
1 
Gases and 
Liquids 

A 
JL A - L L MATTER exists in one of three states of aggregation, solid, 
liquid, or gaseous. A solid may be defined as a body possessing both 
definite volume and definite shape at a given temperature and pressure. 
Further, to be classed as a solid the body must be crystalline, i.e., the 
atoms, molecules, or ions composing the body must be arranged in a 
definite geometric configuration characteristic of the substance in ques-
tion. A liquid in bulk, on the other hand, has a definite volume but no 
definite shape, while a gas has neither definite shape nor volume. Liquids 
and gases arc both termed fluids. A liquid, insofar as it fills the container, 
will always adopt the shape of the container in which it is placed, but will 
retain its definite volume, while a gas will always fill completely any con-
tainer in which it may be confined. 

The_ distinctions among the three states of matter are not always as 
clear cut as the above definitions would imply. For example, a liquid at 
the critical point is indistinguishable from its vapor. Again, such sub-
stances as glass or asphalt, although exhibiting many of the properties of 
a solid, will, under certain conditions of temperature, become plastic and 
exhibit properties not ascribed to pur^ solids. For this reason such sub-
stances are usually considered to be supercooled liquids with very high 
viscosity. 

The particular state of aggregation of a substance is determined by 
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the temperature and pressure under which it exists. However, within 
certain limits of temperature and pressure a substance may exist in more 
than one state at the same time. In fact, under special conditions a sub-
stance may exist in all three states simultaneously. Thus at 4.57 mm Hg 
pressure and at 0.010°C, ice, water, and water vapor may all be present 
simultaneously, and all be stable. This subject of simultaneous existence 
in more than one state will be discussed more completely in various places 
in the book. 

I D E A L AND R E A L G A S E S 

For purposes of discussion, it is convenient to classify all gases into two 
types, namely, (a) ideal gases, and (b) nonideal or real gases. An ideal gas 
is one that obeys certain laws which will be presented shortly, while a 
real gas is one that obeys these laws only at low pressures. 

In ideal gases the volume occupied by the molecules themselves is 
negligible compared with the total volume at all pressures and tempera-
tures, and the intermolecular attraction is extremely small under all con-
ditions. For nonideal or real gases both of these factors are appreciable, 
the magnitude of each depending on the nature, the temperature, and the 
pressure of the gas. We can easily see that an ideal gas must be a hypo-
thetical gas, as all actual gases must contain molecules which occupy a 
definite volume and exert attractions between each other. However, very 
often the influence of these factors becomes negligible, and the gas may 
then be considered to be ideal. We shall find that the latter condition will 
obtain in particular at low pressures and relatively high temperatures, 
conditions under which the "free" space within the gas is large and the 
attractive forces between molecules small. 

GENERALIZATIONS OF IDEAL GAS BEHAVIOR 

Through the study of gases there have been evolved certain laws or 
generalizations which are the starting point in any discussion of gas 
behavior. These are: (a) Boyle's law, (b) Charles's or Gay-Lussac's law, 
(c) Dalton's law of partial pressures, and (d) Graham's law of diffusion. 
Another generalization is Avogadro's principle, but this will be considered 
later. 

B O Y L E ' S LAW 

In 1662 Robert Boyle reported that the volume of a gas at constant 
temperature decreased with increasing pressure, and that, within the 
limits of his experimental accuracy, the volume of any definite quantity of 
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gas at constant temperature varied inversely as the pressure on the gas. This 
highly important generalization is known as Boyle9s law. Expressed mathe-
matically, this law states that at constant temperature V « \/pf or that 

V = £1 
P 

where V is the volume and P the pressure of the gas, while K\ is a propor-
tionality factor whose value is dependent on the temperature, the weight 
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Figure 1-1. Isothermal plot of P vs. V according to Boyle's law (1 mole of gas). 

of the gas, its nature, and the units in which P and V are expressed. On 
rearrangement this equation becomes 

PV = Kx (1) 

from which it follows that if in a certain state the pressure and volume 
of the gas are P i and Vh while in another state they are P 2 and F2, then 
at constant temperature 

P1V1 = K1 = PiV2 

and £ = £ (2) 

When the pressure of a gas is plotted against the volume in accordance 
with Eq. (1), we obtain a family of curves such as that shown in Figure 
1-1. EacH curve is a hyperbola with a different value of K\. Since for a 
given weight of gas K\ varies only with temperature, each curve corre-
sponds to a different fixed temperature and is known as an isotherm 
(constant temperature plot). The higher curves correspond to the higher 
temperatures. 

7= 1000° K 
T=800°K 
T = 600°K 
T-400°K 
7=200°K 
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T H E C H A R L E S OR G A Y - L U S S A C LAW 

Charles in 1787 observed that the gases hydrogen, air, carbon dioxide, 
and oxygen expanded an equal amount upon being heated from 0 to 80°C 
at constant pressure. However, it was Gay-Lussac in 1802 who first found 
that for all gases the increase in volume for each degree centigrade rise in 
temperature was equal approximately to ^ 7 3 of the volume of the gas at 
0°C. A more precise value of this fraction is 3^73.15- If we designate by 
Vo the volume of a gas at 0°C and by V its volume at any temperature 
/°C, then in terms of Gay-Lussac's finding V may be written as 

= F » ( 1 + 2 7 3 < I 5 ) 

We may define now a new temperature scale such that any temperature / 
on it will be given by T = 273.15 + t, and 0°C by T0 = 273.15. Then 
Eq. (3) becomes simply 

Y_ - L 
VQ ~ To 
V T 

or generally V = Y ^ 

This new temperature scale, designated as the absolute or Kelvin scale 
of temperature, is of fundamental importance in all science. In terms of 
this temperature scale, Eq. (4) tells us that the volume of a definite quantity 
of gas at constant pressure is directly proportional to the absolute temperature, 
or that 

V = K2T (5) 

where K2 is a proportionality factor determined by the pressure, the 
nature and amount of gas, and the units of V. The above statement and 
Eq. (5) are expressions of Charles's or Gay-Lussac's law of volumes. 

According to Eq. (5) the volume of a gas should be a straight line func-
tion of the absolute temperature at any constant pressure. Such a plot of 
V vs. T at selected pressures is shown in Figure 1-2. Since for a given 
amount of gas K2 will have different values at different pressures, we 
obtain a series of straight lines, one for each constant pressure. Each 
constant pressure line is called an isobar. For every isobar the slope is the 
greater the lower the pressure. 
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Figure 1-2. Isobaric plots of V vs. T according to Charles's law (1 mole of gas). 

Equation (5) suggests also that if we were to cool a gas to 0QK 
( —273°C), its volume would become zero. However, no such phenomenon 
is ever encountered, for usually long before 0°K is approached a gas 
liquefies or solidifies. Again, as will be shown in the following, under such 
drastic conditions the equation itself cannot be considered to hold. 

THE COMBINED GAS LAW 

The two laws discussed give the separate variation of the volume of a 
gas with pressure and with temperature. To obtain the simultaneous 
variation of the volume with temperature and pressure, we proceed as 
follows. Consider a quantity of gas at Ph Vh and Th and suppose that 
it is desired to obtain the volume of the gas, V2, at P2 and T2. First, let us 
compress (or expand) the gas from Pi to P2 at constant temperature TV 
The resulting volume Vx then will be, according to Boyle's law, 

If » 

Vx = 

Pi 
P* 
ViPi 

p 2 
(6) 

If the gas at Vx, P2, and Tx is heated now at constant pressure P2 from 
Tx to T2, the final state at P2 and T2 will have the volume V2 given by 
Charles's law, namely, 

F_2== 

Vx 

V2 = 
V,T2 
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Substituting into this relation the value of Vx from Eq. (6), V2 becomes 

v - V*T* - PiViT* 
2 Tx I\Tl 

and on rearranging terms we see that 

M i - M ? - constant - A" (7) 

i.e., the ratio PV /T for any given state of a gas is a constant. Conse-
quently we may drop the subscripts and write for any gas which obeys 
Boyle's and Charles's laws 

PV = KT (8) 

Equation (8) is known as the combined gas law. It gives the complete 
relationship between the pressure, volume, and temperature of any gas as 
soon as the constant K is evaluated. That Boyle's and Charles's laws are 
merely special cases of Eq. (8) is easily shown. When T is constant, Eq. (8) 
reduces to PV = constant, or Boyle's law. Again, when P is constant, 
Eq. (8) becomes 

V = y T = K2T 

or Charles's law. 

T H E G A S C O N S T A N T 

The numerical value of the constant K in Eq. (8) is determined by 
the number of moles1 of gas involved and the units in which P and V are 
expressed; but it is totally independent of the nature of the gas. Equation (8) 
shows that for any given pressure and temperature an increase in the 
quantity of gas increases the volume, and thereby also correspondingly 
the magnitude of K. In other words, K is directly proportional to the 
number of moles of gas involved. For convenience this constant may be 
replaced, therefore, by the expression K = nR} where n is the number of 
moles of gas occupying volume V at P and T, while R is the gas constant 
per mole. Thus expressed, R becomes a universal constant for all gases and 
Eq. (8) takes the final form 

PV = nRT (9) 

Equation (9) is the ideal gas equation, one of the most important rela-
tions in physical chemistry. It connects directly the volume, temperature, 
pressure, and number of moles of a gas, and permits all types of gas 

1 A mole is the mass of a substance in grains equal numerically to its molecular 
weight. 
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calculations as soon as the constant R is known. R may be found from the 
fact that 1 mole of any ideal gas at standard conditions, .i.e., at 0°C and 
1 atm pressure, occupies a volume of 22.413 liters. If we express then the 
volume in liters and the pressure in atmospheres, R follows from Eq. (9) as 

R = —7p = 0 ' 1 r = 0.08205 liter-atm degree-1 mole-1 

This value of R can be used only when volume is taken in liters and pres-
sure in atmospheres. For other combinations of units R will have other 
values. Thus, if the pressure be expressed in atmospheres while the volume 
in cubic centimeters, R becomes 

R = i v 970 1 c = 82.05 cc-atm degree-1 mole-1 

Since pressure is force per unit area and volume is area times length, 
it immediately follows that the units of PV/nT and hence of R are 

force , , 
PV _ __ area ^__ _ force X length _ work degree-1 

nT moles X degrees moles X degrees mole-1 

Consequently R may be expressed in any set of units representing work 
or energy. Although in gas calculations in the metric system the units 
given above are the most useful, there is necessity in other types of cal-
culations to employ R in some alternate energy units. These are usually 
ergs, joules, and calories. 

To obtain R in ergs the pressure must be expressed in dynes per square 
centimeter and the volume in cubic centimeters. For the volume at 
standard conditions we have V = 22,413 cc. Again, a pressure of 1 atm 
is the pressure of a column of mercury 76 cm high and 1 cm2 in cross 
section at 0°C. The total volume of such a column is thus 76 cc, and the 
mass 76 X 13.595, where the latter quantity is the density of mercury at 
0°C. The pressure in dynes per square centimeter will be then this mass 
multiplied by the acceleration of gravity, 980.66 cm sec-2. Inserting these 
values of V and P into the expression for R, we find that 

p (76 X 13.595 X 980.66)(22,413) Q Q l , v 1 A 7 , _x , _, 
R = - 1 w <V7Q i g — = 8 - 3 1 4 X 107 ergs degree-1 mole l 

1 X ^/o.lo 
Further, since 1 joule = 107 ergs, and 1 calorie = 4.184 joules, we arrive 
also at 

—1 R = 8.314 joules degree-1 mole 

= 7-7777 = 1.987 cal degree"1 mole-1 

4.184 

It should be clearly understood that, although R may be expressed in 
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different units, for pressure-volume calculations involving gases R must 
always be taken in the same units as those used for pressure and volume. To 
facilitate calculations, Table 1-1 gives a summary of the values of R in 
various units. 

TABLE 1-1. VALUES OF R IN VARIOUS UNITS 

Pressure 

Atmospheres 
Atmospheres 
Dynes/cm* 
mm Hg 
R in joules 
R in calories 

Vol-
ume 

liters 
cc 
cc 
cc 

.tem-
pera-
ture 

°K 
°K 
°K 
°K 
°K 
°K 

n 

gram-moles 
gram-moles 
gram-moles 
gram-moles 
gram-moles 
gram-moles 

R 

0.08205 liter-atm (°K)"1 (g-mole)-1 

82.05 cc-atm ( 0 K) _ 1 (g-mole)-1 

8.314 X 107 ergs (°K)~l (g-mole)"1 

62,360 cc-mm Hg (°K)"1 (g-mole)"1 

8.314 joules (0K)-» (g-mole)"1 

1.987 oal (°K)"1 (g-mole)"1 

CALCULATIONS INVOLVING IDEAL GAS LAW 

The ideal gas law may be employed to find any one of the variables 
P, V, T, or n from any specified set of three of these. As an illustration, 
suppose that we want to ascertain the volume occupied by 10.0 g of 
oxygen at 25.0°C and 650 mm Hg pressure. From the data we know that 

n = ^ = 0.312 mole 

T « 273.2 + 25.0 = 298.2°K 

p = |g? = 0-855 atm 
760 

R = 0.0821 liter-atm degree"1 mole"1 

Insertion of these into Eq. (9) yields for the volume 
nRT 0.312 X 0.0821 X 298.2 

V = 
P 

= 8.94 liters 
0.855 

Similarly, from appropriately specified data the other quantities involved 
in the ideal gas equation may be found. 

D A L T O N ' S L A W O F P A R T I A L P R E S S U R E S 

Different gases introduced into the same container interdiffuse or mix 
rapidly. Dalton's law of partial pressures states that at constant tempera-
ture the total pressure exerted by a mixture of gases in a definite volume is 
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equal to the sum of the individual pressures which each gas would exert if 
it occupied the same total volume alone. In other words, 

Ptotal = P1 + P2 + Pz+ ' ' ' 0 5 f 

where the individual pressures, Pi, P2f Pz, etc., are termed the partial 
pressures of the respective gases. The partial pressure of each constituent 
may be thought of as the pressure which that constituent would exert if it 
were isolated in the same volume and at the same temperature as that 
of the mixture. In terms of the partial pressures, Dalton's law may be 
restated as follows: The total pressure of a mixture of gases is equal to the 
sum of the partial pressures of the individual components of the mixture. 

The significance of Dalton's law and of the concept of partial pressures 
is best brought out by the following example. If we were to take three 
1-liter flasks filled respectively with hydrogen at 70 mm Hg pressure, 
carbon monoxide at 500 mm, and nitrogen at 1000 mm, all at the same 
temperature, and were to force all these gases into a fourth 1-liter flask, 
the total pressure within the fourth flask would be 

P = Pn2 + Pco + P N 2 

= 70 + 500 + 1000 
= 1570 mm Hg 

and the pressures of the individual gases within their 1-liter flasks would 
be the partial pressures of these gases in the mixture. 

Consider now a gaseous mixture composed of nx moles of one gas, n2 

moles of another gas, and n3 moles of still a third. Let the total volume 
be V and the temperature T. If the conditions of pressure and tempera-
ture are not too extreme, the ideal gas laws would be valid for each gas 
in the mixture, and we obtain for the respective partial pressures 

Pi 

P* 

P* 

According to Dalton's law the total pressure 1J thus becomes 

nxRT n2RT n*RT 
V + V + V 

(ni + n2 + n*)RT 
V 

nxRT 
V 

n2RT 
V 

nzRT 
V 

(Ha) 

(Hb) 

(He) 
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where nt = (nx + n2 + n3) = total number of moles of gas in the mix-
ture. We see from Eq. (12), therefore, that the gas laws may be applied to 
mixtures as well as to pure gases, and in exactly the same way. 

On division of Eqs. ( l l a ) - ( l l c ) by Eq. (12) it is found that 

Pi = ^ P (13a) 
nt 

P*=^P (13b) 

and Pz = — P (13c) 
nt 

Equations such as (13) are very important in chemical and chemical 
engineering calculations, for they relate the partial pressure of a gas tc 
the total pressure of the mixture. Since the fractions ni/nt, n2/nu and 
nz/rit represent the moles of a particular constituent present in the mix-
ture divided by the total number of moles of all gases present, these 
quantities are called mol fractions and are designated by the respective 
symbols Nh N2, N3, etc. Of necessity the sum of all the mol fractions for a 
system will have to be unity, namely, 

Ni + N2 + N, + • • • = 1 (14) 

In terms of these definitions the partial pressure of any component in a gas 
mixture is equal to the mol fraction of that component multiplied by the total 
pressure. This is true only when the ideal gas law applies to each con-
stituent of the gas mixture. 

A M A G A T ' S LAW OF P A R T I A L V O L U M E S 

A law similar to Dalton's is AmagaVs law of partial volumes. This law 
states that in any gas mixture the total volume may be considered to be the 
sum of the partial volumes of the constituents of the mixture, i.e., 

V = Vx + V2 + V, + • • • (15) 

where V is the total volume while Vh V2, etc., are the partial volumes. 
By the partial volume of a constituent is meant the volume which that 
constituent would occupy if present alone at the given temperature and 
at the total pressure of the mixture. By an argument similar to the one 
employed for partial pressures it is readily shown that, if the ideal gas 
laws are again applicable, then 

Vx = NxV, Vt = N*V, etc. (16) 

where Vh V2, etc., are the partial volumes, Nh N2, etc., the mol fractions, 
and V the total volume at any pressure and temperature. 
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Dalton's and Amagat's laws are equivalent and hold equally well with 
gases that approximate ideal behavior, i.e., with gases that are not too 
close to their condensation temperatures or at too elevated pressures. At 
high pressures and near their condensation temperatures gases begin to 
exhibit considerable intermolecular attractions and effects which are no 
longer general but are specific to the composition and nature of the sub-
stances. Under such conditions deviations appear not only from Eqs. (13) 
and (16), but also from Eqs. (10) and (15). In general, the law of partial 
volumes holds somewhat better than the law of partial pressures at high 
pressures and low temperatures. 

GRAHAM'S LAW OF D I F F U S I O N 

Different gases diffuse through a tube or escape from a container having 
a fine opening at different rates dependent on the densities or molecular 
weights of the gases. The law governing such diffusions was first enunciated 
by Graham in 1829 and bears his name. This law states that at constant 
temperature and pressure the rates of diffusion of various gases vary inversely 
as the square roots of their densities or molecular weights. Thus, if we let 
Ui and ui be the rates of diffusion of two gases, and p\ and p2 be their 
respective densities, then 

"2 y/Jx 
(17) 

Again, since at the same pressure and temperature both gases must have 
the same molar volume Vm, we have also that 

Ul = Vp2Vm = VM2 , 1 8 ) 

where Mi and M2 are the molecular weights of the two gases. 

T H E K I N E T I C T H E O R Y O F I D E A L G A S E S 

All the principles of gas behavior which have been discussed so far 
have been arrived at by experiment. The kinetic theory of gases, on the 
other hand, attempts to elucidate the behavior of gases by theoretical 
means in terms of a postulated "picture" of a gas and certain assumptions 
regarding its behavior. The theory was first proposed by Bernoulli in 
1738, and was considerably elaborated and extended by Clausius, Max-
well, Boltzmann, van der Waals, and Jeans. 

The kinetic theory is based on the following fundamental postulates: 
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1. Gases are considered to be composed of minute discrete particles 
called molecules. For any one gas all molecules are thought to be of 
the same mass and size but to differ in these from gas to gas. 

2. The molecules within a container are believed to be in ceaseless 
chaotic motion during which they collide with each other and with 
the walls of the container. 

3. The bombardment of the container walls by the molecules gives 
rise to the phenomenon we call pressure, i.e., the force exerted on the 
walls per unit area is the average force per unit area which the 
molecules exert in their collisions with the walls. 

4. Inasmuch as the pressure of a gas within a container does not vary 
with time at any given pressure and temperature, the molecular 
collisions must involve no energy loss due to friction. In other words, 
all molecular collisions are elastic. 

5. The absolute temperature is a quantity proportional to the average 
kinetic energy of all the molecules in a system. 

6. At relatively low pressures the average distances between molecules 
are large compared with molecular diameters, and hence the attrac-
tive forces between molecules, which depend on the distance of 
molecular separation, may be considered negligible. 

7. Finally, since the molecules are small compared with the distances 
between them, their volume may be considered to be negligible com-
pared with the total volume of the gas. 

Postulates 6 and 7, by ignoring the size of the molecules and the inter-
actions between them, limit the theoretical treatment to ideal gases. 

A mathematical analysis of this concept of a gas leads to fundamental 
conclusions that are directly verifiable by experiment. Consider a cubical 
container filled with n' molecules of gas, all the same, and all with molecu-
lar mass m and velocity u. This velocity u may be resolved into its three 
components along the x, yy and z axes, as is shown in Figure 1-3. If we 

z Axis 

/ 

Figure 1-3. Resolution of 
velocity along x, y, and z 
axes. 

• x Axis 

y Axis 
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designate these velocity components by uxy uy, uz, then 

u2 = u\ + u\ + u] (19) 

where u is called the root-mean-square velocity. Each of these components 
may now be treated as though a single molecule of mass m were to move 
independently with each of the component velocities in the appropriate 
directions x, yy or z. The total effect of these independent motions is 
obtained by combining the velocities according to Eq. (19). 

Suppose now that the molecule of mass m is moving in the x direction to 
the right with velocity ux. It will strike the yz plane with a momentum 
mux, and, since the collision is elastic, it will rebound with velocity — ux 

and momentum —mux. Consequently the change in momentum per mole-
cule per single collision in the x direction is mux — ( — mux) = 2mux. 
Before the molecule can strike the same wall again it must travel to the 
opposite wall, collide with it, rebound, and return. To do this it must 
cover the distance 2 ly where I is the length of the cube edge. Hence the 
number of collisions with the right-hand wall which the molecule will 
experience per second will be ux/2 I, and thereby the change in momentum 
per second for the one molecule on the given wall will be 

( 2 m M l ) | = ^ (20) 

But the same change in momentum will be experienced also by the same 
molecule at the other yz plane, so that the total change in momentum 
per molecule per second in the x direction is twice the quantity in Eq. (20), 
or 

mu^ 
Change in momentum/second/molecule in x direction = 2 —j1 (21) 

A moment's reflection will show that analogous changes in momentum 
take place in the y and z directions, and that these are given by 2 mul/l 
and 2 mulJl per molecule per second. From these the 

2 mij? 2 tnu 2 TYLU 
Total change in momentum/molecule/second = —p-- + —=—* H j—1 

= ^(ul + ul + ul) 

= ^ u > (22) 

by Eq. (19). As there are n' molecules in the cube, the change in momen-
tum per second for all of them will be Eq. (22) multiplied by n', or 

Total change in momentum per second = -, (23) 
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However, the rate of change of momentum is the acting force, /. Again, 
pressure is the force per unit area. Consequently, 

£ 2 ran V 
r A IA U y 

where P is the pressure while A is the total area over which the force is 
applied. For the cube in question A = 6 Z2, and hence 

P - 5 5 £ (25) 

But Z3 is the volume V of the cube, and so 

p __ mn'u2 

or PV = ^ranV (26) 

According to Eq. (26) the product PV for any gas should equal one-
third the mass of all the molecules (ran') multiplied by the square of the 
root-mean-square velocity. Although this equation was derived on the 
assumption of a cubical vessel, it can be shown that the same result is 
obtained no matter what shape of vessel is considered, and consequently 
the above deduction must be perfectly general. 

DEDUCTIONS FROM KINETIC THEORY OF GASES 

Boyle's Law. We have seen that one of the fundamental postulates of 
the kinetic theory is the direct proportionality between the kinetic energy" 
of the molecules, i.e., \i mn'u2, and the absolute temperature, namely, 
that 

^ mn'u2 = IdT (27) 

where A*i is a proportionality constant. If now Eq. (26) is multiplied and 
divided by 2, we have 

PVssl(lmn'u*) 
and hence, on insertion of Eq. (27), 

PV = \kxT (28) 

At constant temperature Eq. (28) becomes thus PV = constant, which is 
Boyle's law. 
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Charles's Law. This law holds at constant pressure. If this condition 
is imposed on Eq. (28), we get 

\SP) 
= K2T (29) 

which is a statement of Charles's law. 
Avogadro's Principle. In 1811 Avogadro enunciated the principle 

that equal volumes of all gases at the same pressure and temperature contain 
equal numbers of molecules. This principle is readily deducible from the 
kinetic theory of gases. Since the volumes and pressures are equal, P\V\ = 
P2V2 for two different gases, and hence it follows from Eq. (26) that 

« n[miu\ = « n2m2u\ 

Again, as the temperature is also constant, the average kinetic energy 
per molecule must be the same, or 

1 2 1 2 - m\u\ = ^ m 2^2 

Inserting the latter relation into the preceding, we see that 

n[ = n'2 (30) 

which is a statement of Avogadro's principle. 
The actual number of molecules in a gram-mole of any gas is an impor-

tant physical constant known as Avogadro's number^ symbol N. This 
constant may be arrived at by a number of methods. The best present 
value for this quantity is 6.0229 X 1023 molecules per gram-mole. Once 
this constant is available, the mass of any particular molecule can readily 
be computed by merely dividing the molecular weight of the substance 
by Avogadro's number. Thus, since the molecular weight of oxygen is 
32.00, the mass of an individual molecule must be 

Wo» = -6.0232'X°10» - 5 3 1 X 1 0 _ M g/molecule 

Graham's Law of Diffusion. Graham's law also follows readily from 
the kinetic theory of gases. Since at constant volume and pressure for two 
different gases 

^n[miu\ = ^n'2m2ul 

then rt rn*t 
u\ m\n\ 
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Further, if n2 = n[ = N, then 

ui _ fnhN _ IWt 

Again, since at constant temperature and pressure the molar volumes are 
identical, we have also 

Ui _ S 
(S3) 

where p2 and pi are the densities of the two gases. Equations (32) and 
(33) are identical with (17) and (18), and are, of course, statements of 
Graham's law. 

All these deductions point to the fact that the theoretical relation 
PV = J^ n'mu2 is in agreement with the empirical ideal gas law PV = 
nRT. Consequently we may write without further hesitation that 

PV = ^ n'mu2 = nRT 

and, since n' = nN, 

P F = 1 n(Nm)u2 = nRT 

= nJM = nRT (u) 

where M = Nm is the molecular weight of the gas in question, and n is 
the number of moles of gas in the volume V at pressure P and temperature 

r. 

FURTHER DEDUCTIONS FROM THE KINETIC THEORY 

The value of any theory lies not only in its ability to account for known 
experimental facts but also in its suggestiveness of new modes of attack. 
In this respect the kinetic theory of gases has been very fruitful. We have 
seen that Eq. (26), a direct consequence and expression of the theory, 
gives all the laws of ideal gas behavior. At the same time, however, many 
other highly important relations can be deduced from it, some of which 
are outlined in the following. 

The Velocity of Gas Molecules. According to the kinetic theory all 
molecules at the same temperature must have the same average kinetic 
energy, i.e., 

1 , 1 o _ 1 
^ mni\ = H m2^2 = 9 "wiS, etc. 

It follows, therefore, that the higher the mass of a molecule, the more 
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slowly must it be moving. It is of considerable interest to ascertain the 
actual velocity with which various molecules move. From Eq. (34) we 
have that 

1 
3 nMu2 = nRT 

and hence u = V T (35a) 

Again, since RT = PV/n, and nM/V = p, the density of the gas in 
question at temperature T and pressure P, Eq. (35a) may be written also 
as 

u = 4 3— (35b) 
P 

By either of these equations the root-mean-square velocity of a gas may 
be calculated from directly measurable quantities. In doing this, if R is 
expressed in ergs per degree per mole, P in dynes per square centimeter, 
and the density in grams per cubic centimeter, then u will be given in 
centimeters per second. 

To calculate the velocity of hydrogen molecules at 0°C we know that 
R = 8.314 X 107 ergs per mole per degree, T = 273.15°K, and M = 2.016. 
Hence Eq. (35a) yields for u 

-4 3 X 8.314 X 107 X 273.15 
2.016 

= 184,000 cm/sec 
= 68 miles/min 

Since hydrogen is the lightest of all elements, this tremendously high 
velocity represents an upper limit for rates of molecular motion. For all 
other molecules the speeds will be lower in accordance with Graham's 
law. Thus for sulfur dioxide, with M = 64, the velocity at 0°C would be 

68 \ 6 4 
usot = 12 miles/min 

The Kinetic Energy of Translation. The only type of energy we 
have ascribed thus far to gas molecules is that due to molecular motion 
along three coordinate axes, i.e., kinetic energy of translation. The amount 
of this energy is again deducible from Fq. (34). Since from this equa-
tion nRT = nMn2/3, and since the kinetic energy, Ek, is given by 
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Ek = nMu2/2, then for n moles of ^as 

and per mule 

- | nflT (36a) 

Ek = ^RT (36b) 

Consequently, the translational energy of an ideal gas is completely inde-
pendent of the nature or pressure of the gas, and depends only on the 
absolute temperature. At, say, 300°K all ideal gases will thus contain per 
mole 

Ek = | #(300) 

= 450 R 
= 895 cal 

or approximately 900 cal of translational kinetic energy. 
The average kinetic energy per molecule follows from Eq. (36b) on 

division by Avogadro's number, .V, namely, 

N 2 N 2 • {6V 

where k = R/N is called the Boltzmann constant, and is equal to 1.3805 X 
10~ie erg per degree. 

Distribution of Molecular Velocities. For convenience of treat-
ment all molecules in a given gas and at a given temperature were 
considered to be composed of molecules moving with a constant root-
mean-square velocity u. Actually, however, all molecules do not possess 
the same velocity, for as a result of collisions a redistribution of both 
energy and velocity takes place. Maxwell and Boltzmann, utilizing prob-
ability considerations, have in fact shown that the actual distribution of 
molecular velocities depends on the temperature and molecular weight of 
i\ gas, and is given by 

j „ / M \ 8 / 2 Me* 

^ - n ^ ) e~*RTc'dc m 

In this equation dnc is the number of molecules out of a total n' having 
velocities between c and c + dc> while M and T are, respectively, the 
molecular weight and temperature of the gas. Obviously dnc/n' is the 
fraction of the total number of riolecules having velocities between c and 
c + dc. Equation (38) is known as the Maxwell-Boltzmann distribution 
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law for molecular velocities. If Eq. (38) is divided by dc, we get 

1 , / M \ 3 / 2 _Mc2 

^'h^-^K^f) e~2RTci (38a) 

where p may be taken as the probability of finding molecules with the 
velocity c. 

c-Velocity of Molecules 

Figure 1—1. Distribution of molecular velocities in a gas. 

Figure 1-4 shows schematic plots of p vs. c for several temperatures 
which increase in the order 7\, T2, T3. From these plots it may be seen 
that the probability of a molecule being motionless at any instant is very 
small. Further, for incidence of velocities greater than zero the probability 
increases with c, passes through a maximum, and then falls away more or 
less rapidly toward zero again for very high rates of motion. I t is evident, 
therefore, that both very low and very high speeds are highly improbable, 
and that most of the molecules in a gas have velocities grouped about the 
most probable velocity corresponding to the peak of the curve at each 
temperature. The most probable velocity is in any gas not a constant, but 
shifts toward higher values of c with increase in temperature; i.e., at 
higher temperatures higher velocities are more probable than at low. 

Mathematical analysis shows that the most probable velocity, a, is not 
equal either to the root-mean-square velocity u or the average velocity of 
all the molecules v. If we designate by ch c2, c3, • * * cn the individual 
velocities of n' molecules in a gas, then the average velocity v is defined as 

n' 

and the root-mean-square velocity as 

„ = IK+A+A+ZHA (40) 
\ n 
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Kinetic theory arguments reveal that these various velocities are related 
by the equations 

v = 0.921 u (41) 

«= ffi (42) 

and hence, on substitution of the value of u from Eq. (35a), we have 

tt- yj' 3 RT rvu\ 
Tf (3 5 a) 

. = 0.921 > | ™ ! (43) 

™ t (44) ~4 M 
or a:v:u = 1:1.128:1.224 

Since for any specific velocity c the kinetic energy of a gas per mole is 
E = Mc2/2, we may substitute this relation into Eq. (38) to obtain the 
distribution of kinetic energies in a gas. The result is 

%=iM*e~fTEmdE (45) 

where now dnc/n' is the fraction of the total number of molecules having 
kinetic energies between E and E + &E. Again, division of Eq. (45) by 
dE yields 

*' = ̂  = dW~^1/2 <45a> 
where j>' is the probability for incidence of kinetic energies of translation 
of magnitude E. The plots of p ' vs. E obtained from Eq. (45a) are very 
similar to those shown in Figure 4. 

Frequency of Collisions a n d Mean Free P a t h . I t can be shown 
that in a gas containing n* identical molecules per cubic centimeter, the 
number of molecules with which a single gas molecule will collide per 
second is 

\/2TVa2n* 

where v is the average molecular velocity in centimeters per second and 
a the molecular diameter in centimeters. Hence the total number of col-
liding molecules per cubic centimeter per second, Z, must be n* times 
this quantity, or 

Z = \Z2irv<r*(n*)* (46) 

Further, since each collision involves two molecules, the number of 
molecular collisions occurring in each cubic centimeter per second, Ne, 
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will be one-half this number, namely, 

Nc = | = -±*vc>(n*y (47) 

Another important quantity in kinetic theory considerations is the 
average distance*a molecule traverses before colliding, or the mean free 
path} I. If a molecule has an average velocity v cm per sec, and if within 
this period it experiences, as we have seen, \ / 2 wv<r2n* collisions, then the 
average distance between collisions, or mean free path, must be 

y/2nva2n* 

= ys 2 ; (48) 
\Z2ira2n* 

The quantities Nc, Z, and I are readily calculable as soon as the molecu-
lar diameters a are available. These are usually obtained from gas vis-
cosity measurements in a manner to be discussed toward the end of the 
chapter. 

A P P L I C A B I L I T Y OF T H E I D E A L GAS LAWS 

The concordance between the empirical generalizations embodied in 
the expression PV = nRT and the deductions of the kinetic theory of 
gases lends considerable credence to our conception of the nature of gases 
and their behavior. However, there still remains the question of how com-
pletely and accurately can the expression PV = nRT reproduce the 
actual P-V-T relations of gases. To test this point we may resort to the 
fact that at constant temperature the combined gas law reduces to 
PV = nRT W constant. Hence, as long as T does not vary, the product 
PV for a given quantity of gas should remain the same at all pressures. A 
plot of PV vs. P at constant T should yield, therefore, a straight line 
parallel to the abscissa. 

Such a plot of PV vs. P constructed from actual data for several gases 
at 0°C is shown in Figure 1-5. The fact immediately apparent is that PV 
is not constant over most of the pressure range shown. The curves are in 
general of two types. One, including only hydrogen and helium here, 
starts at the value of PV demanded by PV = nRT for the temperature 
in question and increases continually with pressure. In every case the 
product PV is greater than demanded by theory. On the other hand, in 
the second type the plot starts again at the same point as before, but now 
the product PV decreases at first with pressure, passes through a 
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minimum characteristic of each gas and the temperature, and then 
increases to values which may rise appreciably above the theoretical. 

15 I 1 1 1 1—I 
0 200 400 600 800 

P—Atmospheres 

Figure 1-5. PV vs. P olot for several gases at 0°C. 

Actually, both types of curves are part of a single pattern of behavior 
exhibited by all gases. To show this, it is convenient tp employ a quantity 
z, called the compressibility factor, which is defined as 

For an ideal gas z — 1 at all temperatures and pressures. In the case of 
actual gases the compressibility factor may vary with both of these 
variables, and hence its deviation from a value of unity is an index of 
deviation from ideal behavior. 

From the experimental P-V-T data for a gas z may be calculated by 
means of Eq. (49), and its variation with temperature and pressure 
observed. Figure 1-6 shows a plot of z vs. P for nitrogen at various con-
stant temperatures. Inspection of this plot reveals that all the isotherms 
start with z = 1 at P = 0, and change with pressure in a manner depend-
ent on the temperature. However, there is one temperature, in this case 
51°C, at which z remains close to unity over an appreciable pressure range. 
In fact, between P = 0 and P = 100 atm z changes only from 1.00 to 1.02. 
Beyond 100 atm z rises quite rapidly with increasing pressure and attains 
values considerably above z — 1. This temperature at which a real gas 
obeys the ideal gas law over an appreciable pressure range is called the 
Boyle temperature or Boyle point. The Boyle temperature is also a dividing 
line in the types of isotherms exhibited by the gas. Above the Boyle point 
the gas shows only positive deviations from ideality, and hence all values 
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of z are greater than unity. Below the Boyle temperature, however, the 
values of z first decrease with increasing pressure, go through a minimum, 
and then increase to values which may climb appreciably above z = 1. 
I t should also be observed that the lower the temperature the lower 
the minima, and that they occur at pressures which vary with the 
temperature. 

O . 6 O I — 1 — i — i — i — i — « — i — i — i — • — 
0 200 4 0 0 6 0 0 8 0 0 1000 

P-Atmospheres 

Figure 1-6. Compressibility factors for nitrogen. 

The plots shown in Figure 1-6 are typical of the P-V-T behavior of all 
gases when data covering wide ranges of pressure and temperature are 
considered. The only differences observed are in the Boyle temperatures 
and in the positions of the isotherms oh the plots, since these are depend-
ent in each instance on the gas in question. Nevertheless, it is always 
found that above the Boyle temperature only positive deviations from 
ideality are observed. Below the Boyle temperature, on the other hand, 
increase of pressure causes the z values first to decrease below z = 1, to go 
through a minimum, and then to increase to values which eventually go 
appreciably above z = I. 

In terms of the above discussion a glance at Figure 1-5 should suffice to 
indicate that at 0°C hydrogen and helium are already above their Boyle 
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temperatures, whereas carbon monoxide and methane are still below 
theirs. I t is also to be expected that at sufficiently low temperatures 
hydrogen and helium should exhibit minima in their z vs. P plots, while at 
higher temperatures carbon monoxide and methane should show plots 
similar to those of hydrogen and helium at 0°C. Such is actually the case, 
as may be seen from the compressibility factor plot for methane given in 
Figure 1-7. 

2.00 

j-1.80 
o 
"§ 1.60 
u_ 

^ 1.40 
to 

S 1.20 
CL 

E 
U 100 
I 
N0.80 

0.60 

0 200 400 600 800 1000 
P —Atmospheres 

The highly individualistic behavior exhibited by various gases indicates 
that in order to represent their P-V-T relations equations of state, i.e., 
equations involving P, Vy and T, would be required which would contain 
not only these variables but also terms making allowance for the specific 
forces operative in each gas. However, P-V-T studies on gases at low 
pressures do show that when the pressures are lowered gases begin to 
approximate more closely the ideal gas law, and, furthermore, the lower 
the pressure the better is the agreement between the observed PV 
product and that calculated from the combined gas law. At these low 
pressures all gases lose their individualistic behavior and merge to obey 
the simple and general expression obtained from the kinetic theory of 
gases. For this reason the expression PV = nRT is considered to be a 
limiting law only, a law which gases obey strictly only when they are 
diluted highly enough so that the volume of the molecules themselves is 
negligible compared with the total volume, and the intermolecular attrac-
tive forces are too feeble to exercise any influence on the pressure of the 
gas. It may be concluded, therefore, that a gas becomes more ideal as the 
pressure is lowered and will become completely ideal as the pressure 
approaches zero. This conclusion is confirmed by the fact that, as P 

Figure 1-7. Compressibility 
factors for methane. 
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approaches zero, the compressibility factors at all temperatures go to 
3 = 1 . 

How far this concordance between the ideal gas law and observation 
will extend into the range of higher pressures depends on the nature of 
the gas and the temperature. For gases which are permanent at ordinary 
temperatures, i.e., which are above their critical temperatures,2 such as 
hydrogen, nitrogen, oxygen, and helium, this concordance may extend 
within 5 per cent or so up to pressures as high as 50 atm. On the other 
hand, with easily condensible gases, such as carbon dioxide, sulfur dioxide, 
chlorine, and methyl chloride, discrepancies as large as 2 or 3 per cent may 
appear at 1 atm pressure. The use of the ideal gas law for such gases is 
considerably limited, therefore, when fairly precise calculations are 
required. In any case, before using the ideal gas law at any appreciable 
pressure it is always advisable to consider the nature of the gas in ques-
tion and how far it is above its critical temperature. The greater this 
distance, the wider in general will be the pressure range over which calcu-
lations can be made within a given accuracy. 

U S E OF C O M P R E S S I B I L I T Y F A C T O R S 

When the compressibility factors of a gas are known under various 
conditions, they may be employed quite readily for making exact gas 
calculations. For instance, suppose that the volume of 10 moles of meth-
ane is required at 100 atm pressure and 0°C. At this pressure and tempera-
ture z = 0.783, and hence, according to Eq. (49), 

znRT 
P 

0.783 X 10 X 0.08205 X 273.2 
100 

= 1.754 liters 

The experimentally observed volume is 1.756 liters. Again, suppose that 
a certain quantity of methane occupies a volume of 0.138 liter under a 
pressure of 300 atm at 200°C, and the volume is required at 600 atm 
at 0°C. For 300 atm at 200°C, z2 = 1.067, while for 600 atm at 0°C, 
Z\ = 1.367. Since for the lower temperature we have P\V\ — zinRTi 
while for the higher one P2V2 = ZinRT^ then 

P1V1 = z.nRT, = zj\ ( . 
P2V2 z2nRT2 Z2T2 K 

2 The critical temperature is the highest temperature at which a gas may be liquefied. 
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and hence on substitution of the given values we get 

= /1.367 X 273.2\ /300 X 0.138\ 
Vl.067 X 473.2/V 6^0 ) 

= 0.051 liter 

T H E VAN DER W A A L S E Q U A T I O N OF S T A T E 

Because of the deviation of real gases from the ideal gas law, manjr 
attempts have been made to set up equations of state which will reproduce 
more satisfactorily the P-V-T relations of gases. Of these equations one 
of the earliest and best known is that of van der Waals. 

The van der Waals equation differs from the ideal gas law in that it 
makes allowance both for the volume occupied by the molecules them-
selves and for the attractive forces between them. To make correction for 
the finite dimensions of the molecules, let b be the effective volume of the 
molecules in one mole of gas and V be the total volume of n moles of gas. 
In this total volume, that occupied by the molecules themselves thus will 
be nb, and hence the volume available for compression will be not V but 
(V — nb). Since the latter is the "free space," it should be substituted for 
V in the ideal gas law. It may be anticipated that b will be characteristic 
and different for each gas. 

The second factor for cognizance is the attractive force operative 
between molecules. Consider the wall of a container which is being 
bombarded by gaseous molecules. When the gas molecules are not con-
strained by attractions for each other, they will bombard the wall with 
the full force due to their outward motion. If, however, under the same 
conditions a molecule moving outward is subjected by molecular attrac-
tion to an inward "pull/ ' it will not strike the wall with as high a force as 
if it were not "dragged back" by the other molecules within the gas. Con-
sequently, the pressure resulting from the bombardment will be lessened 
by an amount P'. The observed pressure, P, will thus be less than the 
ideal pressure, Pif by the amount P ' , or 

P = Pi- P' 

Since in the expression PcV = nRT the pressure P t refers to the ideal 
pressure, we must substitute for it its value from the expression given 
above, or Pi = (P + P ') . If we combine this corrected pressure with 
the expression for the corrected volume we obtain 

(P + P')(V - nb) = nRT (51) 
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van der Waals indicated that the magnitude of the pressure correction 
P' for n moles of gas present in volume V is given by 

72 

where a is a constant characteristic of each gas and independent of pres-
sure and temperature. I t is for each gas a measure of the magnitude of 
the intermolecular attractive forces within the gas. If this expression 
for P' is substituted in Eq. (51), we get 

(p + * ? ? W - rib) = nRT (52) 

This is the celebrated equation of state which was first developed by 
van der Waals in 1873 and which bears his name. 

In applying van der Waals* equation care must be exercised in the 
choice of appropriate units for the constants a and 6. Since n2a/V2 repre-
sents a pressure, the units of a must be pressure X (volume)2/(mole)2, 
i.e., atm-liter2 mole-2, or atm-cc2 mole-2. In any event, the units used 
must be the same as those of P and V, and this applies also to R. In turn, 
/; is a volume and must correspond to the units of V. 

The use of the equation can be illustrated with an example. Suppose it is 
desired to calculate by van der Waals* equation the pressure at which 
2 moles of ammonia will occupy a volume of 5 liters at 27°C. For ammonia, 
a = 4.17 atm-liter2 mole-2, while b = 0.0371 liter per mole. Hence, 

p = nRT _ n2a 
V -nb V2 

2(0.0821)300.2 (2)2 X 4.17 
0 - 2(0.0371) (5)2 

= 9.33 atm 

The corresponding pressure calculated from the ideal gas law is 9.86 atm. 
Table 1-2 lists the van der Waals constants for a number of gases. 

Such gases as carbon disulfide, ammonia, sulfur dioxide, chloroform, etc., 
which are easily condensible, have relatively high values of a, indicating 
strong intermolecular attractions. On the other hand, for the permanent 
gases such as argon, carbon monoxide, helium, and hydrogen, the a values 
are considerably lower, and hence in these the intermolecular forces are 
considerably weaker. 

The van der Waals equation is much more accurate than the ideal gas 
law and is valid over a much wider pressure range, as may be seen from 
Table 1-3. However, under extreme conditions, such as temperatures 
near the critical and at very high pressures, its predictions deviate con-
siderably in many instances from experimentally observed values. It is 
very doubtful whether it is justifiable to consider a and b as constants 
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T A B L E 1-2. VAN DER W A A L S CONSTANTS FOR VARIOUS G A S E S 

(a in atm-liter* mole - 2 ; b in liter mole - 1 ) 

Gas Formula a b 

Ammonia 
Argon 
Carbon dioxide 
Carbon disulfide 
Carbon monoxide 
Carbon tetrachloride 
Chlorine 
Chloroform 
Ethane 
Ethylene 
Helium 
Hydrogen 
Hydrogen bromide 
Methane 
Neon 
Nitric oxide 
Nitrogen 
Oxygen 
Sulfur dioxide 
Water 

NH3 

Ar 
C02 

CS2 

CO 
CC14 

Cl2 

CHCls 
C2Hb 
C2H4 

He 
H2 

HBr 
CH4 

Ne 
NO 
N2 

o2 so2 H20 

4.17 
1.35 
3.59 

11.62 
1.49 

20.39 
6.49 

15.17 
5.49 
4 47 
0.034 
0.244 
4.45 
2.25 
0.211 
1.34 
1.39 
1.36 
6.71 
5.46 

0.0371 
0.0322 
0.0427 
0.0769 
0.0399 
0.1383 
0.0562 
0.1022 
0.0638 
0.0571 
0.0237 
0.0266 
0.0443 
0.0428 
0.0171 
0.0279 
0.0391 
0.0318 
0.0564 
0.0305 

T A B L E 1-3. COMPARISON OF IDEAL G A S L A W AND VAN DER WAALS 1 

EQUATION AT 100°C 

Hydrogen Carbon Dioxide 

P % P Calc. % P % P Calc. % 
Observed Calc. Devia- van der Devia- Calc. Devia- van der Devia-
P (a tm) Ideal tion Waals tion Ideal tion Waals tion 

50 48.7 - 2 . 6 50 .2 + 0 . 4 57 .0 + 1 4 . 0 49 .5 - 1 . 0 
75 72 .3 - 3 . 6 75.7 + 0 . 9 9 2 . 3 + 1 7 . 3 73 .3 - 2 . 3 

100 95 .0 - 5 . 0 100.8 + 0 . 8 133.5 + 3 3 . 5 95 .8 - 4 . 2 

independent of pressure and temperature. In fact, in order to fit the equa-
tion to experimental data with a relatively high order of fidelity, it is 
necessary to choose different values of a and b over different ranges of 
pressure and temperature. 

OTHER EQUATIONS OF STATE 

A large number of other equations of state have been proposed to repre-
sent the P-V-T relations of gases. Some of these are based to some extent 
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on theoretical considerations, while other are entirely empirical. We shall 
consider now several of the more important of these equations. 

The Kamerlingh Onnes Equation of State. This empirical equa-
tion expresses P F a s a power series of the pressure at any given tempera-
ture, namely, 

PVm - A + BP + CP2 + DP' + • • • (53) 

P is the pressure, generally in atmospheres, and Vm is the molar volume 
in liters or cubic centimeters. The coefficients A, B, C, etc., are known 
respectively as the first, second, third, etc., virial coefficients. At very 
low pressures only the first of these coefficients is significant, and it is 
equal to R T. At higher pressures, however, the others as well are impor-
tant and must be considered. In general the order of significance of the 
coefficients is their order in the equation. These coefficients, although 
constant at any given temperature, change in value as the temperature is 
changed. Of necessity the first virial coefficient A is always positive and 
increases with temperature. The second coefficient, on the other hand, is 
negative at low temperatures, passes through zero, and becomes increas-
ingly positive as the temperature is raised. The temperature at which 
B = 0 is the Boyle temperature, for at this temperature Boyle's law is 
valid over a fairly wide pressure range. 

By using a sufficient number of terms this equation can be fitted to 
experimental data with a high order of accuracy. The virial coefficients 
for several gases are shown in Table 1-4. With these it is possible to calcu-
late PV up to 1000 atm. 

TABLE 1-4. VIRIAL COEFFICIENTS OF SOME GASES 

(P in atm, Vm in liters mole- 1) 

t°C A B X 102 C X 105 D X 108 
1 

E X 1011 

Nitrogen 

- 5 0 
0 

100 
200 

18.312 
22.414 
30.619 
38.824 

- 2 . 8 7 9 0 
- 1 . 0 5 1 2 

0.6662 
1.4763 

14.980 
8.626 
4.411 
2.775 

- 1 4 . 4 7 0 
- 6 . 9 1 0 
- 3 . 5 3 4 
- 2 . 3 7 9 

4.657 
1.704 
0.9687 
0.7600 

Carbon Monoxide 

- 5 0 
0 

100 
200 

18.312 
22.414 
30.619 
38.824 

- 3 . 6 8 7 8 
- 1 . 4 8 2 5 

0.4036 
1.3163 

17.900 
9.823 
4.874 
3.052 

- 1 7 . 9 1 1 
- 7 . 7 2 1 
- 3 . 6 1 8 
- 2 . 4 4 9 

6.225 
1.947 
0.9235 
0.7266 

Hydrogen 

-50 18.312 1.2027 1.164 -1.741 1.022 
0 22.414 1.3638 0.7851 -1.206 0.7354 

500 63.447 1.7974 0.1003 -0.1619 0.1050 
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T h e Ber thelo t Equa t ion . The high-pressure form of this equation is 
rather difficult to handle. For low pressures the equation reduces to 

9PTC PV = nRT 

where P, V, R, T, and n have the same meaning as in the ideal gas law, 
while Pc and Tc are the critical pressure and critical temperature respec-
tively.3 For pressures of about an atmosphere and below this equation is 
very accurate, and it is consequently very useful in calculating the 
molecular weights of gases from their densities. Its use will be illustrated 
in that connection. 

TABLE 1-5. BEATTIE-BRIDGEMAN CONSTANTS FOR SOME GASES* 

(For P in atm, V in liters mole"1) 

Gas 

He 
Ne 
Ar 
H2 

N 2 

o2 Air 
C 0 2 

CH4 

(C2H5)20 

A0 

0.0216 
0.2125 
1.2907 
0.1975 
1.3445 
1.4911 
1.3012 
5.0065 
2.2769 

31.278 

a 

0.05984 
0.2196 
0.02328 

- 0 . 0 0 5 0 6 
0.02617 
0.02562 
0.01931 
0.07132 
0.01855 
0.12426 

Bo 

0.01400 
0.02060 
0.03931 
0.02096 
0.05046 
0.04624 
0.04611 
0.10476 
0.05587 
0.45446 

b 

0 
0 
0 

- 0 . 0 4 3 5 9 
- 0 . 0 0 6 9 1 

0.004208 
- 0 . 0 1 1 0 1 

0.07235 
- 0 . 0 1 5 8 7 

0.11954 

c 

0.004 X 104 

0.101 X 104 

5.99 X 104 

0.050 X 104 

4 .20 X 104 

4 .80 X 104 

4 .34 X 104 

66.00 X 104 

12.83 X 104 

33.33 X 104 

* J. Am. Chem. Soc, 50, 3136 (1928). See also Maron and Turnbull, Ind. Eng. Chem., 
33, 408 (1941). 

The Beattie-Bridgeman Equation of State. This equation of 
state involving five constants may be stated in two forms, one explicit in 
pressure, the other in molar volume Vm, namely, 

VA 

5PS 
r m V m V m 

p T RT~r ^RTy + (RTY 
where 0 = RTB0 - A0 

Re 
rp2 

y = -RTBob + A0a -

5 RBobc 
o = —TFHT-

RcBp 
fp2 

(55) 

(56) 

(57a) 

(57b) 

(57c) 

In these relations T is again the absolute temperature and R the gas con-
stant, while Aa, Ba, a, b, and c are constants characteristic of each gas. 

* See page 47. 
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Of the two forms, Eqs. (55) and (56), the first is the more accurate, for the 
second was deduced from it with certain approximations. 

This equation is applicable over wide ranges of temperature and pres-
sure with excellent accuracy. Volumes and pressures calculated by it 
agree with experiment to 0.3 per cent or less up to pressures of 100 atm 
and temperatures as low as — 150°C. With lower accuracy the equation 
may be extended to considerably higher pressures. Beattie-Bridgeman 
constants for a number of gases are given in Table 1-5. 

M O L E C U L A R W E I G H T S OF G A S E S 

The molecular weight of a gas is an important quantity essential for all 
types of calculations. I t should be clearly realized that chemical analysis 
alone is insufficient to establish the molecular weight of a substance. 
Chemical analysis merely establishes the elements entering into the 
composition of a molecule and their proportions, but it does not tell us 
how many atoms of each substance are involved. For instance, chemical 
analysis of ethane shows that it is composed of carbon and hydrogen in 
the proportion of three atoms of hydrogen for each atom of carbon. From 
this P. Mr? we should be tempted to write the formula as CH3. Actually, 
however, density measurements on the gas show that the formula is not 
CHr bi t a Multiple of it, (CH3)2 or C2H6; i.e., the molecule is composed of. 
two A »i.is of carbon and six atoms of hydrogen. In brief, chemical analysis 
can . *ld only the composition and empirical formula. Physicochemical 
me' >• Merits, on the other hand, can establish the molecular weight, 
,M.d !u / can give us then the multiple by which the empirical formula 
w ̂  j\.t must be multiplied in order to arrive at the actual molecular 
we ■#)', of the substance. 

* til 1961 all molecular weights were based on the arbitrarily assumed 
.• a! dard of 16.0000 for the chemical atomic weight of oxygen. In that 
\oar the International Union of Pure and Applied Chemistry adopted a 
now atomic weight system based on the most abundant isotope of carbon, 
namely, C12, as being 12.0000. On this new basis the chemical atomic 
weight of oxygen is changed to 15.9994. Since it has been proved that the 
oxygen molecule contains two atoms, it follows immediately that the 
molecular weight of oxygen must be 31.9988. Knowing the molecular 
weight of oxygen, the molecular weights of all other gases may be deter-
mined by physicochemical methods through application of the Avogadro 
hypothesis. 

The Avogadro hypothesis states that under the same conditions of 
temperature and pressure equal volumes of all ideal gases contain the 
same number of molecules. If we were to determine, then, the volume 
that a mole of oxygen occupies under a specified set of conditions, this 



3 6 Chapter 1 : Gases and Liquids 

would be also the volume that a mole of any other gas would occupy 
under the same conditions; and the weight of this volume would yield 
directly the molecular weight of the gas. Since by Avogadro's hypothesis 
the two volumes would contain the same number of molecules, the 
molecular weights would be in the same proportion as the actual masses 
of the individual molecules. 

In physical chemistry the unit of mass commonly employed is the 
gram, and the gram-mole is the weight of a substance in grams correspond-
ing to the molecular weight.4 For oxygen the gram-mole is 31.9988 grams. 
Further, by direct measurement it has been found that the density of 
oxygen at standard conditions, i.e., 1 atm pressure and 273.15°K, is 
1.4276 grams per liter when corrected for honideality of the gas. Since 
density is mass per unit volume, it follows that the molar volume of 
oxygen under the conditions specified must be 

31.9988 0 0 , l o r , 
T ^ = 22.413 liters 

As this is also the molar volume of any other ideal gas at standard condi-
tions, the problem of determining the exact molecular weight of any other 
gas reduces itself to the determination of the weight of 22.413 liters of the 
gas at 1 atm pressure and 273.15°K after correction for nonideal behavior. 

Actually, it is not necessary or convenient to make measurements under 
the above conditions. Measurements may be made under any desired 
conditions, and the molecular weight may be calculated conveniently 
from these. The procedure followed for obtaining exact molecular weights 
will be presented later in the chapter. At present we shall concern our-
selves with the determination of approximate molecular weights which, 
along with the chemical analysis, are generally sufficient to establish the 
molecular weight of a substance. For the latter purpose we employ the 
ideal gas law as follows: If we let W be the weight of gas under considera-
tion, then n = W/M} and 

PV = nRT = ?jjRT 
M 

or M = -pY~ (58) 

Therefore, to obtain the molecular weight of any gas we need only deter-
mine the temperature and pressure at which a weight of gas W occupies 
the volume V, substitute these quantities in Eq. (58), and solve for M. 
Equation (58) may be expressed also in terms of the density of the gas p. 

4 Similarly, a pound-mole is the weight of a substance in pounds corresponding to 
the molecular weight. 
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Since p = W/V, 

and the molecular weight follows from the density of the gas at any given 
temperature and pressure. Most methods for determining the molecular 
weights of gases are based on these equations. 

