NUMERICAL MATHEMATICAL
ANALYSIS

CHAPTER I

THE ACCURACY OF APPROXIMATE CALCULATIONS

1. Introduction. Since applied mathematics comes down ultimately to
numerical results, the worker in applied mathematics will encounter all
kinds of numbers and all kinds of formulas. He must be able to use the
numbers and evaluate the formulas so.as to get the best possible result in
any situation. What he learned about numerical calculation in his earlier
study of arithmetic is inadequate for handling the numerical side of applied
mathematics. For example, the numerical data used in solving the prob-
lems of everyday life are usually not exact, and the numbers expressing
such data are therefore not exact. They are merely approximations, true
to two, three, or more figures.

Not only are the data of practical problems usually approximate, but
sometimes the methods and processes by which the desired result is to
be found are also approximate. An approximate calculation is one which
involves approximate data, approximate methods, or both.

It is therefore evident that the error in a computed result may be due
to one or both of two sources: errors in the data and errors of calculation.
Errors of the first type cannot be remedied, but those of the second type
can usually be made as small as we please. Thus, when such a number as
= is replaced by its approximate value in a computation, we can decrease
the error due to the approximation by taking = to as many figures as
desired, and similarly in most other cases. We shall therefore assume in
this chapter that the calculations are always carried out in such a manner
as to make the errors of calculation negligible.

Nearly all numerical calculations are in some way approximate, and the
aim of the computer should be to obtain results consistent with the data
with a minimum of labor. The object of the present chapter is to set
forth some basic ideas and methods relating to approximate calculations
and to give methods for estimating the accuracy of the results obtained.
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2. