makes allowance both for the volume occupied by the molecules them-
selves and for the attractive forces between them. To make correction for
the finite dimensions of the molecules, let b be the effective volume of the
molecules in one mole of gas and V be the total volume of n moles of gas.
In this total volume, that occupied by the molecules themselves thus will
be nb, and hence the volume available for compression will be not ¥V but
(V — nb). Since the latter is the ‘“free space,” it should be substituted for
V in the ideal gas law. It may be anticipated that b will be characteristic
and different for each gas.

The second factor for cognizance is the attractive force operative
between molecules. Consider the wall of a container which is being
bombarded by gaseous molecules. When the gas molecules are not con-
strained by attractions for each other, they will bombard the wall with
the full force due to their outward motion. If, however, under the same
conditions a molecule moviig outward is subjected by molecular attrac-
tion to an inward “pull,” it will not strike the wall with as high a force as
if it were not ‘‘dragged back’ by the other molecules within the gas. Con-
sequently, the pressure resulting from the bombardment will be lessened
by an amount P’. The observed pressure, P, will thus be less than the
ideal pressure, P; by the amount P’, or

P=pP —P

Since in the expression P;V = nRT the pressure P; refers to the ideal
pressure, we must substitute for it its value from the expression given
above, or P; = (P 4+ P’). If we combine this corrected pressure with
the expression for the corrected volume we obtain

(P + P)(V — nb) = nRT (51)



The van der Waals Equation of State 31

van der Waals indicated that the magnitude of the pressure correction
P’ for n moles of gas present in volume V is given by
_n’a
= 71
where a is a constant characteristic of each gas and independent of pres-
sure and temperature. It is for each gas a measure of the magnitude of
the intermolecular attractive forces within the gas. If this expression
for P’ is substituted in Eq. (51), we get

(P + "72‘:) (V — nb) = nRT (52)

PI

This is the celebrated equation of state which was first developed by
van der Waals in 1873 and which bears his name.

In applying van der Waals’ equation care must be exercised in the
choice of appropriate units for the constants a and b. Since n%a/V? repre-
sents a pressure, the units of ¢ must be pressure X (volume)?/(mole)2,
i.e., atm-liter? mole~2, or atm-cc? mole~2. In any event, the units used
must be the same as those of P and V, and this applies also to R. In turn,
b is a volume and must correspond to the units of V.

The use of the equation can be illustrated with an example. Suppose it is
desired to calculate by van der Waals’ equation the pressure af which
2 moles of ammonia will occupy a volume of 5 liters at 27°C. For ammonia,
a = 4.17 atm-liter? mole2, while b = 0.0371 liter per mole. Hence,

P = nRT  n'a
V—-—nb V2
_ 2(0.0821)300.2  (2)% X 4.17
5 —2(0.0371) (5)2
= 9.33 atm

The corresponding pressure calculated from the ideal gas law is 9.86 atm.

Table 1-2 lists the van der Waals constants for a number of gases.
Such gases as carbon disulfide, ammonia, sulfur dioxide, chloroform, etc.,
which are easily condensible, have relatively high values of a, indicating
strong intermolecular attractions. On the other hand, for the permanent
gases such as argon, carbon monoxide, helium, and hydrogen, the a values
are considerably lower, and hence in these the intermolecular forces are
considerably weaker.

The van der Waals equation is much more accurate than the ideal gas
law and is valid over a much wider pressure range, as may be seen from
Table 1-3. However, under extreme conditions, such as temperatures
near the critical and at very high pressures, its predictions deviate con-
siderably in many instances from experimentally observed values. It is
very doubtful whether it is justifiable to consider a and b as constants
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TABLE 1-2. vAN DER WaaLs CONSTANTS FOR VARIOUs GASES
"~ (a in atm-liter? mole~2; b in liter mole—1)

Gas Formula a b
Ammonia NH, 4.17 0.0371
Argon Ar 1.35 0.0322
Carbon dioxide CO; 3.59 0.0427
Carbon disulfide C8. 11.62 0.0769
Carbon monoxide CO 1.49 0.0399
Carbon tetrachloride CCl, 20.39 0.1383
Chlorine Cl, 6.49 0.0562
Chloroform CHCI, 15.17 0.1022
Ethane C.H, 5.49 0.0638
Ethylene . C.H, 4.47 0.0571
Helium He 0.034 0.0237
Hydrogen H, 0.244 0.0266
Hydrogen bromide HBr 4.45 0.0443
Methane CH, 2.25 0.0428
Neon Ne 0.211 0.0171
Nitric oxide NO 1.34 0.0279
Nitrogen N, 1.39 0.0391
Oxygen 0. 1.36 0.0318
Sulfur dioxide SO, 6.71 0.0564
Water H,0 5.46 0.0305

TaBLE 1-3. CoMPARISON OF IDEAL GAs LAw AND VAN DER WaALS’
EquaTioN AT 100°C

Hydrogen Carbon Dioxide
P 9 P Cale. % P % PCale. 9
Observed Calc. Devia- van der Devia- Cale. Devia- van der Devia-
P (atm) Ideal  tion Waals  tion Ideal tion  Waals tion
50 48.7 —-2.6 50.2 +0.4 57.0 +14.0 495 -1.0
75 72.3 -3.6 75.7 +0.9 92.3 +17.3 73.3 -2.3

100 95.0 -5.0 100.8 +0.8 133.5 +433.5 95.8 —4.2

independent of pressure and temperature. In fact, in order to fit the equa-
tion to experimental data with a relatively high order of fidelity, it is
necessary to choose different values of a and b over different ranges of
pressure and temperature.

OTHER EQUATIONS OF STATE

A large number of other equations of state have been proposed to repre-
sent the P-V-T relations of gases. Some of these are based to some extent
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on theoretical considerations, while other are entirely empirical. We shall
consider now several of the more important of these equations.

The Kamerlingh Onnes Equation of State. This empirical equa-
tion expresses PV as a power series of the pressure at any given tempera-
ture, namely,

PV,= A+ BP + CP*+ DP*+ - - - (53)

P is the pressure, generally in atmospheres, and V,, is the molar volume
in liters or cubic centimeters. The coeflicients A, B, C, ete., are known
respectively as the first, second, third, etc., virial coefficients. At very
low pressures only the first of these coefficients is significant, and it is
equal to RT. At higher pressures, however, the others as well are impor-
tant and must be considered. In general the order of significance of the
coefficients is their order in the equation. These coefficients, although
constant at any given temperature, change in value as the temperature is
changed. Of necessity the first virial coefficient A is always positive and
increases with temperature. The second coefficient, on the other hand, is
negative at low temperatures, passes through zero, and besomes increas-
ingly positive as the temperature is raised. The temperature at which
B = 0 is the Boyle temperature, for at this temperature Boyle’s law is
valid over a fairly wide pressure range.

By using a sufficient number of terms this equation can be fitted to
experimental data with a high order of accuracy. The virial coeflicients
for several gases are shown in Table 1-4. With these it is possible to calcu-
late PV up to 1000 atm.

TaBLE 1-4. VIRIAL COEFFICIENTS OF SOME GASES
(P in atm, V,, in liters mole™1)

°C 4 B X 10? C X 105 D X 108 E x 101
Nitrogen
—50 18.312 —2.8790 14.980 —14.470 4.657
0 22 414 —1.0512 8.626 ~6.910 1.704
100 30.619 0.6662 4.411 —3.534 0.9687
200 38.824 1.4763 2.775 —2.379 0.7600

Carbon Monoxide

—-50 18.312 —3.6878 17.900 —17.911 6.225
0 22.414 —1.4825 9.823 —7.721 1.947

100 30.619 0.4036 4.874 —3.618 0.9235

200 38.824 1.3163 3.052 —2.449 0.7266

Hydrogen

—50 18.312 1.2027 1.164 —1.741 1.022
0 22 .414 1.3638 0.7851 —1.206 0.7354

500 63.447 1.7974 0.1003 —-0.1619 0.1050
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The Berthelot Equation. The high-pressure form of this equation is
rather difficult to handle. For low pressures the equation reduces to

9 PT. 6 T2

where P, V, R, T, and n have the same meaning as in the ideal gas law,
while P. and T, are the critical pressure and ecritical temperature respec-
tively.? For pressures of about an atmosphere and below this equation is
very accurate, and it is consequently very useful in calculating the
molecular weights of gases from their densities. Its use will be illustrated
in that connection.

TABLE 1-5. BEATTIE-BRIDGEMAN CONSTANTS FOR SOME GASES*
(For P in atm, V in liters mole~1)

Gas A, a By b c
He 0.0216 0.05984 0.01400 0 0.004 X 10¢
Ne 0.2125 0.2196 0.02060 0 0.101 X 10¢
Ar 1.2907 0.02328 0.03931 0 5.99 X 104
H, 0.1975 —0.00506 0.02096 —0.04359 0.050 X 104
N, 1.3445 0.02617 0.05046 —0.00691 4.20 X 10¢
0. 1.4911 0.02562 0.04624 0.004208 4.80 X 10¢
Air 1.3012 0.01931 0.04611 —0.01101 4.34 X 10¢
CO. 5.0065 0.07132 0.10476 0.07235 66.00 X 10¢
CH, 2.2769 0.01855 0.05587 —0.01587 12.83 X 104
(C.H;),0 31.278 0.12426 0.45446 0.11954 33.33 X 10¢

*J. Am. Chem. Soc., 50, 3136 (1928). See also Maron and Turnbull, Ind. Eng. Chem.,
33, 408 (1941).

The Beattie-Bridgeman Equation of State. This equation of
state involving five constants may be stated in two forms, one explicit in
pressure, the other in molar volume V,, namely,

p=2, £ Tt (55)

V,,.=RTT+ B +(g§)2+(fg—’;3 (56)

where 8= RTBy — Ay — % (57a)
y = —RTBib + Ao — 2Bt (57b)

5 = @}gﬂ (57¢)

In these relations T is again the absolute temperature and R the gas con-
stant, while Ao, By, a, b, and ¢ are constants characteristic of each gas.

3 See page 47.
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Of the two forms, Egs. (55) and (56), the first is the more accurate, for the
second was deduced from it with certain approximations.

This equation is applicable over wide ranges of temperature and pres-
sure with excellent accuracy. Volumes and pressures calculated by it
agree with experiment to 0.3 per cent or less up to pressures of 100 atm
and temperatures as low as —150°C. With lower accuracy the equation
may be extended to considerably higher pressures. Beattie-Bridgeman
constants for a number of gases are given in Table 1-5.

MOLECULAR WEIGHTS OF GASES

The molecular weight of a gas is an important quantity essential for all
types of calculations. It should be clearly realized that chemical analysis
alone is insufficient to establish the molecular weight of a substance.
Chemical analysis merely establishes the elements entering into the
composition of a molecule and their proportions, but it does not tell us
how many atoms of each substance are involved. For instance, chemical
analysis of ethane shows that it is composed of carbon and hydrogen in
the proporiion of three atoms of hydrogen for each atom of carbon. From
this #',1r= we should be tempted to write the formula as CH;. Actually,
howe s¢1, -density measurements on the gas show that the formula is not
CH: Lt a1aultiple of it, (CH3j), or C,Hg; i.e., the molecule is composed of
two .. was of carbon and six atoms of hydrogen. In brief, chemical analysis
can _ ld only the composition and empirical formula. Physicochemical
n.es. - aents, on the other hand, can establish the molecular weight,
1.0 w7 can give us then the multiple by which the empirical formula
w»' at must be multiplied in order to arrive at the actual molecular
we th’, of the substance.

“-til 1961 all molecular weights were based on the arbitrarily assumed
: ar dard of 16.0000 for the chemical atomic weight of oxygen. In that
»eor the International Union of Pure and Applied Chemistry adopted a
new atomic weight system based on the most abundant isotope of carbon,
namely, C!2, as being 12.0000. On this new basis the chemical atomic
weight of oxygen is changed to 15.9994. Since it has been proved that the
oxygen molecule contains two atoms, it follows immediately that the
molecular weight of oxygen must be 31.9988. Knowing the molecular
weight of oxygen, the molecular weights of all other gases may be deter-
mined by physicochemical methods through application of the Avogadro
hypothesis.

The Avogadro hypothesis states that under the same conditions of
temperature and pressure equal volumes of all ideal gases contain the
same number of molecules. If we were to determine, then, the volume
that a mole of oxygen occupies under a specified set of conditions, this
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would be also the volume that a mole of any other gas would occupy
under the same conditions; and the weight of this volume would yield
directly the molecular weight of the gas. Since by Avogadro's hypothesis
the two volumes would contain the same number of molecules, the
molecular weights would be in the same proportion as the actual masses
of the individual molecules.

In physical chemistry the unit of mass commonly employed is the
gram, and the gram-mole is the weight of a substance in grams correspond-
ing to the molecular weight.* For oxygen the gram-mole is 31.9988 grams.
Further, by direct measurement it has been found that the density of
oxygen at standard conditions, i.e., 1 atm pressure and 273.15°K, is
1.4276 grams per liter when corrected for nonideality of the gas. Since
density is mass per unit volume, it follows that the molar volume of
oxygen under the conditions specified must be

31.9988

m= 22.413 liters

As this is also the molar volume of any other ideal gas at standard condi-
tions, the problem of determining the exact molecular weight of any other
gas reduces itself to the determination of the weight of 22.413 liters of the
gas at 1 atm pressure and 273.15°K after correction for nonideal behavior.

Actually, it is not necessary or convenient to make measurements under
the above conditions. Measurements may be made under any desired.
conditions, and the molecular weight may be calculated conveniently
from these. The procedure followed for obtaining exact molecular weights
will be presented later in the chapter. At present we shall concern our-
selves with the determination of approximate molecular weights which,
along with the chemical analysis, are generally sufficient to establish the
molecular weight of a substance. For the latter purpose we employ the
ideal gas law as follows: If we let W be the weight of gas under considera-
tion, then n = W/M, and

w

PV = nRT = Vi RT
WRT .
or M = W (58)

Therefore, to obtain the molecular weight of any gas we need only deter-
mine the temperature and pressure at which a weight of gas W occupies
the volume V, substitute these quantities in Eq. (58), and solve for M.
Equation (58) may be expressed also in terms of the density of the gas p.

4 Similarly, a pound-mole is the weight of a substance in pounds corresponding to
the molecular weight.
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Since p = W/V,
_ pRT

M="F

(59)
and the molecular weight follows from the density of the gas at any given
temperature and pressure. Most methods for determining the molecular
weights of gases are based on these equations.

REGNAULT’S METHOD FOR DETERMINATION OF
MOLECULAR WEIGHTS

This method is employed to determine the molecular weights of sub-
stances which are gaseous at room temperature. The procedure in outline
is as follows: A dry glass bulb of 300- to 500-cc capacity fitted with a
stopcock is evacuated and weighed. It is then filled at a definite tempera-
ture and pressure with the gas whose molecular weight is to be determined
and weighed again. The difference in weights represents the weight of
gas W in the flask. The volume of the flask is determined by filling it with
water or mercury, whose densities are known, and again weighing. From

_the data thus obtained the molecular weight may be calculated by Eq.
(58).

For more precise work a larger bulb is used to increase the mass of gas_
and a similar bulb is employed as a counterpoise. The observed weights
are also reduced to vacuo.

DUMAS® METHOD FOR DETERMINATION OF
VAPOR DENSITIES

This method is used to determine the molecular weights in the vapor
phase of readily volatile liquids. A retort-shaped bulb, having a small
opening drawn to a capillary, is first weighed full of air. A sample of
several cubic centimeters of the liquid in question is drawn into the bulb
by cooling it with the tip below the surface of the liquid, and the bulb is
then immersed in a bath whose temperature is above the boiling point of
the liquid. The boiling is permitted to proceed until the vapors of boiling
liquid have expelled all the air from the bulb, and the liquid in the flask
has completely vaporized. The flask is then sealed, cooled to room tem-
perature, and weighed. The volume of the bulb is determined as in
Regnault’s method. The pressure of the vapor when the bulb is sealed
is the same as atmospheric, while the temperature is that of the bath.
The weight of vapor, after corrections for buoyancy, is obtained from the
equation

Weapor = Wbub+vapory — Wbuibtairy + Wair (60)
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W .i: is obtained by multiplying the volume of the flask by the density of
the air. Knowing P, V, T, and Wyap0r, the molecular weight of the liquid
in the vapor phase may be calculated as before.

THE VICTOR MEYER METHOD FOR VAPOR DENSITIES

This method serves the same purpose as the Dumas method for the
determination of vapor densities but is considerably simpler and more
flexible. A sketch of the apparatus is shown in Figure 1-8. It consists of

G
Figure 1-8. Victor Meyer
| L4 apparatus.
A -] 3
=% a "
&/ e o

an inner tube B, approximately 50 ¢m long, which is surrounded by a
jacket A, partly filled as indicated with a liquid whose boiling point is at
least 30 degrees higher than that of the substance to be studied. The func-
tion of the outer jacket is to keep the temperature of the inner tube con-
stant by boiling the liquid in A throughout a run. Inside the inner tube,
in turn, is another tube C, open at the bottom, down which passes a
metal or glass rod, anchored with rubber tubing at the top in the manner
shown and fitted with a hook at the bottom. The outlet from B com-
municates with a gas burette @, filled either with water, in which case
correction for the aqueous pressure must be applied, or preferably mer-
cury. L is a leveling bulb to permit adjustment of gas pressure in G to
that of the atmosphere.

The liquid whose molecular weight is to be determined is enclosed in a
small glass ampoule with finely drawn tip, P. This ampoule is first
weighed empty. Next, enough of the liquid is drawn in to yield 40 to
60 cc of vapor, and the bulb is sealed carefully in a flame and weighed
again. The difference between the first and second weighings gives the
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weight of the liquid W to be vaporized. This ampoule then is hung o= ..
hook projecting from C, and the entire apparatus assembled as shu
the figu:e.

To make a measurement, the liquid in A is brought to boiling and kept
there for the entire run. When thermal equilibrium has been established,
the levels in G and L are equalized and the burette reading is taken. Next
the ampoule is smashed by pulling upward on the rod at D so as to bring
the neck of the ampoule up against the bottom of C. With the bulb
broken the liquid vaporizes, and the vapors generated displace air from
the bottom of B into the gas burette G. The volume of air thus displaced
is equal to the volume of the vapors formed at the temperature of the
inner tube. Once in the gas burette the air cools to room temperature,
and its volume can be measured by again reading the burette. Provided
the levels in G and L are equalized, the pressure of this air is the same as
that of the atmosphere outside the burette, while the temperature is that
read on the thermometer H. The volume of displaced air thus obtained,
i.e., final minus initial burette readings, is equal to the volume which the
vapors of the liquid would occupy if they could be cooled to the tempera-
ture of the room and atmospheric pressure. Having measured in this
manner the weight of liquid W, and its volume as a vapor at room tem-
perature T and barometric pressure P, the density of the vapor and its
molecular weight may readily be calculated from the observed data.

DETERMINATION OF EXACT MOLECULAR WEIGHTS

The molecular weights calculated from the ideal gas law are, even with
good data, only approximate. The reason is that already at atmospheric
pressure the ideal gas law fails to represent accurately the behavior of the
vapors. If an exact molecular weight is desired, this must be obtained from
either a more precise gas equation or by special treatment of the ideal gas
law.

When the constants a and b of a substance are known, use of van der
Waals’ equation will give better concordance between observed and
calculated values of the molecular weight. For the purpose at hand, how-
ever, the Berthelot equation is more convenient and gives good results.
It can be used, of course, only when the critical temperature and pressure
of the substance are available. Since n = W/M, Eq. (54) gives for M

W\ (RT 9 PT, 6 T2
M= (T) (T) [1 t 1R P.T (1 - T)] 61)
Further, since W/V = p, Eq. (61) may also be written as
_ pRT 9 PT. _ 6T} ;
M="F [1 tigpr\! T (62)

from which the density follows when M is known or vice versa.
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The higher accuracy of the Berthelot equation can be illustrated with
the following data on niethyl chloride. For methyl chloride, T, = 416.2°K,
P. = 65.8 atm, while the density at standard conditions is 2.3076 g per
liter. Hence, by Eq. (62),

_2.30760.08205X273.2 1+ 9X1X416.2 1—6 (416.2)2
- 1 128 X65.8X273.2 (273.2)?

= 50.62 g mole™!

M

as against the theoretically calculated 50.49. Using the same data and
the ideal gas law, the molecular weight obtained is 51.71.

A means of obtaining exact molecular weights is the method of limiting
densities. This method, which gives excellent results, is based upon the
fact that as zero pressure is approached the ideal gas laws become exact
for all gases. The densities of a gas or vapor are determined at a given
temperature at atmospheric pressure and at several other pressures below
one atmosphere. The ratio p/P is then plotted against P. If the vapor or
gas were ideal, this ratio would be the same at.all pressures, for

=P
P =4 RT
p_ M _ :
and P = BT constant (63)

However, since this is not true for real gases, the ratio p/P changes with
decreasing pressure. Fortunately the plot is practically linear and can be
extrapolated to zero pressure without any difficulty. At zero pressure the
limiting ratio p/P is that for the ideal gas, and so

N _M
P P00 - RT
and M = RT (-1’55) (64)
Pus(

This method can be illustrated with the data on hydrogen bromide
given in Table 1-6, while the plot of p/P vs. P is shown in Fig. 1-9. The

]

TaBLE 1-6. DenNsITIEs oF HBr AT Various
Presstres (0°C)

P (atm) p (g/liter) /P
1 3.6444 3.6444
24 2.4220 3.6330
1g 1.2074 3.6222
0 — 3.6108 (extp’d)
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extrapolated value of p/P is 3.6108 g per liter per wti ai 0°C. Hence the
molecular weight of hydrogen bromide is

M = 3.6108 X 0.082054 X 273.15 = 80.93 g mole!

The value calculated from atomic weights is 80.92.

3.670

3.650

P
P 3.630

3.610

3.590 L !
0 Va 2 1 13
P— Atmospheres

Figure 1-9. Plot of p/P vs. P for HBr at 0°C.

RESULTS OF VAPOR DENSITY MEASUREMENTS

The measurement of the vapor densities of a large number of substances
shows that the molecular weight of these substances in the gas phase over
a certain temperature interval is what would be expected frem their
simple formula. Among these may be mentioned ammonia, carbon
dioxide, hydrogen, nitrogen, carbon monoxide, methyl chloride, methyl
fluoride, ethyl ether, methyl ether, carbon tetrachloride, chloroform,
carbon disulfide, acetone. There are other substances, however, which
exhibit a highly anomalous behavior. These may be segregated into two
groups: (a) those which exhibit vapor densities, and consequently molecu-
lar weights, higher than would be expected on the basis of their simple
formulas, and (b) those which exhibit vapor densities lower than expected
from their simple formulas. All these abnormalities are very much greater
than can be accounted for by either experimental uncertainty or deviation
from ideal behavior.

The substances exhibiting abnormally high vapor densities are con-
sidered to be associated in the vapor phase, i.e., the molecules are consid-
ered to be composed of more than a single structural unit. In line with
this view is the fact that the calculated molecular weight is usually a
whole-number multiple of the simple formula. Thus aluminum chloride
is shown in the vapor phase to be (AlCl;). or Al,Clg, ferric chloride Fe,Cls,
beryllium chloride Be,Cl,, and gallium chloride Ga,Cl,. Sulfur is another
substance which shows different stages of association in the gas phase at
different temperatures.
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Substances exhibiting abnormally low vapor densities break down or
dissociate in the vapor phase under the influence of heat into simpler
molecules, leading thereby to a greater number of particles and a lower
density for any given pressure. Thus the vapor of ammonium chloride
contains ammonia and hydrogen chloride as a result of the reaction

NH.Cl = NH; + HCl

Similarly, PCl; dissociates in the vapor phase into PCl; and Cl,, while
N0, dissociates into two molecules of NO,. In any instance the extent of
dissociation is a function of the temperature and pressure. At sufficiently
high temperatures these substances may be completely dissociated, while
at sufficiently low temperatures they may behave almost normally. In
fact, practically all substances can be shown to be abnormal if the tem-
perature is made high enough. Even such a stable compound as carbon
dioxide dissociates above 2000°C to some extent into carbon monoxide
and oxygen. Similarly, aluminum chloride at 400°C is Al;Cle, at 500°C it
is a mixture of Al,Cls and AlCI;, while at 1100°C it is all AICl;. If heated
further, AICI; will actually dissociate into aluminum and chlorine. Hence
when we speak of the molecular weight of a substance in the gas phase,
it is very important to keep in mind the temperature to which reference
is made.

\

HEAT CAPACITY OF GASES

The specific heat of any substance is defined as the quantity of heat
required to raise the temperature of unit weight of the substance 1 degree
of temperature. In terms of calories and degrees centigrade, the specific
heat is the number of calories of heat required to raise the temperature of
1 g of a substance 1°C. Chemical calculations are most frequently made
on a molar basis, and for that reason it is more convenient to deal with
the heat capacity per mole. The heat capacity per mole is the amount of
heat required to raise the temperature of 1 mole of a substance 1°C. It is
equal, of necessity, to the specific heat per gram multiplied by the molecu-
lar weight of the substance.

Two types of heat capacities are recognized, depending on whether the
substance is heated at constant volume or at constant pressure. When
a substance is heated at constant volume, all of the energy supplied goes
to increase the internal energy of the substance, and we speak then of the
heat capacily at constant volume, C,. On the other hand, when a substance
is heated at constant pressure, energy must be supplied not only to
increase its internal energy, but also to make possible expansion of th
substance against the confining atmospheric pressure. The heat capacity
at constant pressure, Cp, must therefore be larger than that at constant
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volume by the amount of work which must be performed in the expansion
accompanying 1 degree rise in temperature. In liquids and solids, where
volume changes on heating are small, this difference between C, and C, is
usually slight. With gases, however, where the volume changes with tem-
perature are always large, the difference C, — C, is.always significant
and -cannot be disregarded.

Some important ‘deductions concerning the speclﬁc heats of gases can
be made from the kinetic theory of gas behavior. According to equation
(36b), the kinetic energy of translation of an ideal gas per mole is

3
Ek—QRT

If this is the only type of energy the gas possesses (monatomic gas), the
energy difference of the gas (Ex, — Ey,) between two temperatures T'; and
Tl is

AE = E,, — Ey; = gR(Tz - Ty

When the temperature difference T; — T, = 1, AE becomes the energy
required to raise the translational energy of 1 mole of gas 1 degree without
involving any external work, or, in other words, the heat capacity per
mole at constant volume C,. Hence we may write

3 3, :
C, = §R— §X 1.987
= 2.98 cal degree=! mole™! (65)

The kinetic theory predicts, therefore, that C, for any ideal gas containing
only translational energy should be approximately 3 cal per mole, and,
further, that this heat capacity should be constant and independent of
temperature.

A similar prediction can be arrived at with respect to the heat capacity
at constant pressure, C,. It view of the preceding considerations it follows
that

C,b=C,+w cal degree—! mole™! (66)

where w is the work which must be performed against a confining pressure
P when 1 mole of an ideal gas is expanded from a volume V, at T, to a
volume V,; at Ty = T, + 1. The value of w can be obtained from the
relation

Vs
w = / PdV (67)

V1

which will be discussed in greater detail in Chapter 3. If we now differ-
entiate PV = RT at constant pressure, we have PdV = RdT, and on



44 Chapter 1: Gases and Liquids

substitution of RdT for PdV in Eq. (67), we see that

Va T2
/ PdV = / RdT
V) T

R(T, — Th)

w

For Ty — T, = 1 this reduces-ta.w = R per mole, and hence for an ideal
gas

C, =C,+ R cal degree ! mole™! (68)

Equation (68) is valid for all ideal gases, and permits the simple con-_
version of € to C, or vice versa. Inserting the values of C, from Eq. (65)

and of R, we see that for any ideal gas tnvolving only translational energy
C, should be

C,=2R

5
2
4.97 cal degree=! mole™! (69)

Consequently, like C,, C, should be constant and independent of tem-
perature for all gases. Again, the ratio C,/C,, commonly designated by ¥,
should also be a constant equal to

_Cy _3/2R
~C, 3/2R
= 1.67 (70)

In Table 1-7 are listed values of C,, C,, C, — C,, and v for various
gases at 15°C. It will be observed, first of all,. that the requirement
C, — C, = R = 1.99 cal per mole is met fairly well by practically all the
gases in the table. Second, the predictions of the kinetic theory that
C, = 4.97 and C, = 2.98 cal per mole arc borne out by the heat capacities
of a group of gases which includes, besides argon and helium, also krypton,
xenon, and a number of metallic vapors. However, for all the other gases
in the table the prediction is not valid. Inspection of the table reveals
that the various gases can be divided into classes based upon their values
of v. The first group, comprising gases that obey the kinetic theory, has
the expected ¥ = 1.67. The others, in turn, may be grouped as those with
v equal approximately to 1.4, 1.3, and lower. Further, the decrease in v is
always associated 'with an increasc in the complexity of the molecules
involved. Thus argon and helium with y = 1.67 arec monatomie, i.e., the
molecules contain a single atom of the element. Again, the substances
with vy equal to about 1.4, such as oxygen, nitrogen, and chlorine, are.
diatomie, those with v equal to about 1.3 triatomie, while all others with
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7 still lower are more complex. Finally, all substances exhibiting y values
lower than 1.67 also have values of C, and C, considerably greater than
the predicted C, = 34 R and C, = 34 R.

TasLe 1-7. HeaT CaraciTiEs OoF Gases AT 15°C
(Cal mole~! degree™?)

Gas Formula C, C, c,-2¢C, ¥
Argon " Ar 5.00 3.01 1.99 1.86
Helium He 4.99 3.00 1.99 1.66
Carbon monoxide CO 6.94 4.95 1.99 1.40
Chlorine Cl, 8.15 6.02 2.13 1.36
Hydrogen H, 6.83 4.84 1.99 1.41
Hydrogen chloride HCl 7.07 5.01 2.06 1.41
Nitrogen N. 6.94 4.94 2.00 1.40
Oxygen 0, 6.96 4.97 1.99 1.40
Carbon dioxide CO, 8.75 6.71 2.04 1.30
Hydrogen sulfide H.S 8.63 6.54 2.09 1.32
Nitrous oxide N.O 8.82 6.77 2.05 1.30
Sulfur dioxide S0, 9.71 7.53 2.18 1.29
Acetylene C,H, 9.97 7.91 2.06 1.26
Ethylene C.H, 10.07 8.01 2.06 1.26
Ethane C,H, 11.60 9.51 2.09 1.22

These high heat capacities suggest that the fundamental assumption
made, that the only energy present in a gas is kinetic energy of transia-
tion, is not always correct. A monatomic molecule can execute only
translational motion along the coordinate axes, and for such a gas ihe
deductions of the kinetic theory are valid. A more complex molecule,
however, may be subject not only to translational motion as a unit, but
to rotation and vibration as well. If we think of a diatomic molecule
simply as a ‘‘dumbbell” held together by an elastic spring, then the two
atoms may execute vibrations with respect to each other along their line
of centers. Further, the molecule as a whole may undergo rotation about
axes perpendicular to the line joining the centers of mass of these mole-
cules. These extra motions involve additional terms for the energy of the
gas; and if these motions are subject to temperature variation, as they
are, additional terms will appear in the heat capacity equation for the
gas. A more detailed discussion of rotational and vibrational energies of
gas molecules will be given in Chapters 16 and 18.
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THEORY OF NONIDEAL GASES

The theory of nonideal gases reduces itself essentially to the theory of
intermolecular or van der Waals forces. Although we are not prepared at
present to discuss the nature of these forces,® it is nevertheless of impor-
tance to summarize briefly the results obtained. Theoretical arguments
show that the interaction energy, E’, between a pair of molecules is given
by '

A B
E' = — 7 + = (71)
and the force of interaction by
, A B
f= 7T yatD (72)

where 4 and B are constants characteristic of the molecules involved, r is
their distance of separation, and n is a constant whose value may range
from 9 to 12. In these equations the first term on the right represents
attraction, while the second represents repulsion between the molecules.
From these equations it is evident that the forces between molecules are
short-range in character, and that they increase very rapidly as the dis-
tance between molecules is made small.

The consideration of molecular interactions has made possible the
theoretical explanation of the second viriel coefficient and, less success-
fully, of the third virial. However, we do not have as yet a theory which
can account completely for the P-V-T behavior of gases over very wide
ranges of temperature and pressure.

LIQUIDS

From the standpoint of kinetic theory, a liquid may be considered as a
continuation of the gas phase into the region of small volumes and very
high molecular attractions. The cohesive forces in a liquid must be
stronger than those in a gas even at high pressures, for they are high
enough to keep the molecules confined to a definite volume. Still, the
molecules within the liquid must not be thought of as rigidly fixed. They
have some freedom of motion, but this motion is considerably restricted,
and hence the mean free path is much shorter than in the gas phase.

Our knowledge of the nature of the liquid state is still very incomplete.

s See Chapter 16.
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Because of the proximity of molecules to each other, effects frequently
manifest themselves in liquids which, if present, are of only secondary
significance in gases. Thus we encounter clustering, association, and in
general orientation of the molecules into some, even though not very
pronounced, order. At best, the situation within a liquid is very complex,
and the progress made in unraveling the multitudinous effects has been
rather slow.

CRITICAL PHENOMENA IN LIQUIDS

If a liquid, such as water, is sealed in an evacuated tube, a certain
amount will evaporate to form vapor. This vapor will exert a pressure
just as any gas does, and, provided the temperature is maintained con-
stant, an equilibrium will be established between the liquid and vapor
phases. The vapor pressure established is characteristic for each liquid
and is a constant at any given temperature; it is known as the saturated
vapor pressure of the liquid. The saturated vapor pressure increases con-
tinuously with temperature. Thus, at 25°C the vapor pressure of water is
23.76 mm Hg, while at 100°C it is 760 mm Hg. As the water in the sealed
tube is heated further, more and more water evaporates and the pressure
continues to increase. At all times there is a definite line of demarcation,
or meniscus, between the liquid and vapor phases. When we reach the
temperature of 374°C, however, the meniscus becomes indefinite, fades
into the vapor, and disappears. At this temperature the physical proper-
ties of liquid and vapor become identical, and no distinetion can be
observed between the two. A liquid in this condition is said to be at the
critical point. The temperature, saturated vapor pressure, and molar
volume corresponding to this point are designated the critical temperature,
critical pressure, and critical volume respectively. Their values, which are
constant and characteristic for each substance, are known as the critical
constants. For water the critical constants are: {, = 374.4°C, P, = 219.5
atm, and V., = 58.7 cc per mole.