R E G N A U L T ' S M E T H O D FOR D E T E R M I N A T I O N OF 
M O L E C U L A R W E I G H T S 

This method is employed to determine the molecular weights of sub-
stances which are gaseous at room temperature. The procedure in outline 
is as follows: A dry glass bulb of 300- to 500-cc capacity fitted with a 
stopcock is evacuated and weighed. It is then filled at a definite tempera-
ture and pressure with the gas whose molecular weight is to be determined 
and weighed again. The difference in weights represents the weight of 
gas W in the flask. The volume of the flask is determined by filling it with 
water or mercury, whose densities are known, and again weighing. From 
the data thus obtained the molecular weight may be calculated by Eq. 
(58). 

For more precise work a larger bulb is used to increase the mass of gas 
and a similar bulb is employed as a counterpoise. The observed weights 
are also reduced to vacuo. 

D U M A S ' M E T H O D FOR D E T E R M I N A T I O N O F 
VAPOR D E N S I T I E S 

This method is used to determine the molecular weights in the vapor 
phase of readily volatile liquids. A retort-shaped bulb, having a small 
opening drawn to a capillary, is first weighed full of air. A sample of 
several cubic centimeters of the liquid in question is drawn into the bulb 
by cooling it with the tip below the surface of the liquid, and the bulb is 
then immersed in a bath whose temperature is above the boiling point of 
the liquid. The boiling is permitted to proceed until the vapors of boiling 
liquid have expelled all the air from the bulb, and the liquid in the flask 
has completely vaporized. The flask is then sealed, cooled to room tem-
perature, and weighed. The volume of the bulb is determined as in 
Regnault's method. The pressure of the vapor when the bulb is sealed 
is the same as atmospheric, while the temperature is that of the bath. 
The weight of vapor, after corrections for buoyancy, is obtained from the 
equation 

WVapor = W^bulb+vapor) — W^bulb+air) + Wtit (60) 
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TTair is obtained by multiplying the volume of the flask by the density of 
the air. Knowing P , V, T, and TFvapor, the molecular weight of the liquid 
in the vapor phase may be calculated as before. 

T H E V I C T O R M E Y E R M E T H O D FOR VAPOR D E N S I T I E S 

This method serves the same purpose as the Dumas method for the 
determination of vapor densities but is considerably simpler and more 
flexible. A sketch of the apparatus is shown in Figure 1-8. I t consists of 

Figure 1-8. Victor Meyer 
apparatus. 

an inner tube P, approximately 50 cm long, which is surrounded by a 
jacket A, partly filled as indicated with a liquid whose boiling point is at 
least 30 degrees higher than that of the substance to be studied. The func-
tion of the outer jacket is to keep the temperature of the inner tube con-
stant by boiling the liquid in A throughout a run. Inside the inner tube, 
in turn, is another tube C, open at the bottom, down which passes a 
metal or glass rod, anchored with rubber tubing at the top in the manner 
shown and fitted with a hook at the bottom. The outlet from B com-
municates with a gas burette G, filled either with water, in which case 
correction for the aqueous pressure must be applied, or preferably mer-
cury. L is a leveling bulb to permit adjustment of gas pressure in G to 
that of the atmosphere. 

The liquid whose molecular weight is to be determined is enclosed in a 
small glass ampoule with finely drawn tip, P. This ampoule is first 
weighed empty. Next, enough of the liquid is drawn in to yield 40 to 
60 cc of vapor, and the bulb is sealed carefully in a flame and weighed 
again. The difference between the first and second weighings gives the 



Determination of Exact Molecular Weights 3 ° 

weight of the liquid W to be vaporized. This ampoule then is hung o ^ 
hook projecting from C, and the entire apparatus assembled as sho 
the figure. 

To make a measurement, the liquid in A is brought to boiling and kept 
there for the entire run. When thermal equilibrium has been established, 
the levels in G and L are equalized and the burette reading is taken. Next 
the ampoule is smashed by pulling upward on the rod at D so as to bring 
the neck of the ampoule up against the bottom of C. With the bulb 
broken the liquid vaporizes, and the vapors generated displace air from 
the bottom of B into the gas burette G. The volume of air thus displaced 
is equal to the volume of the vapors formed at the temperature of the 
inner tube. Once in the gas burette the air cools to room temperature, 
and its volume can be measured by again reading the burette. Provided 
the levels in G and L are equalized, the pressure of this air is the same as 
that of the atmosphere outside the burette, while the temperature is that 
read on the thermometer H. The volume of displaced air thus obtained, 
i.e., final minus initial burette readings, is equal to the volume which the 
vapors of the liquid would occupy if they could be cooled to the tempera-
ture of the room and atmospheric pressure. Having measured in this 
manner the weight of liquid W, and its volume as a vapor at room tem-
perature T and barometric pressure P, the density of the vapor and its 
molecular weight may readily be calculated from the observed data. 

DETERMINATION OF EXACT MOLECULAR WEIGHTS 

The molecular weights calculated from the ideal gas law are, even with 
good data, only approximate. The reason is that already at atmospheric 
pressure the ideal gas law fails to represent accurately the behavior of the 
vapors. If an exact molecular weight is desired, this must be obtained from 
either a more precise gas equation or by special treatment of the ideal gas 
law. 

When the constants a and b of a substance are known, use of van der 
Waals' equation will give better concordance between observed and 
calculated values of the molecular weight. For the purpose at hand, how-
ever, the Berthelot equation is more convenient and gives good results. 
It can be used, of course, only when the critical temperature and pressure 
of the substance are available. Since n = W/M, Eq. (54) gives for M 

*-(?)(?)[>+ ■!&.(-<£)] <«> 
Further, since W/V = p, Eq. (61) may also be written as 

„ PRT\, , 9PTC / , 6 T * \ ] .,... 
M~ V [ 1 + 1287^( T*VJ ( } 

from which the density follows when M is known or vice versa. 
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The higher accuracy of the Berthelot equation can be illustrated with 
the following data on methyl chloride. For methyl chloride, Tc = 416.2°K, 
pc = 65.8 atm, while the density at standard conditions is 2.3076 g per 
liter. Hence, by Eq. (62), 

„ 2.3076X0.08205X273.21\ , 9X1X416.2 
M = z 1 + 128X65.8X273.2 V (273.2)2/J 

50.62 g mole-1 

as against the theoretically calculated 50.49. Using the same data and 
the ideal gas law, the molecular weight obtained is 51.71. 

A means of obtaining exact molecular weights is the method of limiting 
densities. This method, which gives excellent results, is based upon the 
fact that as zero pressure is approached the ideal gas laws become exact 
for all gases. The densities of a gas or vapor are determined at a given 
temperature at atmospheric pressure and at several other pressures below 
one atmosphere. The ratio p/P is then plotted against P. If the vapor or 
gas were ideal, this ratio would be the same at. all pressures, for 

M 

and -^ = - ^ = constant (63) 

However, since this is not true for real gases, the ratio p/P changes with 
decreasing pressure. Fortunately the plot is practically linear and can be 
extrapolated to zero pressure without any difficulty. At zero pressure the 
limiting ratio p/P is that for the ideal gas, and so 

( P ) P - O 

M_ 
RT 

and M = RT ( % ) (64) 
( P ) P - O 

This method can be illustrated with the data on hydrogen bromide 
given in Table 1-6, while the plot of p/P vs. P is shown in Fig. 1-9. The 

TABLE 1-6. D E N S I T I E S OF HBr AT VARIOUS 

PRESSURES (0°C) 

P (a tm) p (g/li ter) p/P 

1 3.6444 3.6444 
% 2.4220 3.6330 
H 1.2074 3.6222 
0 — 3.6108 (extp'd) 
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extrapolated value of p/P is 3.6108 g per liter per Mm i t 0°C. Hence the 
molecular weight of hydrogen bromide is 

M = 3.6108 X 0.082054 X 273.15 = 80.93 g mo le 1 

The value calculated from atomic weights is 80.92. 

3.670 

3.650 

j 3.630 

3.610 

3.590 

o y3 v3 i p/3 

P— Atmospheres 

Figure 1-9. Plot of p/P vs. P for HBr at 0°C. 

RESULTS OF VAPOR DENSITY MEASUREMENTS 

The measurement of the vapor densities of a large number of substances 
shows that the molecular weight of these substances in the gas phase over 
a certain temperature interval is what would be expected from their 
simple formula. Among these may be mentioned ammonia, carbon 
dioxide, hydrogen, nitrogen, carbon monoxide, methyl chloride, methyl 
fluoride, ethyl ether, methyl ether, carbon tetrachloride, chloroform, 
carbon disulfide, acetone. There are other substances, however, which 
exhibit a highly anomalous behavior. These may be segregated into two 
groups: (a) those which exhibit vapor densities, and consequently molecu-
lar weights, higher than would be expected on the basis of their simple 
formulas, and (b) those which exhibit vapor densities lower than expected 
from their simple formulas. All these abnormalities are very much greater 
than can be accounted for by either experimental uncertainty or deviation 
from ideal behavior. 

The substances exhibiting abnormally high vapor densities are con-
sidered to be associated in the vapor phase, i.e., the molecules are consid-
ered to be composed of more than a single structural unit. In line with 
this view is the fact that the calculated molecular weight is usually a 
whole-number multiple of the simple formula. Thus aluminum chloride 
is shown in the vapor phase to be (A1C13)2 or Al2Cl6, ferric chloride Fe2Cl6, 
beryllium chloride Be2Cl4, and gallium chloride Ga2Cl6. Sulfur is another 
substance which shows different stages of association in the gas phase at 
different temperatures. 

J I U 
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Substances exhibiting abnormally low vapor densities break down or 
dissociate in the vapor phase under the influence of heat into simpler 
molecules, leading thereby to a greater number of particles and a lower 
density for any given pressure. Thus the vapor of ammonium chloride 
contains ammonia and hydrogen chloride as a result of the reaction 

NH4CI = NH8 + HC1 

Similarly, PC15 dissociates in the vapor phase into PC13 and Cl2, while 
N2O4 dissociates into two molecules of N0 2 . In any instance the extent of 

.dissociation is a function of the temperature and pressure. At sufficiently 
high temperatures these substances may be completely dissociated, while 
at sufficiently low temperatures they may behave almost normally. In 
fact, practically all substances can be shown to be abnormal if the tem-
perature is made high enough. Even such a stable compound as carbon 
dioxide dissociates above 2000°C to some extent into carbon monoxide 
and oxygen. Similarly, aluminum chloride at 400°C is A12C16, at 500°C it 
is a mixture of A12C16 and A1C13, while at 1100°C it is all A1C13. If heated 
further, A1C13 will actually dissociate into aluminum and chlorine. Hence 
when we speak of the molecular weight of a substance in the gas phase, 
it is very important to keep in mind the temperature to which reference 
is made. 

H E A T C A P A C I T Y OF G A S E S 

The specific heat of any substance is defined as the quantity of heat 
required to raise the temperature of unit weight of the substance 1 degree 
of temperature. In terms of calories and degrees centigrade, the specific 
heat is the number of calories of heat required to raise the temperature of 
1 g of a substance 1°C. Chemical calculations are most frequently made 
on a molar basis, and for that reason it is more convenient to deal with 
the heat capacity per mole. The heat capacity per mole is the amount of 
heat required to raise the temperature of 1 mole of a substance 1°C. It is 
equal, of necessity, to the specific heat per gram multiplied by the molecu-
lar weight of the substance. 

Two types of heat capacities are recognized, depending on whether the 
substance is heated at constant volume or at constant pressure. When 
a substance is heated at constant volume, all of the energy supplied goes 
to increase the internal energy of the substance, and we speak then of the 
heat capacity at constant volume, Cv. On the other hand, when a substance 
is heated at constant pressure, energy must be supplied not only to 
increase its internal energy, but also to make possible expansion of th 
substance against the confining atmospheric pressure. The heat capacity 
at constant pressure, Cp, must therefore be larger than that at constant 
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volume by the amount of work which must be performed in the expansion 
accompanying 1 degree rise in temperature. In liquids and solids, where 
volume changes on heating are small, this difference between Cp and Cv is 
usually slight. With gases, however, where the volume changes with tem-
perature are always large, the difference Cp — Cv is. always significant 
and cannot be disregarded. 

Some important deductions concerning the specific heats of gases can 
be made from the kinetic theory of gas behavior. According to equation 
(36b), the kinetic energy of translation of an ideal gas per mole is 

Ek = | RT 

If this is the only type of energy the gas possesses (monatomic gas), the 
energy difference of the gas (Eki — Ekl) between two temperatures T2 and 
7 \ i s 

AE = Ekt - # * , = ! R(T2 - 7\) 

When the temperature difference T2 — T\ — 1, AE becomes the energy 
required to raise the translational energy of 1 mole of gas 1 degree without 
involving any external work, or, in other words, the heat capacity per 
mole at constant volume Cv. Hence we may write 

Cv = \R = l X L987 

= 2.98 cal degreeT1 mole"1 (65) 

The kinetic theory predicts, therefore, that Cv for any ideal gas containing 
only translational energy should be approximately 3 cal per mole, and, 
further, that this heat capacity should be constant and independent of 
temperature. 

A similar prediction can be arrived at with respect to the heat capacity 
at constant pressure, Cp. In view of the preceding considerations it follows 
that 

Cp = Cv + w cal degree-1 mole-"1 (66) 

where w is the work which must be performed against a confining pressure 
P when 1 mole of an ideal gas is expanded from a volume V\ at T\ to a 
volume V2 at T2 = T\ + 1. The value of w can be obtained from the 
relation 

w = / PdV (67) 

which will be discussed in greater detail in Chapter 3. If we now differ-
entiate PV = RT at constant pressure, we have PdV = RdTt and on 
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substitution of RdT for PdV in Eq. (67), we See that 

w = / * P d F = 
JVx 

For r 2 — Ti = 1 this reduces taw; = R per mole, and hence for an ideal 
gas 

Cp = Cv + R cal degree"1 mole"1 (68) 

Equation (68) is valid for all ideal gases, and permits the simple cdn-
version of Cp to Cv or vice versa. Inserting the values of Cv from Eq. (65) 
and of R, we see that for any ideal gas involving only translational energy 
Cp should be-

= 4.97 cal degree-1 mole-1 (69) 

Consequently, like CV} Cp should be constant and independent of tem-
perature for all gases. Again, the ratio Cp/Cv, commonly designated by y, 
should also be a constant equal to 

Cp 5/2 R 
7 Cv 3/2 R 

= 1.67 (70) 

In Table 1-7 are listed values of Cp> Cv, Cp — Cv, and y for various 
gases at 15°C. It will be observed, first of all, that the requirement 
Cp — Cv = R = 1.99 cal per mole is met fairly well by practically all the 
gases in the table. Second, the predictions of the kinetic theory that 
Cp -■= 4.97 and Cv = 2.98 cal per mole arc borne out by the heat capacities 
of a group of gases which includes, besides argon and helium, also krypton, 
xenon, and a number of metallic vapors. However, for all the other gases 
in the table the prediction is not valid. Inspection of the table reveals 
that the various gases can be divided into classes based upon their values 
of y. The first group, comprising gases that obey the kinetic theory, has 
the expectecTY = 1.67. The others, in turn, may be grouped as those with 
7 equal approximately to 1.4, 1.3, and lower. Further, the decrease in y is 
always associated with an increase in the complexity of the molecules 
involved. Thus argon and helium with y = 1.67 are monatomic, i.e., the 
molecules contain a single atom of the element. Again, the substances 
with 7 equal to about 1.4, such as oxygen, nitrogen, and chlorine, are. 
diatomic, those writh y equal to about 1.3 triatomic, while all others with 

/ 
Rdt 
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7 still lower are more complex. Finally, all substances exhibiting y values 
lower than 1.67 also have values of Cp and C, considerably greater than 
the predicted Cp = Y2 # a n d C„ = % R. 