" On heating the sealed tube even slightly above the critical temperature,
no evidence can be found of the presence of liquid. The whole mass is
gaseous and remains in that state no matter how high it is heated, or
how large an external pressure is applied. Since the phenomena described
for water are exhibited by all liquids, it must be concluded that no liquid
can exist as such at temperatures above the critical under any applied pressure.

The critical phenomena are reversible. When the gas in the sealed tube
is cooled below the critical temperature, if the pressure is sufficiently
high the meniscus reappears, and again we have the two phases, liquid
and vapor.
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THE P-V-T RELATIONS OF GASES AND LIQUIDS

The first complete data on the P-V-T relations of a substance in both
gaseous and liquid states were obtained by Andrews® on carbon dioxide.
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Figure 1-10. Isothermals of CO,.

Andrews measured the variation of the volume of carbon dioxide with
pressure at various constant temperatures, and he was able to show that
the critical temperature of carbon dioxide is 31°C at a critical pressure of
73 atm. :
Figure 1-10 shows the plot of pressure vs. volume for carbon dioxide at
various constant temperatures. Each P-V plot is called an isothermal.
¢ Andrews, Trans. Roy. Soc., 159, 583 (1869).
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The data on which the plot is based are not due to Andrews but are the
composite results of several subsequent investigators. The 48.1°C iso-
thermal is very similar to the hyperbolic plot demanded by Boyle’s law
and shows no presence. of liquid carbon dioxide even at the highest pres-
sures attained. The same conditions obtain at 35.5°C, 32.5°C, and
31.10°C, except that now the data indicate that Boyle's law when applied
to carbon dioxide is considerably in error, since the gas does not behave
ideally. At 30.98°C, however, the carbon dioxide remains gaseous only
up to a pressure of 73 atm (line ab). At 73 atm (point b) liquid first
appears, and since this is the highest temperature at which liquid is
observed, 30.98°C must be the critical temperature of carbon dioxide.
Further increase in pressure at this temperature (line bE) shows only the
presence of liquid, and consequently this line must represent the com-
pressibility of liquid carbon dioxide at this temperature. Below 30.98°C,
the behavior of the gas on compression is quite different, as may be judged
from the 21.5°C and 13.1°C isotherms. At 21.5°C, for instance, only gas
exists on compression along line di. At 7 liquid, of specific volume n,
first appéars, and the pressure of the system remains constant thereafter
as long as both gas and liquid are present. At this stage further applica-
tion of pressure results merely in further condensation of gas until point f
is reached. At f all the gas has been condensed, and further application of
pressure results merely in compression of the liquid, as is shown by the
steep line fg. At lower temperatures the behavior is similar to that a¢
21.5°C, except that the horizontal portions, corresponding to the range of
coexistence of liquid and vapor, become longer the lower the temperature.

It may be concluded from this explanation that, in the area to the left
of the dome-shaped area and below the line bE, only liquid carbon dioxide
will exist; to the right of the line bE and to the right of the dome-shaped
area, only gaseous carbon dioxide will exist; while within the dome-shaped
area is the range of coexistence of liquid and vapor carbon dioxide.

All gases upon isothermal compression behave similarly to carbon diox-
ide. For each, of course, the curves will be displaced in line with the
characteristics and critical temperature of the gas in question. Thus, for
example, the critical temperature of helium is —268°C and the dome-
shaped area is moved downward, while for chlorine the critical tempera-
ture is 144°C and the dome-shaped area is moved above that for carbon
dioxide.

THE PRINCIPLE OF CONTINUITY OF STATES

For further theoretical considerations it is essential to show that the
liquid state does not represent a sharp and discontinuous transition from
the gaseous state, but is rather a continuation of the gaseous phase into
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the rcgion of very strong intermolecular attractions and small volumes.
This can be shown from the following considerations. Suppose we wish to
convert liquid carbon dioxide at 21.5°C and the pressure given by point
A in Figure 1-10 to gaseous carbon dioxide at the same temperature and
the pressure given by point B. The most obvious way to accomplish this
transformation is to follow the 21.5°C isotherm and reduce the pressure
along AfiB. In doing this gas appears suddenly and discontinuously, and
coexists with liquid along f7 until finally all liquid disappears at i. The
same transformation may, however, be accomplished in another way. If
the liquid at A4 is heated at constant volume, increase of temperature will
lead to increased pressure, and the mass will move along the line AEC. As
long as the carbon dioxide is below the critical isotherm, point E, the
carbon dioxide is liquid; as soon as the carbon dioxide passes the critical
isotherm, however, it becomes gaseous. At the critical temperature, as we
have seen, the liquid passes to gas imperceptibly and continuously, and
hence in heating the liquid from A to C we convert it without discon-
tinuity to gas. The gas at C may now be expanded to D at constant
pressure by heating, and then cooled at constant volume from D to B.
By this series of operations we can convert liquid to gaseous carbon
dioxide at 21.5°C without introducing any discontinuity between the
phases.

The implication involved in this principle of the continuity of the
gaseous and liquid states is highly important. It suggests that if we have
an equation of state which is satisfactory in the region of high pressures
and low temperatures, that equation should be applicable also to the con-
ditions prevailing at the critical point and to the liquid itself. We shali
see now how the van der Waals equation meets these requirements.

APPLICATION OF VAN DER WAALS’ EQUATION TO
THE ISOTHERMALS OF CARBON DIOXIDE

By substituting n = 1 and the values of the constants a and b for car-
bon dioxide in van der Waals’ equation, namely,

(P+%)(V—b)=1?’l‘

we can calculate for any given temperature the P-V relationships above,
at, and below the critical temperature. The results of such a calculation
are summarized in Figure 1-11. The plot is, in general, similar to the one
obtained expcrimentally. At ¢, for instance, which is above the critical
temperature, the P-V relationship corresponds closely to that of the
48.1°C isotherm in Figure 1-10. At ¢., which is the critical temperature, a
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slight break is observed at a, the critical point, which is again in accord
with observation. However, below the critical temperature, the range
determining the coexistence of liquid and gas is indicated by a continuous
S-shaped portion as bed at t5, rather than by the horizontal constant pres-
sure range actually observed. In this respect, therefore, and in point of
strict quantitative agreement with observed data, the van der Waals
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Figure 1-11. Isothermals of CO; according to van der Waals’ equation.

equation leaves something to be desired. Nevertheless, some investigators
have found that by compressing the gas very carefully part of the curve
be may be realized, though only in an unstable condition. Similarly, if the
pressure on & liquid be released slowly, part of curve cd can be obtained,
but again the condition is unstable.

DETERMINATION OF VAN DER WAALS CONSTANTS

If it be assumed that van der Waals’ equation is applicable at the
critical point, then the van der Waals constants for any gas can be calcu-
lated from the critical constants of the gas in the following manner. On
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expanding and rearranging the equation we have

a
(P+W)(V—b)= RT
PV? — VX(RT + Pb) + aV — ab = 0

and Vs — (M’) Ve + (7.’?) V- (5"—}‘2) =0 (13)

This is a cubic equation in V and for any given value of P and T will
yield three separate solutions for V. The three roots of this equation may
all be real, or one may be real and positive and the other two imaginary.
Thus in Figure 1-11 the equation yields the three roots d, ¢, and b at t,,
while at ¢, it yields only one real root. However, at the critical point the
three roots are not only real and positive but also identical and equal to
V.. Hence the difference (V — V.) = 0, and consequently,

V-V)2=0 (74)
On expansion by the binomial theorem Eq. (74) becomes
Vi BV)V24+ BVHV - VEi=0 (75)

At the critical point Egs. (75) and (73) must be identical. On comparing
and equating coefficients we get

3V. = P, (76)
2 - 2
3V P ()]
a9
V=% (78)
From Eq. (77) a follows as
a=3V?P, (79)
while from Eqs. (77) and (78) b is given by
b= Le (80)

3
Thus a and b may be calculated from known values of P. and V., or vice
versa.
Usually V. is the critical constant known least accurately, and it is
therefore preferable to calculate a and b from T. and P. only. This can
readily be done. On eliminating V., between Eqgs. (76) and (80) we get

RT.
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Again, on combining Egs. (76), (80), and (77), a follows as

27 R*T?
a = 6—4 Pc (82)

Combination of Eqgs. (76) and (80) leads also to the value of R in terms
of the critical constants, namely,
PV,

8P.V,
=37, ~ 2 ®3)
Although the van der Waals equation predicts the coefficient in Eq. (83)
to be 2.67, the values for it calculated from experimental data are gen-
erally higher and differ for various gases. Thus for helium this constant
comes out to be 3.18, while for water it is 4.97. These differences are due
to inaccuracies inherent in the van der Waals equation.

R

THE CRITICAL CONSTANTS OF GASES

Table 1-8 gives the critical constants of a number of gases. Instead of
the critical volume, the critical density is given; this is the weight of
substance at the critical point per cubic centimeter. The critical volume is
obtained by dividing the molecular weight of the substance by the
critical density.

Cailletet and Mathias found that when the mean values of the sum of
the densities of liquid and saturated vapor of a substance are plotted

TABLE 1-8. CRIiTicAL CONSTANTS OF GASES

Gas t(°C) P, (atm) ds (g/cc)
Ammonia 132.4 111.5 0.235
Argon —-122 48 0.531
Carbon dioxide 30.98 73.0 0.460
Carbon monoxide -139 35 0.311
Chlorine 144.0 76.1 0.573
Ethane 32.1 48.8 0.21
Ethyl alcohol 243.1 63.1 0.2755
Ethylene 9.7 50.9 0.22
Helium —267.9 2.26 0.0693
Hydrogen —-239.9 12.8 0.0310
Necon ~228.7 25.9 0.484
Nitric oxide —-94 65 0.52
Nitrogen —147.1 33.5 0.3110
Oxygen —118.8 49.7 0.430
Propane 96.81 42.01 0.226
Toluene 320.6 41.6 0.292
Water 374 .4 219.5 0.307




54 Chapter 1: Gases and Liquids

against the temperature, the plot is a straight line. This is shown in
Figure 1-12. The equation of the line is

t=A + B(‘_i%d") (84)

where d; is the density of the liquid at any temperature ¢, d, the density of
the saturated vapor at the same temperature, and A and B constants
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Figure 1-12. Linear variation of mean density of SO, with temperature.

evaluated from the plot. Once the equation is determined, the critical
density may be calculated with easc, for at the critical temperature
d, = d; = d., and the equation reduces to

, 2d.
o= arn(y

Substitution of ¢. then yields the critical density. Critical densities can
usually be obtained more accurately in this manner than by direct meas-
urement at the critical point.

) = A + Bd. (85)

THE PRINCIPLE OF CORRESPONDING STATES

If we substitute in the van der Waals equation the values of a, b, and R
as given by Eqgs. (81), (82), and (83), we obtain

, L 3VIPN (. V. _8PJV.T
(1 t v 3)°37T. (86)
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Dividing both sides of Eq. (86) by P.V,, we get
P 3VN(V _1\_87T
P. " Vr)J\V. 3) 3T,
or (P,+%>(3V,—1)=8T,

where P, = P/P,, V, = V/V., and T, = T/T.. P, is termed the reduced
pressure, V, the reduced volume, and T, the reduced temperature. Expressed
in terms of P,, V,, and T,, Eq. (87) involves no constants characterizing
the individuality of various substances and should therefore be generally
applicable to all liquids and gases. It is known as a reduced equation of
state. Its physical meaning is that at any given value of 7, and P,, all
liquids and gases should have the same corresponding volumes, V,.

The principle of corresponding states is only approximately correct,
but it does suggest that frequently better correlation of experimental
data may be obtained when the various substances are in corresponding
states, i.e., at equal values of T,, V,, or P,. The principle finds frequent
and useful application in thermodynamic and chemical engineering cal-
culations, especially at elevated pressures. For examples see Maron and
Turnbull,” Dodge,® and Goug-Jen Su.®

87

LIQUEFACTION OF GASES

The particular method employed in the liquefaction of a gas depends
on the nature of the gas. Vapors of substances which are liquid at or near
room temperature and atmospheric pressure are condensed simply by
cooling. Other substances which are liquid at lower temperatures may be
condensed either by pressure or by a combination of cooling and com-
pression. Cooling reduces considerably the pressure required for lique-
faction, as may be seen from Figure 1-10. With the “permanent’ gases,
however, such as oxygen, nitrogen, hydrogen, and helium, application of
pressure alone will not produce liquefaction, and more involved methods
of cooling, compression, and even expansion, are required before the gases
will liquefy.

Before liquefaction is possible, a gas must be cooled below its critical
temperature. Since their ecritical temperatures are very low, as may be
seen from Table 1-8, liquefaction of the “permanent’” gases requires
intense cooling as well as considerable compression. To attain these low
temperatures, two general principles, or a combination of the two, are

7 Maron and Turnbull, Ind. Eng. Chem., 34, 544 (1942). .

8 Dodge, Chemical Engineering Thermodynamics, McGiaw-Hill Book Company
Inc., New York, 1944.

9 Goug-Jen Su, Ind. Eng. Chem., 38, 803 (1946).
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employcd, namely, () adiabatic expansion, in which advantage is taken
of the Joule-Thomson effect!? to attain cooling; and (b) allowing the gas
to cool itself by performing work in an adiabatic expansion against a
piston. These two methods are exemplified in the Linde and Claude
processcs for the liquefaction of air.

The basic principle of the Linde process is the adiabatic Joule-Thomson
expansion and consequent cooling of the air. The steps in the process are
in outline as shown in Figure 1-13. Air is first compressed to approxi-

: o
\o\O\o\i\O\o
_k Q »- s w

Figure 1-13. Linde process for liquefaction of air.

mately 100 atm. During the compression most of the water in the air con-
denses and is removed. The heat generated in compression is removed
by passing the gas through coils C, refrigerated by water or ammonia,
The dry gas is passed, then, through a copper spiral coil S, from which
it is expanded to almost atmospheric pressure through a controlled valve
V. The issuing gas, cooled now due to the Joule-Thomson effect, passes
over the copper coil and cools further the incoming compressed gas. On
repeating the cycle several times, the temperature of the expanding gas
finally drops far enough to condense part of the air to liquid, which
collects in the bottom of the chamber L and can be drawn off. Any uncon-
densed air is recirculated.

In the Claude process the gas, instead of being permitted to expand
freely, is forced to do work against a counfining piston. Since the gas is
adiabatically insulated, work is achieved at the expense of the internal
energy of the gas, and a cooling results. The work thus gained may be
utilized to operate the compressors.

Easily liquefiable gases, such as sulfur dioxide, ammonia, methyl
chloride, and dichloro-difluoromethane (freon), are used in refrigeration
and air conditioning. In the laboratory other refrigerants frequently
employed are ice, liquid air, liquid hydrogen and mixtures of “dry ice”
(solid carbon dioxide) and alcohol, ether, or acetone. With one of the

10 See Chapter 3.
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last-named mixtures temperatures of —80 to —90°C can be obtained.
Liquid air will give a temperature of —180°C, while, if needed, liquid
hydrogen can give a temperature of —250°C.

VISCOSITY

Gases and liquids possess a property known as viscosity, which may be
defined as the resistance that one part of a fluid offers to the flow of
another part of the fluid. Viscosity is produced by the shearing effect of
moving one layer of the fluid past another, and is quite distinet from inter-
molecular attraction. It may be thought of as caused by the internal
friction of the molecules themselves and it is present in ideal gases as well
as in real gases and liquids.

To define viscosity, let us visualize a fluid as being stratified into layers

or planes of molecules. Let the area of each plane be 4, and the distance
between planes be dy. Further, consider each of the planes to be moving
to the right with velocities vy, vs, etc., where each succeeding velocity is
greater than the preceding by an amount dv. Flow occurring in this
"manner is called laminar flow, as distinct from turbulent flow where
parallelism of the planes is not preserved. In laminar flow the force f
required to maintain a steady velocity difference dv between any two
parallel planes is directly proportional to 4 and dv, and is inversely pro-
portional to dy. Consequently,

dv
S =14 (@) (88)

where 7 is a proportionality constant called the viscosity coefficient of the
fluid. The quantity dv/dy in Eq. (88) is referred to as the rate of shear @G,
while f/ A, the force per unit area, is called the shear stress F. In terms of
F and G Eq. (88) becomes

n=G (89)
Either q. (88) or Eq. (89) may be taken as the defining expression for ».

The viscosity coefficient may be thought of as the force per unit area
required to move a layer of fluid with a velocity difference of 1 em per
second past another parallel layer 1 cm away. Although the force f may
vary with experimental conditions, the viscosity coefficient 5 is a physical
quantity characteristic of each :{uid. In the cgs system of units the vis-
cosity coefficient f a fluid is exprcssed in potses, a poise being the viscosity
coefficient requiring « force of 1 dyne when 4, dv, and dy are all unity in
Eq. (88). Since this urit is rather large, the viscosities of gases are usually
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given in micropoises, or 10~® poise, while those of liquids in poises or
centipotses, i.e., 1072 poise.

THE VISCOSITY OF GASES

The viscosity of gases can be measured by various methods, some of
which will be described in the next section. Results show that the viscosity
coefficients of gases increase with increase in temperature. Thus chlorine
at 1 atm pressure has an 5 of 132.7 micropoises at 20°C, 167.9 at 100°C,
and 208.5 at 200°C. Again, although 7 is almost independent of pressure
at low pressures, such is not the case at higher pressures. For instance, for
carbon dioxide at 35°C and 1 atm pressure n = 156 micropoises, but at
80 atm and the same temperature = 361 micropoises.