TABLE 1-7. HEAT CAPACITIES OF GASES AT 15°C 

(Cal mole"1 degree" *) 

Gas 

Argon 
Helium 

Carbon monoxide 
Chlorine 
Hydrogen 
Hydrogen chloride 
Nitrogen 
Oxygen 

Carbon dioxide 
Hydrogen sulfide 
Nitrous oxide 
Sulfur dioxide 

Acetylene 
Ethylene 
Ethane 

Formula 

Ar 
He 

CO 
Cl, 
H, 
HQ 
N, 
0 , 

CO, 
H,S 
N,0 
SO, 

C,H, 
C,H« 
C,H, 

cP 

5.00 
4 99 

6.94 
8.15 
6.83 
7.07 
6.94 
6.96 

8.75 
8.63 
8.82 
9.71 

9.97 
10.07 
11.60 

c, 
3.01 
3.00 

4.95 
6.02 
4.84 
5.01 
4.94 
4.97 

6.71 
6.54 
6.77 
7.53 

7.91 
8.01 
9.51 

c, -c, 
1.99 
1.99 

1.99 
2.13 
1.99 
2.06 
2.00 
1.99 

2.04 
2.09 
2.05 
2.18 

2.06 
2.06 
2.09 

y 

1.66 
1.66 

1.40 
1.35 
1.41 
1.41 
1.40 
1^0 

1.30 
1,32 
1.30 
1.29 

1.26 
1.26 
1.22 

These high heat capacities suggest that the fundamental assumption 
made, that the only energy present in a gas is kinetic energy of transla-
tion, is not always correct. A monatomic molecule can execute oniy 
translational motion along the coordinate axes, and for such a gas the 
deductions of the kinetic theory are valid. A more complex molecule, 
however, may be subject not only to translational motion as a unit, but 
to rotation and vibration as well. If we think of a diatomic molecule 
simply as a "dumbbell" held together by an elastic spring, then the two 
atoms may execute vibrations with respect to each other along their line 
of centers. Further, the molecule as a whole hiay undergo rotation about 
axes perpendicular to the line joining the centers of mass of these mole-
cules. These extra motions involve additional terms for the energy of the 
gas; and if these motions are subject to temperature variation, as they 
are, additional terms will appear in the heat capacity equation for the 
gas. A more detailed discussion of rotational and vibrational energies of 
gas molecules will be given in Chapters 16 and 18. 
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THEORY OF NONIDEAL GASES 

The theory of nonideal gases reduces itself essentially to the theory of 
intermolecular or van der Waals forces. Although we are not prepared at 
present to discuss the nature of these forces,6 it is nevertheless of impor-
tance to summarize briefly the results obtained. Theoretical arguments 
show that the interaction energy, £', between a pair of molecules is given 
by 

*--?+£ (71) 

and the force of interaction by 

* = 77 ~" f(»+i) ' ' 

where A and B are constants characteristic of the molecules involved, r is 
their distance of separation, and n is a constant whose value may range 
from 9 to 12. In these equations the first term on the right represents 
attraction, while the second represents repulsion between the molecules. 
From these equations it is evident that the forces between molecules are 
short-range in character, and that they increase very rapidly as the dis-
tance between molecules is made small. 

The consideration of molecular interactions has made possible the 
theoretical explanation of the second virial coefficient and, less success-
fully, of the third virial. However, we do not have as yet a theory which 
can account completely for the P-V-T behavior of gases over very wide 
ranges of temperature and pressure. 

L I Q U I D S 

From the standpoint of kinetic theory, a liquid may be considered as a 
continuation of the gas phase into the region of small volumes and very 
high molecular attractions. The cohesive forces in a liquid must be 
stronger than those in a gas even at high pressures, for they are high 
enough to keep the molecules confined to a definite volume. Still, the 
molecules within the liquid must not be thought of as rigidly fixed. They 
have some freedom of motion, but this motion is considerably restricted, 
and hence the mean free path is mYich shorter than in the gas phase. 

Our knowledge of the nature of the liquid state is still very incomplete. 

* See Chapter 16. 
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Because of the proximity of molecules to each other, effects frequently 
manifest themselves in liquids which, if present, are of only secondary 
significance in gases. Thus we encounter clustering, association, and in 
general orientation of the molecules into some, even though not very 
pronounced, order. At best, the situation within a liquid is very complex, 
and the progress made in unraveling the multitudinous effects has been 
rather slow. 

CRITICAL PHENOMENA IN LIQUIDS 

If a liquid, such as water, is sealed in an evacuated tube, a certain 
amount will evaporate to form vapor. This vapor will exert a pressure 
just as any gas does, and, provided the temperature is maintained con-
stant, an equilibrium will be established between the liquid and vapor 
phases. The vapor pressure established is characteristic for each liquid 
and is a constant at any given temperature; it is known as the saturated 
vapor pressure of the liquid. The saturated vapor pressure increases con-
tinuously with temperature. Thus, at 25°C the vapor pressure of water is 
23.76 mm Hg, while at 100°C it is 760 mm Hg. As the water in the sealed 
tube is heated further, more and more water evaporates and the pressure 
continues to increase. At all times there is a definite line of demarcation, 
or meniscus, between the liquid and vapor phases. When we reach the 
temperature of 374°C, however, the meniscus becomes indefinite, fades 
into the vapor, and disappears. At this temperature the physical proper-
ties of liquid and vapor become identical, and no distinction can be 
observed between the two. A liquid in this condition is said to be at the 
critical point. The temperature, saturated vapor pressure, and molar 
volume corresponding to this point are designated the critical temperature, 
critical pressure, and critical volume respectively. Their values, which are 
constant and characteristic for each substance, are known as the critical 
constants. For water the critical constants are: tc = 374.4°C, Pe = 219.5 
atm, and Vc = 58.7 cc per mole. 

On heating the sealed tube even slightly above the critical temperature, 
no evidence can be found of the presence of liquid. The whole mass is 
gaseous and remains in that state no matter how high it is heated, or 
how large an external pressure is applied. Since the phenomena described 
for water are exhibited by all liquids, it must be concluded that no liquid 
can exist as such at temperatures above the critical under any applied pressure. 

The critical phenomena are reversible. When the gas in the sealed tube 
is cooled below the critical temperature, if the pressure is sufficiently 
high the meniscus reappears, and again we have the two phases, liquid 
and vapor. 
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T H E P-V-T R E L A T I O N S OF G A S E S AND L I Q U I D S 

The first complete data on the P-V-T relations of a substance in both 
gaseous and liquid states were obtained by Andrews8 on carbon dioxide. 

160 200 
Volume —cc 

Figure 1-10. Isothermals of C02. 

280 

Andrews measured the variation of the volume of carbon dioxide with 
pressure at various constant temperatures, and he was able to show that 
the critical temperature of carbon dioxide is 31°C at a critical pressure of 
73 atm. 

Figure 1-10 shows the plot of pressure vs. volume for carbon dioxide at 
various constant temperatures. Each P-V plot is called an isothermal. 

• Andrews, Trans. Roy. Soc, 159, 583 (1869). 
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The data on which the plot is based are not due to Andrews but are the 
composite results of several subsequent investigators. The 48.1°C iso-
thermal is very similar to the hyperbolic plot demanded by Boyle's law 
and shows no presence of liquid carbon dioxide even at the highest pres-
sures attained. The same conditions obtain at 35.5°C, 32.5°C, and 
31.10°C, except that now the data indicate that Boyle's law when applied 
to carbon dioxide is considerably in error, since the gas does not behave 
ideally. At 30.98°C, however, the carbon dioxide remains gaseous only 
up to a pressure of 73 atm (line ab). At 73 atm (point b) liquid first 
appears, and since this is the highest temperature at which liquid is 
observed, 30.98°C must be the critical temperature of carbon dioxide. 
Further increase in pressure at this temperature (line bE) shows only the 
presence of liquid, and consequently this line must represent the com-
pressibility of liquid carbon dioxide at this temperature. Below 30.98°C, 
the behavior of the gas on compression is quite different, as may be judged 
from the 21.5°C and 13.1°C isotherms. At 21.5°C, for instance, only gas 
exists on compression along line di. At i liquid, of specific volume n, 
first appears, and the pressure of the system remains constant thereafter 
as long as both gas and liquid are present. At this stage further applica-
tion of pressure results merely in further condensation of gas until point / 
is reached. At / all the gas has been condensed, and further application of 
pressure results merely in compression of the liquid, as is shown by the 
steep line fg. At lower temperatures the behavior is similar to that al 
21.5°C, except that the horizontal portions, corresponding to the range of 
coexistence of liquid and vapor, become longer the lower the temperature. 

It may be concluded from this explanation that, in the area to the left 
of the dome-shaped area and below the line bE, only liquid carbon dioxide 
will exist; to the right of the line bE and to the right of the dome-shaped 
area, only gaseous carbon dioxide will exist; while within the dome-shaped 
area is the range of coexistence of liquid and vapor carbon dioxide. 

All gases upon isothermal compression behave similarly to carbon diox-
ide. For each, of course, the curves will be displaced in line with the 
characteristics and critical temperature of the gas in question. Thus, for 
example, the critical temperature of helium is — 268°C and the dome-
shaped area is moved downward, while for chlorine the critical tempera-
ture is 144°C and the dome-shaped area is moved above that for carbon 
dioxide. 

T H E P R I N C I P L E OF C O N T I N U I T Y OF S T A T E S 

For further theoretical considerations it is essential to show that the 
liquid state does not represent a sharp and discontinuous transition from 
the gaseous state, but is rather a continuation of the gaseous phase into 
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the region of very strong intermolecular attractions and small volumes. 
This can be shown from the following considerations. Suppose we wish to 
convert liquid carbon dioxide at 21.5°C and the pressure given by point 
A in Figure 1-10 to gaseous carbon dioxide at the same temperature and 
the pressure given by point B. The most obvious way to accomplish this 
transformation is to follow the 21.5°C isotherm and reduce the pressure 
along AfiB. In doing this gas appears suddenly and discontinuously, and 
coexists with liquid along fi until finally all liquid disappears at i. The 
same transformation may, however, be accomplished in another way. If 
the liquid at A is heated at constant volume, increase of temperature will 
lead to increased pressure, and the mass will move along the line AEC. As 
long as the carbon dioxide is below the critical isotherm, point E, the 
carbon dioxide is liquid; as soon as the carbon dioxide passes the critical 
isotherm, however, it becomes gaseous. At the critical temperature, as we 
have seen, the liquid passes to gas imperceptibly and continuously, and 
hence in heating the liquid from A to C we convert it without discon-
tinuity to gas. The gas at C may now be expanded to D at constant 
pressure by heating, and then cooled at constant volume from D to B. 
By this series of operations we can convert liquid to gaseous carbon 
dioxide at 21.5°C without introducing any discontinuity between the 
phases. 

The implication involved in this principle of the continuity of the 
gaseous and liquid states is highly important. It suggests that if we have 
an equation of state which is satisfactory in the region of high pressures 
and low temperatures, that equation should be applicable also to the con-
ditions prevailing at the critical point and to the liquid itself. We shali 
see now how the van der Waals equation meets these requirements. 

APPLICATION OF VAN DER WAALS' EQUATION TO 
THE ISOTHERMALS OF CARBON DIOXIDE 

By substituting n = 1 and the values of the constants a and b for car-
bon dioxide in van der Waals' equation, namely, 

(P + y-^v~b) = RT 

we can calculate for any given temperature the P-V relationships above, 
at, and below the critical temperature. The results of such a calculation 
are summarized in Figure 1-11. The plot is, in general, similar to the one 
obtained experimentally. At th for instance, which is above the critical 
temperature, the P-V relationship corresponds closely to that of the 
48.1°C isotherm in Figure 1-10. At tn which is the critical temperature, a 



Determination of van der Waals Constants 5 1 

slight break is observed at a, the critical point, which is again in accord 
with observation. However, below the critical temperature, the range 
determining the coexistence of liquid and gas is indicated by a continuous 
S-shaped portion as bed at /3, rather than by the horizontal constant pres-
sure range actually observed. In this respect, therefore, and in point of 
strict quantitative agreement with observed data, the van der Waals 
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Figure 1-11. Isothermals of C02 according to van der Waals' equation. 

equation leaves something to be desired. Nevertheless, some investigators 
have found that by compressing the gas very carefully part of the curve 
be may be realized, though only in an unstable condition. Similarly, if the 
pressure on a liquid be released slowly, part of curve cd can be obtained, 
but again the condition is unstable. 

DETERMINATION OF VAN DER WAALS CONSTANTS 

If it be assumed that van der Waals' equation is applicable at the 
critical point, then the van der Waals constants for any gas can be calcu-
lated from the critical constants of the gas in the following manner. On 

J I L 
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(73) 

expanding and rearranging the equation we have 

PV> - V\RT + Pb) + aV - ab= 0 

This is a cubic equation in V and for any given value of P and T will 
yield three separate solutions for V. The three roots of this equation may 
all be real, or one may be real and positive and the other two imaginary. 
Thus in Figure 1-11 the equation yields the three roots d, c, and b at t%y 

while at tx it yields only one real root. However, at the critical point the 
three roots are not only real and positive but also identical and equal to 
Vc. Hence the difference (V — Ve) = 0, and consequently, 

(V - Vey = 0 (74) 

On expansion by the binomial theorem Eq. (74) becomes 

V - (3 Ve)V* + (3 V2
e)V - V\ = 0 (75) 

At the critical point Eqs. (75) and (73) must be identical. On comparing 
and equating coefficients we get 

s v = RTe + bPc ( ? 6 ) 

3 VI = £ (77) 
Pc 
ab V] = # (78) 

From Eq. (77) a follows as 
o = 3 VlPr (79) 

while from Eqs. (77) and (78) b is given by 

& = Y (80) 

Thus a and b may be calculated from known values of Pe and Ve, or vice 
versa. 