The kinetic theory of gases ascribes viscosity to a transfer of momentum
from one moving plane to another. Considerations of this momentum
transfer between flow planes show that for ideal gases 5 is related to the
density of the gas p, the mean free path [, and the average velocity of the
gas molecules » by the equation

1
=3 vlp (90)

Since the mean free path varies inversely as the density of the gas, it may
be concluded that the viscosity of an ideal gas should be independent of
density, and hence also the pressure. This deduction has been confirmed
at relatively low pressures.

Equation (90) may be employed to calculate the mean free path
directly from the viscosity coefficients. To do this we need only substitute
the value of » from Eq. (43), in which case [ becomes

;=31 _ 31
P 0.921 p/3 RT/M 1)
_ 1.8819
o\ RT/M

Once [ is thus found; it may be inserted into Eq. (48) to obtain the molecu-
lar diameter o of the gas molecules involve:

THE VISCOSITY OF LIQUIDS

Liquids exhibit much greater resistance to flow than gases, and conse-
quently they have much higher viscosity coefficients. The visccsity coeffi-
cients of gases increase with temperature, while those of most liquids
decrease. Again, we have seen that the viscosity coefficients for yases at
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moderate pressures are essentially independent of pressure, whereas with
liquids increase of pressure leads to an increase in viscosity.

Most methods employed for the measurement of the viscosity of liquids
are based on either the Poiseuille or Stokes equations. The Poiseuille
equation for the coefficient of viscosity of a fluid is

_ wPrit
TT8LY

where V is the volume of liquid of viscosity 9 which flows in time ¢ through
a capillary tube of radius r and length L under a pressure head of P dynes
per square centimeter. This equation has been verified repeatedly. To
determine the viscosity of a liquid by this equation it is not always neces-
sary to measure all the quantities indicated when once the viscosity of
some reference liquid, usually water, is known with accuracy. If we
measure the time of flow of the same volume of two different liquids
through the same capillary, then according to the Poiseuille equation the
ratio of the viscosity coefficients of the two liquids is given by

N1 _ ‘H'P:[T‘tl 8LV _ Pltl

N2 8LV 1I'P27'4t2 m

Since the pressures P, and P are proportional to the densities of the two
liquids p, and p,;, we may write also

(92)

mn _ Pltl — P_1£_1 (93)

n2 Pals  pate
Consequently, once p;, p2, and 7. are known, determination of ¢; and ¢,
permits the calculation of 5;, the viscosity coefficient of the liquid under
consideration.
The quantities ¢; and ¢, are most conveniently measured with an
Ostwald viscometer, Figure 1-14. A definite quantity of liquid is intro-
duced into the viscometer immersed in a thermostat and is then drawn up

Figure 1-14. Ostwald viscometer.
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by suction into bulb B until the liquid level is above the mark a. The
liquid is then allowed to drain, and the time necessary for the liquid level
to fall from a to b is measured with a stopwatch. The viscometer is now
cleaned, the reference liquid added, and the whole operation repeated.
In this simple manner ¢; and ¢; are obtained, and the viscosity of the
liquid is calculated by Eq. (93).

Stokes’s law is concerned with the fall of bodies through fluid media.
A spherical body of radius r and density p, falling under gravity through a
fluid of density p., is acted on by the gravitational force f;,

fi = 57 — o)y 94)

where ¢ is the acceleration of gravity. This force, which tends to accel-
erate the body falling through the fluid medium, is opposed by frictional
forces within the medium which increase with increase in velocity of the
falling body. Eventually a uniform rate of fall is reached at which the
frictional forces become equal to the gravitational force, and thereafter
the body will continue to fall with a constant velocity v. Sir George G.
Stokes showed that, for a spherical body falling under the conditions of
constant uniform velocity, the force of friction, f,, is given by

fo=6arq (95)

Equating the gravitational and frictional forces, we see that

%M“(p — pm)g = 67V

_ 27%(p — pm)yg

This equation, known as Stokes’s law, is applicable to the fall of spherical
bodies in all types of fluid media provided the radius of the falling body
r is large compared with the distance between the molecules of the fluid.
When r is smaller than the distance between molecules there is a tendency
for the falling body to ‘“‘drop”’ or ‘‘channel,”’” and the equation is no longer
applicable.

Stokes’s law is the basis of the falling sphere viscometer. The viscom-
cter consists of a vertical cylindrical tube filled with the liquid under
test and immersed in a thermostat at the desired temperature. A steel
ball, of density p and a diameter suitable to give a slow rate of fall, is now
dropped through the neck of the tube, and the time of fall between two
marks is determined with a stopwatch. If the process is repeated with a
liquid of known density and viscosity, then Eq. (96) yields for the ratio
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of the two viscosities

m _ (p— pm)ha

. (p— pm)le 01
Therefore, knowing one of the viscosities, the density of the ball, and the
densities of the two liquids, the viscosity of the liquid under study can be
calculated by means of Eq. (97) from the observed values of ¢; and ¢,.

A term frequently employed in connection with viscosity is fluidity.
The fluidity, ¢, of a substance is merely the reciprocal of the viscosity
coefficient, namely, ¢ = 1/9.

Table 1-9 gives the viscosity coefficients in centipoises of several
liquids at various temperatures. With very rare exceptions (liquid carbon

TaBLE 1-9. Viscosity COEFFICIENTS OF LiQuips

(Centipoises)

Liquid 0°C 20°C 40°C 60°C 80°C
Benzene 0.912 0.652 0.503 0.392 0.329
Carbon tetrachloride 1.329 0.969 0.739 0.585 0.468
Ethyl alcohol 1.773 1.200 0.834 0.592 —
Ethyl ether 0.284 0.233 0.197 0.140 0.118
Mercury 1.685 1.554 1.450 1.367 1.298
Water 1.792 1.002 0.656 0.469 0.357

dioxide at low temperatures), the viscosity of a liquid decreases with
increase in temperature. Various equations have been proposed to repre-
sent g as a function of T, of which the simplest is

logn = 5 + B (98)

A and B are constants, and T is the absolute temperature. This equation
holds quite well for a large number of pure liquids.
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PROBLEMS

Note: Uriless otherwise indicated, assume all gases in the following
problems to be ideal.

1. Four grams of CH, at 27.0°C and a pressure of 2.50 atm occupy a volume of
2.16 liters. Calculate the value of the gas constant R in cc-atm degree™ mole™.

2. Two grams of O, are confined in a 2-liter vessel by a pressure of 1.21 atm.
What is the temperature of the gas in °C? Ans. 200°C.

3. A certain gas occupies a volume of 6 liters under a pressure of 720 mm Hg at
25°C. What volume will this gas occupy under standard conditions of temperature
und pressure?

4. At 0°C and under a pressure of 1000 mm Hg, a given weight of N, occupies a
vclume of 1 liter. At —100°C the same weight of gas under the same pressure
occupies a volume of 0.6313 liter. Calculate the absolute zero in degrees centi-
grade, and give reasons for the observed difference from the accepted value.

Ans. —271.2°C.

5. Find the density of ammonia gas at 100°C when confined by a pressure of
1600 mm Hg.

6. Assuming that dry air contains 79% N, and 219, O, by volume, calculate
the density of moist air at 25°C and 1 atm pressure when the relative humidity
is 609%. The vapor pressure of water at 25°C is 23.76 mm Hg.

Ans. 1.171 g/liter.

7. The composition of a mixture of gases in percentage by volume is 309, N,
509, CO, 159 H,, and 5% O,. Calculate the percentage by weight of each gas
in the mixture.

8. (a) Find the weight of helium gas necessary to fill a balloon whose capacity
is 1,000,000 liters at 1 atm pressure and 25°C. (b) What will be the lifting power
of this balloon in grams per liter in the air described in problem 6? (¢) What
will be its total lifting power in kilograms?

9. At 27°C, 500 cc of H,, measured under a pressure 400 mm Hg, and 1000 cc

of N,, measured under a pressure of 600 mm Hg, are introduced into an evacuated
2-liter flask. Calculate the resulting pressure. Ans. 400 mm Hg.

10. Find the total pressure exerted by 2 g of ethane and 3 g of CO; contained
in a 5-liter vessel at 50°C.
11. The time required for a given volume of N, to diffuse through an orifice is

35 sec. Calculate the molecular weight of a gas which requires 50 sec to diffuse
through the same orifice under identical conditions. Ans. 57.15 g/mole.
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12. Compare the times of diffusion through a given orifice, and under the same
conditions of temperature and pressure, of the gases H;, NH;, and CO, relative
to that of N..

13. By means of a mercury vapor pump a vacuum of 10~7 mm Hg is obtained
within a certain apparatus. Calculate the number of molecules which still remain
in 1 cc of the apparatus at 27°C. Ans. 3.24 X 10°,

14. What is the total kinetic energy of translation in ergs of 2 moles of a perfect
gas at 27°C? In calories?

15. Calculate the root-mean-square velocity in centimeters per second of N,
molecules at 27°C. Repeat the calculation at 127°C.

16. Calculate the root-mean-square, average, and most probable velocities in
centimeters per second of H, molecules at 0°C.

17. The molecular diameter of CO is 3.19 X 1078 cm. At 300°K and a pressure
of 100 mm Hg what will be (a) the number of molecules colliding per cubic centi-
meter per second; (b) the number of bimolecular collisions; and (c¢) the mean free
path of the gas? Ans. (a) 2.23 X 10¥; (b) 1.12 X 10?7; (¢) 6.87 X 10° cm.

18. Repeat the calculations called for in problem 17 for the same temperature
but a pressure of 200 mm Hg. How pronounced is the effect of pressure on the
quantities sought?

19. Repeat the calculations called for in problem 17 for a pressure ~f 100 mm Hg
and a temperature of 600°K. How pronounced is the effect of temperature on the
quantities calculated ?

20. By use of the van der Waals equation, find the temperature at which
3 moles of SO, will occupy a volume of 10 liters at a pressure of 15 atm.
Ans. 350°C.

21. (a) Using the van der Waals equation, calculate the pressure developed by
100 g of CO; contained in a volume of 5 liters at 40°C. (b) Compare this value
with that calculated using the ideal gas law.

22, At 0°C and under a pressure of 100 atm the compressibility factor of O, is
0.927. Calculate the weight of O, necessary to fill a gas cylinder of 100-liter
capacity under the given conditions.

23. Using the Beattie-Bridgeman equation explicit in volume, calculate the
density in grams per cubic centimeter of N, at 0°C and 100 atm pressure.
Ans. 0.127 g/cc.

24. Utilizing the virial coefficients listed in Table 14, determine analytically
the pressure at which the PV vs. P plot for N, at —50°C exhibits a minimum.

25. Employing the Kamerlingh Onnes equation of state, find the compressibil-
ity factors of CO at —50°C and pressures of (a) 10, (b) 100, and (c) 1000 atm
pressure. Ans. (a) z = 0.981.
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26. The following data were taken in measuring the molecular weight of a cer-
tain gas by the Regnault method:

Wt. of evacuated bulb = 42.5050 g

Wt. of bulb + gas = 43.3412 ¢
Wt. of bulb + H.O = 36531 ¢
Temperature = 25°C
Pressure (corrected) = 745 mm

Find the molecular weight of the gas.

27. In a Victor Meyer experiment involving the determination of the molecular
weight of ethyl alcohol the data obtained were

Wt. of liquid taken =0.1211 g

Volume of air measured over water = 67.30 cc

Temperature = 28.0°C

Atmospheric pressure : 755.2 mm Hg (corrected)

Vapor pressure of water at 28°C (from tables) = 28.3 mm Hg

From these data (a) calculate the molecular weight of the alcohol, and (b) com-
pare the result with thdt calculated from the atomic weights.
Ans. (a) 46.5 g/mole.

28. The elementary analysis of a compound yielded the following results: C,
39.98%; H, 6.72%; and O, 53.30%. In a Victor Meyer determination 0.1510 g of
the vaporized compound displaced 33.8 cc of air measured at 25°C over H,O and
at a barometric pressure of 745 mm. Calculate (a) the empirical formula, (b) the
approximate molecular weight, and (¢) the molecular formula of the compound.

29. A sample of vapor weighing 0.180 g occupies a volume of 53.1 cc at 27°C
and 760 mm pressure (corrected). The critical pressure of the vapor is 47.7 atm,
while the critical temperature is 288.5°C. By use of the Berthelot equation calcu-
late the molecular weight of the vapor, and compare the result with that calcu-
lated by the ideal gas law.

30. The densities of CH, at 0°C were measured at several pressures with the
following results:

Pressure (atm) Density (g/liter)

3 0.17893
14 0.35808
34 0.53745
1 0.71707
Find the exact molecular weight of CH,. Ans. 16.03 g/mole.

31. How much heat will be required to raise the temperature of 3 moles of
helium from 0°C to 100°C at (a) constant volume and (b) constant pressure?

32. Utilizing the data given in Table 1-4, find the Boyle temperature of carbon
monoxide.
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33. (a) Calculate the van der Waals constants for C,H; from the critical tem-
peratures and pressures listed in Table 1-8. (b) Using the constants thus calcu-
lated find the pressure exerted by 10 g of C;Hs when contained in a liter flask
at 13°C. Ans. (b) 7.39 atm.

34. The van der Waals constants for HCIl are a = 3.67 atm-liter? mole~2, and
b = 40.8 cc mole™. Find the critical constants of this substance.

35. A modified form of the van der Waals equation (Berthelot) is
na
(P + 773) (V — n8) = nRT
where all the terms have their usual significance, and « and 8 are constants.
Deduce the expressions for «, 8, and R in terms of the critical constants.
36. Calculate the critical density of methyl alcohol from the following data:

t°C P (atm) dyiq. (g/cc) dvap. (g/cC)
150 13.57 0.6495 0.01562
225 61.25 0.4675 0.1003

The critical temperature is 240.0°C.

37. Compare the reduced pressures of N, and NH; when each exerts a pressure
of 100 atm. Ans. N»: 2.99; NH,: 0.90.

38. Compare the reduced temperatures of ethylene and H, at 27°C.

39. Set up the reduced equation of state for the modified van der Waals equa-
tion given in problem 35.

40. The equation of state of a liquid gives the volume as a function of the
temperature and pressure. Further, the thermal coefficient of expansion, a, is
defined as

=1 2‘1)
*=v\aT /-
while the compressibility coefficient, 8, is defined as
179V
8=-73(3),

Assuming « to be independent of temperature and 3 to be independent of pres-
sure, deduce the expression for V as a function of T and P.

41. (a) For liquid benzene a = 1.24 X 1073 degree! at 20°C and 1 atm pres-
sure. Utilizing the equation derived in problem 40 and assuming « to be inde-
pendent of temperature, find the percentage change in volume of a sample of
benzene on being heated at 1 atm pressure from 20 to 50°C. (b) What would be
the percentage change in volume of an ideal gas heated over the same temperature
interval at constant pressure? Ans. (a) 3.8%; (b) 10.2%,.

42. (a) Forliquid benzene 8 = 9.30 X 1075 atm~! at 20°C and 1 atm pressure.
Utilizing the equation derived in problem 40 and assuming § to be independent
of pressure, find the percentage change in volume of a sample of benzene on bcing
compressed at constant temperature from a pressure of 1 atm to a pressure of
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11 atm. (b) What would be the percentage change in volume of an ideal gas com-
pressed over the same pressure interval at constant temperature?

43. (a) Suppose that a sample of benzene, initially at 20°C and 1 atm pressure,
is subjected to a pressure of 11 atm at 50°C. Assuming « and 8 to be constant, find
the percentage change in volume of the benzene. (b) What would be the per-
centage change in volume exhibited by an ideal gas on being subjected to the
same change in pressure and temperature?

44. The viscosity coefficient of gaseous Cl; at 1 atm pressure and 20°C is 147.0
micropoises. Find the molecular diameter of the chlorine molecule.
Ans. 4.30 X 1078 cm.

45. Consider two parallel layers of NH; gas, one of large area and stationary,
and the other 10 cm? in area and moving at a fixed distance of 1 X 10~¢ cm above
the first. What force in dynes will be required to keep the upper layer moving
with a velocity of 5 ¢cm per second when the pressure of the gas is 10 mm Hg and
the temperature is 300°K? The molecular diameter of the NH; molecule is
3.0 X 1078 em.

46. A gas whose viscosity is 200 micropoises flows through a capillary tube
2 mm in diameter and 2 meters long. If 5 liters of gas pass through the tube every

10 seconds, what must be the pressure head under which the gas is flowing?
Ans. 5.09 X 10° dynes/cm?,

47. The time of eflux of H,O through an Ostwald viscometer is 1.52 minutes.
For the same volume of an organic liquid of density 0.800 g/cc the time is 2.25
minutes. Find the viscosity of the liquid relative to that of water and its absolute
value in millipoises. The temperature is 20°C.

48. A steel ball of density 7.90 g/cc and 4 mm diameter requires 55 seconds to
fall a distance of 1 meter through a liquid of density 1.10 g/cc. Calculate the
viscosity of the liquid in poises.

49. A sphere of radius 5 X 1072 ¢cm and density of 1.10 g/cc falls at constant
velocity through a liquid of density 1.00 g/cc and viscosity of 1.00 poise. What
is the velocity of the falling sphere? Ans. 5.45 X 10~2 cm/sec.

50. Suppose that all the conditions given in problem 49 are the same except
that the density of the sphere is 0.90 g/cc. What is the velocity of the sphere in
this case? Explain the significance of the result.

51. Using the data for the viscosity coefficients of C,H;OH as a function of
temperature given in Table 1-9, find for this substance the constants 4 and B in
Eq. (98).
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