Usually Vc is the critical constant known least accurately, and it is 
therefore preferable to calculate a and b from Tc and Pe only. This can 
readily be done. On eliminating Ve between Eqs. (76) and (80) we get 

b = *£; (si) 
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Again, on combining Eqs. (76), (80), and (77), a follows as 
27 R*T2 

• -HT? ( , 2> 
Combination of Eqs. (76) and (80) leads also to the value of R in terms 

of the critical constants, namely, 

R'yrf~2'&l^ff (83) 

Although the van der Waals equation predicts the coefficient in Eq. (83) 
to be 2.67, the values for it calculated from experimental data are gen-
erally higher and differ for various gases. Thus for helium this constant 
comes out to be 3.18, while for water it is 4.97. These differences are due 
to inaccuracies inherent in the van der Waals equation. 

T H E C R I T I C A L C O N S T A N T S OF G A S E S 

Table 1-8 gives the critical constants of a number of gases. Instead of 
the critical volume, the critical density is given; this is the weight of 
substance at the critical point per cubic centimeter. The critical volume is 
obtained by dividing the molecular weight of the substance by the 
critical density. 

Cailletet and Mathias found that when the mean values of the sum of 
the densities of liquid and saturated vapor of a substance are plotted 

TABLE 1-8. CRITICAL CONSTANTS OF GASBS 

Gas 

Ammonia 
Argon 
Carbon dioxide 
Carbon monoxide 
Chlorine 
Ethane 
Ethyl alcohol 
Ethylene 
Helium 
Hydrogen 
Neon 
Nitric oxide 
Nitrogen 
Oxygen 
Propane 
Toluene 
Water 

<-<°C) 

132.4 
-122 

30.98 
-139 

144.0 
32.1 

243.1 
9.7 

-267.9 
-239,9 
-228.7 
- 9 4 

-147.1 
-118.8 

96.81 
320.6 
374.4 

Pc (atm) 

111.5 
48 
73.0 
35 
76.1 
48.8 
63.1 
50.9 
2.26 

12.8 
25.9 
65 
33.5 
49.7 
42.01 
41.6 

219.5 

dc(g/cc) 

0.235 
0.531 
0.460 
0.311 
0.573 
0.21 
0.2755 
0.22 
0.0693 
0.0310 
0.484 
0.52 
0.3110 
0.430 
0.226 
0.292 
0.307 
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against the temperature, the plot is a straight line. This is shown in 
Figure 1-12. The equation of the line is 

t = A + B 
/dt + dv\ (84) 

where di is the density of the liquid at any temperature t, dv the density of 
the saturated vapor at the same temperature, and A and B constants 
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Figure 1-12. Linear variation of mean density of S02 with temperature. 

evaluated from the plot. Once the equation is determined, the critical 
density may be calculated with ease, for at the critical temperature 
dv = di = dc, and the equation reduces to 

L 'c= 

[■ 1 

\& 
\4 *» 
II o 
1 o 

I^+-» 

1 ° 1^* 
1 *v> c 

V 

l Q 

= 157.5 °C 

-\i 
1 L_L 

<\ 

o \ 
^"\ c\ *A 

Q~\ 

i \ 

tc = A + B (x)- A + Bdc (85) 

Substitution of tc then yields the critical density. Critical densities can 
usually be obtained more accurately in this manner than by direct meas-
urement at the critical point. 

T H E P R I N C I P L E OF C O R R E S P O N D I N G S T A T E S 

If we substitute in the van der Waals equation the values of a, 6, and R 
as given by Eqs. (81), (82), and (83), we obtain 

(r+ *-&)(*-Z)-IW (86) 
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Dividing both sides of Eq. (86) by PCVC, we get 

or ( p r + | A (3 F r - 1) = 8 Tr (87) 

where P r = P /P c , 7 r = F / F c , and TT = r / T c . P r is termed the reduced 
pressure, Vr the reduced volume, and Tr the reduced temperature. Expressed 
in terms of Pr, Vr, and Tr, Eq. (87) involves no constants characterizing 
the individuality of various substances and should therefore be generally 
applicable to all liquids and gases. I t is known as a reduced equation of 
state. Its physical meaning is that at any given value of Tr and Pr, all 
liquids and gases should have the same corresponding volumes, Vr. 

The principle of corresponding states is only approximately correct, 
but it does suggest that frequently better correlation of experimental 
data may be obtained when the various substances are in corresponding 
states, i.e., at equal values of Tr, Vr, or Pr. The principle finds frequent 
and useful application in thermodynamic and chemical engineering cal-
culations, especially at elevated pressures. For examples see Maron and 
Turnbull,7 Dodge,8 and Gouq-Jen Su.9 

L I Q U E F A C T I O N OF G A S E S 

The particular method employed in the liquefaction of a gas depends 
on the nature of the gas. Vapors of substances which are liquid at or near 
room temperature and atmospheric pressure are condensed simply by 
cooling. Other substances which are liquid at lower temperatures may be 
condensed either by pressure or by a combination of cooling and com-
pression. Cooling reduces considerably the pressure required for lique-
faction, as may be seen from Figure 1-10. With the "permanent" gases, 
however, such as oxygen, nitrogen, hydrogen, and helium, application of 
pressure alone will not produce liquefaction, and more involved methods 
of cooling, compression, and even expansion, are required before the gases 
will liquefy. 

Before liquefaction is possible, a gas must be cooled below its critical 
temperature. Since their critical temperatures are very low, as may be 
seen from Table 1-8, liquefaction of the "permanent" gases requires 
intense cooling as well as considerable compression. To attain these low 
temperatures, two general principles, or a combination of the two, are 

7 Maron and Turnbull, Ind. Eng. Chem., 34, 544 (1942). 
8 Dodge, Chemical Engineering Thermodynamics, McGiaw-Hill Book Company 

Inc., New York, 1944. 
9 Gouq-Jen Su, Ind. Eng. Chem., 38, 803 (1946). 
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employed, namely, (a) adiabatic expansion, in which advantage is taken 
of the Joule-Thomson effect10 to attain cooling; and (b) allowing the gas 
to cool itself by performing work in an adiabatic expansion against a 
piston. These two methods are exemplified in the Linde and Claude 
processes for the liquefaction of air. 

The basic principle of the Linde process is the adiabatic Joule-Thomson 
expansion and consequent cooling of the air. The steps in the process are 
in outline as shown in Figure 1-13. Air is first compressed to approxi-

Figure 1-13. Linde process for liquefaction of air. 

mately 100 atm. During the compression most of the water in the air con-
denses and is removed. The heat generated in compression is removed 
by passing the gas through coils C, refrigerated by water or ammonia, 
The dry gas is passed, then, through a copper spiral coil S, from which 
it is expanded to almost atmospheric pressure through a controlled valve 
V. The issuing gas, cooled now due to the Joule-Thomson effect, passes 
over the copper coil arid cools further the incoming compressed gas. On 
repeating the cycle several times, the temperature of the expanding gas 
finally drops far enough to condense part of the air to liquid, which 
collects in the bottom of the chamber L and can be drawn off. Any uncon-
densed air is recirculated. 

In the Claude process the gas, instead of being permitted to expand 
freely, is forced to do work against a confining piston. Since the gas is 
adiabatically insulated, work is achieved at the expense of the internal 
energy of the gas, and a cooling results. The work thus gained may be 
utilized to operate the compressors. 

Easily liquefiable gases, such as sulfur dioxide, ammonia, methyl 
chloride, and dichloro-difluoromethane (freon), are used in refrigeration 
and air conditioning. In the laboratory other refrigerants frequently 
employed are ice, liquid air, liquid hydrogen and mixtures of "dry ice" 
(solid carbon dioxide) and alcohol, ether, or acetone. With one of the 

10 See Chapter 3. 
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last-named mixtures temperatures of —80 to — 90°C can be obtained. 
Liquid air will give a temperature of — 180°C, while, if needed, liquid 
hydrogen can give a temperature of — 250°C. 

V I S C O S I T Y 

Gases and liquids possess a property known as viscosity, which may be 
defined as the resistance that one part of a fluid offers to the flow of 
another part of the fluid. Viscosity is produced by the shearing effect of 
moving one layer of the fluid past another, and is quite distinct from inter-
molecular attraction. It may be thought of as caused by the internal 
friction of the molecules themselves and it is present in ideal gases as well 
as in real gases and liquids. 

To define viscosity, let us visualize a fluid as being stratified into layers 
or planes of molecules. Let the area of each plane be A, and the distance 
between planes be dy. Further, consider each of the planes to be moving 
to the right with velocities vi, v2, etc., where each succeeding velocity is 
greater than the preceding by an amount dv. Flow occurring in this 
manner is called laminar flow, as distinct from turbulent flow where 
parallelism of the planes is not preserved. In laminar flow the force / 
required to maintain a steady velocity difference dv between any two 
parallel planes is directly proportional to A and dv, and is inversely pro-
portional to dy. Consequently, 

/ = ,.<(§) W 

where 77 is a proportionality constant called the viscosity coefficient of the 
fluid. The quantity dv/dy in Eq. (88) is referred to as the rate of shear G, 
while f/A, the force per unit area, is called the shear stress F. In terms of 
F and G Eq. (88) becomes 

1 = ^ (89) 

Either Eq. (88) or Eq. (89) may be taken as the defining expression for rj. 
The viscosity coefficient may be thought of as the force per unit area 

required to move a layer of fluid with a velocity difference of 1 cm per 
second past another parallel layer 1 cm away. Although the force / may 
vary with experimental conditions, the viscosity coefficient 77 is a physical 
quantity characteristic of each ;iuid. In the cgs system of units the vis-
cosity coefficient of a fluid is expressed in poises, a poise being the viscosity 
coefficient requiring u force of 1 dyne when A, dv, and dy are all unity in 
Eq. (88). Since this unit is rather large, the viscosities of gases are usually 
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given in micropoises, or 10~6 poise, while those of liquids in poises or 
centipoises, i.e., 10~2 poise. 

T H E V I S C O S I T Y OF G A S E S 

The viscosity of gases can be measured by various methods, some of 
which will be described in the next section. Results show that the viscosity 
coefficients of gases increase with increase in temperature. Thus chlorine 
at 1 atm pressure has an y of 132.7 micropoises at 20°C, 167.9 at 100°C, 
and 208.5 at 200°C. Again, although rj is almost independent of pressure 
at low pressures, such is not the case at higher pressures. For instance, for 
carbon dioxide at 35°C and 1 atm pressure 77 = 156 micropoises, but at 
80 atm and the same temperature rj = 361 micropoises. 

The kinetic theory of gases ascribes viscosity to a transfer of momentum 
from one moving plane to another. Considerations of this momentum 
transfer between flow planes show that for ideal gases 77 is related to the 
density of the gas p, the mean free path Z, and the average velocity of the 
gas molecules v by the equation 

l = lvlP (90) 

Since the mean free path varies inversely as the density of the gas, it may 
be concluded that the viscosity of an ideal gas should be independent of 
density, and hence also the pressure. This deduction has been confirmed 
at relatively low pressures. 

Equation (90) may be employed to calculate the mean free path 
directly from the viscosity coefficients. To do this we need only substitute 
the value of v from Eq. (43), in which case I becomes 

2 = 3_>? = 3 j 
vp 0.921 p V 3 RT/M 

= 1.88 77 ( 9 1 j 

P VRT/M 

Once I is thus found,- it may be inserted into Eq. (48) to obtain the molecu-
lar diameter a of the gas molecules involved 

T H E V I S C O S I T Y OF L I Q U I D S 

Liquids exhibit much greater resistance to flow than ga.^es, and conse-
quently they have much higher viscosit}' coefficients. The viscosity coeffi-
cients of gases increase with temperature, while those of most liquids 
decrease. Again, we have seen that the viscosity coefficients for £ases at 
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moderate pressures are essentially independent of pressure, whereas with 
liquids increase of pressure leads to an increase in viscosity. 

Most methods employed for the measurement of the viscosity of liquids 
are based on either the Poiseuille or Stokes equations. The Poiseuille 
equation for the coefficient of viscosity of a fluid is 

V = 
TPTH 

SLV 
(92) 

where V is the volume of liquid of viscosity rj which flows in time t through 
a capillary tube of radius r and length L under a pressure head of P dynes 
per square centimeter. This equation has been verified repeatedly. To 
determine the viscosity of a liquid by this equation it is not always neces-
sary to measure all the quantities indicated when once the viscosity of 
some reference liquid, usually water, is known with accuracy. If we 
measure the time of flow of the same volume of two different liquids 
through the same capillary, then according to the Poiseuille equation the 
ratio of the viscosity coefficients of the two liquids is given by 

irPxrHx SLV = Pxh 
P^T. V2 SLV irP2r% 

Since the pressures P i and P2 are proportional to the densities of the two 
liquids pi and p2, we may write also 

III = ^>1^1 = P 1 ^ 1 

TJ2 Pltl P2^2 
(93) 

Consequently, once pi, p2, and rj2 are known, determination of ti and t2 

permits the calculation of rjh the viscosity coefficient of the liquid under 
consideration. 

The quantities t\ and t2 are most conveniently measured with an 
Ostwald viscometer, Figure 1-14. A definite quantity of liquid is intro-
duced into the viscometer immersed in a thermostat and is then drawn up 

Figure 1-14. Ostwald viscometer. 
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by suction into bulb B until the liquid level is above the mark a. The 
liquid is then allowed to drain, and the time necessary for the liquid level 
to fall from a to b is measured with a stopwatch. The viscometer is now 
cleaned, the reference liquid added, and the whole operation repeated. 
In this simple manner t\ and 22 are obtained, and the viscosity of the 
liquid is calculated by Eq. (93). 

Stokes's law is concerned with the fall of bodies through fluid media. 
A spherical body of radius r and density p, falling under gravity through a 
fluid of density pm, is acted on by the gravitational force flf 

h = \*r*{P- Pm)g (94) 

where g is the acceleration of gravity. This force, which tends to accel-
erate the body falling through the fluid medium, is opposed by frictional 
forces within the medium which increase with increase in velocity of the 
falling body. Eventually a uniform rate of fall is reached at which the 
frictional forces become equal to the gravitational force, and thereafter 
the body will continue to fall with a constant velocity v. Sir George G. 
Stokes showed that, for a spherical body falling under the conditions of 
constant uniform velocity, the force of friction, /2, is given by 

ft = 6*rnv (95) 

Equating the gravitational and frictional forces, we see that 

4 
£ 7rr3(p - pm)g = 6 wrriv 

V g~v (96) 

This equation, known as Stokes's law, is applicable to the fall of spherical 
bodies in all types of fluid media provided the radius of the falling body 
r is large compared with the distance between the molecules of the fluid. 
When r is smaller than the distance between molecules there is a tendency 
for the falling body to "drop" or "channel," and the equation is no longer 
applicable. 

Stokes's law is the basis of the falling sphere viscometer. The viscom-
eter consists of a vertical cylindrical tube filled with the liquid under 
test and immersed in a thermostat at the desired temperature. A steel 
ball, of density p and a diameter suitable to give a slow rate of fall, is now 
dropped through the neck of the tube, and the time of fall between two 
marks is determined with a stopwatch. If the process is repeated with a 
liquid of known density and viscosity, then Eq. (96) yields for the ratio 
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of the two viscosities 
Vi _ (p ~~ Pmjh , _ . 
V2 (p — Pm2)̂ 2 

Therefore, knowing one of the viscosities, the density of the ball, and the 
densities of the two liquids, the viscosity of the liquid under study can be 
calculated by means of Eq. (97) from the observed values of h and t2. 

A term frequently employed in connection with viscosity is fluidity. 
The fluidity, 0, of a substance is merely the reciprocal of the viscosity 
coefficient, namely, <t> = 1/17. 

Table 1-9 gives the viscosity coefficients in centipoises of several 
liquids at various temperatures. With very rare exceptions (liquid carbon 

TABLE 1-9. VISCOSITY COEFFICIENTS OF LIQUIDS 
(Centipoises) 

Liquid 

Benzene 
Carbon tetrachloride 
Ethyl alcohol 
Ethyl ether 
Mercury 
Water 

0°C 

0.912 
1.329 
1.773 
0.284 
1.685 
1.792 

20°C 

0.652 
0.969 
1.200 
0.233 
1.554 
1.002 

40°C 

0.503 
0.739 
0.834 
0.197 
1.450 
0.656 

60°C 

0.392 
0.585 
0.592 
0.140 
1.367 
0.469 

80°C 

0.329 
0.468 

— 
0.118 
1.298 
0.357 

dioxide at low temperatures), the viscosity of a liquid decreases with 
increase in temperature. Various equations have been proposed to repre-
sent rj as a function of T, of which the simplest is 

logr, = ^ +B (98) 

A and B are constants, and T is the absolute temperature. This equation 
holds quite well for a large number of pure liquids. 
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P R O B L E M S 

N o t e : Unless otherwise indicated, assume all gases in the following 
problems to be ideal. 

1. Four grams of CH4 at 27.0°C and a pressure of 2.50 atm occupy a volume of 
2.46 liters. Calculate the value of the gas constant R in cc-atm degree-1 mole-1. 

2. Two grams of 0 2 are confined in a 2-liter vessel by a pressure of 1.21 atm. 
What is the temperature of the gas in °C? Ans. 200°C. 

3. A certain gas occupies a volume of 6 liters under a pressure of 720 mm Hg at 
J5°C. What volume will this gas occupy under standard conditions of temperature 
and pressure? 

4. At 0°C and under a pressure of 1000 mm Hg, a given weight of N2 occupies a 
volume of 1 liter. At — 100°C the same weight of gas under the same pressure 
occupies a volume of 0.6313 liter. Calculate the absolute zero in degrees centi-
grade, and give reasons for the observed difference from the accepted value. 

Ans. -271.2°C. 

5. Find the density of ammonia gas at 100°C when confined by a pressure of 
1600 mm Hg. 

6. Assuming that dry air contains 79% N2 and 21 % 0 2 by volume, calculate 
the density of moist air at 25°C and 1 atm pressure when the relative humidity 
is 60%. The vapor pressure of water at 25°C is 23.76 mm Hg. 

Ans. 1.171 g/liter. 

7. The composition of a mixture of gases in percentage by volume is 30% N2, 
50% CO, 15% H2, and 5 % 02 . Calculate the percentage by weight of each gas 
in the mixture. 

8. (a) Find the weight of helium gas necessary to fill a balloon whose capacity 
is 1,000,000 liters at 1 atm pressure and 25°C. (b) What will be the lifting power 
of this balloon in grams per liter in the air described in problem 6? (c) What 
will be its total lifting power in kilograms? 

9. At 27°C, 500 cc of H2, measured under a pressure 400 mm Hg, and 1000 cc 
of N2, measured under a pressure of 600 mm Hg, are introduced into an evacuated 
2-liter flask. Calculate the resulting pressure. Ans. 400 mm Hg. 

10. Find the total pressure exerted by 2 g of ethane and 3 g of C0 2 contained 
in a 5-liter vessel at 50°C. 

11. The time required for a given volume of N2 to diffuse through an orifice is 
35 sec. Calculate the molecular weight of a gas which requires 50 sec to diffuse 
through the same orifice under identical conditions. Ans. 57.15 g/mole. 
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12. Compare the times of diffusion through a given orifice, and under the same 
conditions of temperature and pressure, of the gases H2> NH3, and CO2 relative 
to that of N2. 

13. By means of a mercury vapor pump a vacuum of 10~*7 mm Hg is obtained 
within a certain apparatus. Calculate the number of molecules which still remain 
in 1 cc of the apparatus at 27°C. Ans. 3.24 X 10s. 

14. What is the total kinetic energy of translation in ergs of 2 moles of a perfect 
gas at 27°C? In calories? 

15. Calculate the root-mean-square velocity in centimeters per second of N2 

molecules at 27°C. Repeat the calculation at 127°C. 

16. Calculate the root-mean-square, average, and most probable velocities in 
centimeters per second of H2 molecules at 0°C. 

17. The molecular diameter of CO is 3.19 X 10~8 cm. At 300°K and a pressure 
of 100 mm Hg what will be (a) the number of molecules colliding per cubic centi-
meter per second; (b) the number of bimolecular collisions; and (c) the mean free 
path of the gas? Ans. (a) 2.23 X 1027; (b) 1.12 X 1027; (c) 6.87 X 105 cm. 

18. Repeat the calculations called for in problem 17 for the same temperature 
but a pressure of 200 mm Hg. How pronounced is the effect of pressure on the 
quantities sought? 

19. Repeat the calculations called for in problem 17 for a pressure nf 100 mm Hg 
and a temperature of 600°K. How pronounced is the effect of temperature on the 
quantities calculated? 

20. By use of the van der Waals equation, find the temperature at which 
3 moles of S02 will occupy a volume of 10 liters at a pressure of 15 atm. 

Ans. 350°C. 

21. (a) Using the van der Waals equation, calculate the pressure developed by 
100 g of C02 contained in a volume of 5 liters at 40°C. (b) Compare this value 
with that calculated using the ideal gas law. 

22. At 0°C and under a pressure of 100 atm the compressibility factor of O 2 is 
0.927. Calculate the weight of 02 necessary to fill a gas cylinder of 100-liter 
capacity under the given conditions. 

23. Using the Beattie-Bridgeman equation explicit in volume, calculate the 
density in grams per cubic centimeter of N2 at 0°C and 100 atm pressure. 

Ans. 0.127 g/cc. 

24. Utilizing the virial coefficients listed in Table 1-4, determine analytically 
the pressure at which the PV vs. P plot for N2 at — 50°C exhibits a minimum. 

25. Employing the Kamerlingh Onnes equation of state, find the compressibil-
ity factors of CO at -50°C and pressures of (a) 10, (b) 100, and (c) 1000 atm 
pressure. Ans. (a) z = 0.981. 
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26. The following data were taken in measuring the molecular weight of a cer-
tain gas by the Regnault method: 

Wt. of evacuated bulb = 42.5050 g 
Wt. of bulb + gas = 43.3412 g 
Wt. of bulb -f H20 = 365.31 g 
Temperature = 25°C 
Pressure (corrected) = 745 mm 

Find the molecular weight of the gas. 

27. In a Victor Meyer experiment involving the determination of the molecular 
weight of ethyl alcohol the data obtained were 

Wt. of liquid taken = 0.1211 g 
Volume of air measured over water = 67.30 cc 
Temperature = 28.0°C 
Atmospheric pressure • 755.2 mm Hg (corrected) 
Vapor pressure of water at 28°C (from tables) = 28.3 mm Hg 

From these data (a) calculate the molecular weight of the alcohol, and (b) com-
pare the result with that calculated from the atomic weights. 

Ans. (a) 46.5 g/mole. 

28. The elementary analysis of a compound 3rielded the following results: C, 
39.98%; H, 6.72%; and 0, 53.30%. In a Victor Meyer determination 0.1510 g of 
the vaporized compound displaced 33.8 cc of air measured at 25°C over H2O and 
at a barometric pressure of 745 mm. Calculate (a) the empirical formula, (b) the 
approximate molecular weight, and (c) the molecular formula of the compound. 

29. A sample of vapor weighing 0.180 g occupies a volume of 53.1 cc at 27°C 
and 760 mm pressure (corrected). The critical pressure of the vapor is 47.7 atm, 
while the critical temperature is 288.5°C. By use of the Berthelot equation calcu-
late the molecular weight of the vapor, and compare the result with that calcu-
lated by the ideal gas law. 

30. The densities of CH4 at 0°C were measured at several pressures with the 
following results: 

Pressure (atm) 

H 
H 
% 
1 

Density (g/li 

0.17893 
0.35808 
0.53745 
0.71707 

Find the exact molecular weight of CH4. Am. 16.03 g/mole. 

31. How much heat will be required to raise the temperature of 3 moles of 
helium from 0°C to 100°C at (a) constant volume and (b) constant pressure? 

32. Utilizing the data given in Table 1 -4, find the Boyle temperature of carbon 
monoxide. 
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33. (a) Calculate the van der Waals constants for C2H6 from the critical tem-
peratures and pressures listed in Table 1-8. (b) Using the constants thus calcu-
lated find the pressure exerted by 10 g of C2H8 when contained in a liter flask 
at 13°C. Arts, (b) 7.39 atm. 

34. The van der Waals constants for HC1 are a = 3.67 atm-liter2 mole-2, and 
b = 40.8 cc mole-1. Find the critical constants of this substance. 

35. A modified form of the van der Waals equation (Berthelot) is 

(P + !p£) (V - n0) =nRT 

where all the terms have their usual significance, and a and 0 are constants. 
Deduce the expressions for a, ft, and R in terms of the critical constants. 

36. Calculate the critical density of methyl alcohol from the following data: 

t°C P(atm) dliq. (g/cc) dvap. (g/cc) 

150 13.57 0.6495 0.01562 
225 61.25 0.4675 0.1003 

The critical temperature is 240.0°C. 

37. Compare the reduced pressures of N2 and NH3 when each exerts a pressure 
of 100 atm. Ans. N2: 2.99; NH3: 0.90. 

38. Compare the reduced temperatures of ethylene and H2 at 27°C. 

39. Set up the reduced equation of state for the modified van der Waals equa-
tion given in problem 35. 

40. The equation of state of a liquid gives the volume as a function of the 
temperature and pressure. Further, the thermal coefficient of expansion, a, is 
defined as 

- 1 (*L\ a ~ V \dTjp 

while the compressibility coefficient, 0, is defined as 

p = -Hw)T 
Assuming a to be independent of temperature and 0 to be independent of pres-
sure, deduce the expression for V as a function of T and P. 

41. (a) For liquid benzene a = 1.24 X 10~~3 degree-1 at 20°C and 1 atm pres-
sure. Utilizing the equation derived in problem 40 and assuming a to be inde-
pendent of temperature, find the percentage change in volume of a sample of 
benzene on being heated at 1 atm pressure from 20 to 50°C. (b) What would be 
the percentage change in volume of an ideal gas heated over the same temperature 
intervalat constant pressure? .4ns. (a) 3.8%; (b) 10.2%. 

42. (a) For liquid benzene 0 = 9.30 X 10~5 atm- 1 at 20°C and 1 atm pressure. 
Utilizing the equation derived in problem 40 and assuming fi to be independent 
of pressure, find the percentage change in volume of a sample of benzene on being 
compressed at constant temperature from a pressure of 1 atm to a pressure of 

file:///dTjp
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11 atm. (b) What would be the percentage change in volume of an ideal gas com-
pressed over the same pressure interval at constant temperature? 

43. (a) Suppose that a sample of benzene, initially at 20°C and 1 atm pressure, 
is subjected to a pressure of 11 atm at 50°C. Assuming a and /3 to be constant, find 
the percentage change in volume of the benzene, (b) What would be the per-
centage change in volume exhibited by an ideal gas on being subjected to the 
same change in pressure and temperature? 

44. The viscosity coefficient of gaseous Cl2 at 1 atm pressure and 20°C is 147.0 
micropoises. Find the molecular diameter of the chlorine molecule. 

Arts. 4.30 X 10~8 cm. 

45. Consider two parallel layers of NH3 gas, one of large area and stationary, 
and the other 10 cm2 in area and moving at a fixed distance of 1 X 10~6 cm above 
the first. What force in dynes will be required to keep the upper layer moving 
with a velocity of 5 cm per second when the pressure of the gas is 10 mm Hg and 
the temperature is 300°K? The molecular diameter of the NH3 molecule is 
3.0 X 10-8 cm. 

46. A gas whose viscosity is 200 micropoises flows through a capillary tube 
2 mm in diameter and 2 meters long. If 5 liters of gas pass through the tube every 
10 seconds, what must be the pressure head under which the gas is flowing? 

.4ns. 5.09 X 105 dynes/cm2. 

47. The time of efflux of H 2 0 through an Ostwald viscometer is 1.52 minutes. 
For the same volume of an organic liquid of density 0.800 g/cc the time is 2.25 
minutes. Find the viscosity of the liquid relative to that of water and its absolute 
value in millipoises. The temperature is 20°C. 

48. A steel ball of density 7.90 g/cc and 4 mm diameter requires 55 seconds to 
fall a distance of 1 meter through a liquid of density 1.10 g/cc. Calculate the 
viscosity of the liquid in poises. 

49. A sphere of radius 5 X 10~2 cm and density of 1.10 g/cc falls at constant 
velocity through a liquid of density 1.00 g/cc and viscosity of 1.00 poise. What 
is the velocity of the falling sphere? .4ns. 5.45 X 10~2 cm/sec. 

50. Suppose that all the conditions given in problem 49 are the same except 
that the density of the sphere is 0.90 g/cc. What is the velocity of the sphere in 
this case? Explain the significance of the result. 

51. Using the data for the viscosity coefficients of C2H5OH as a function of 
temperature given in Table 1-9, find for this substance the constants A and B in 
Eq. (98). 
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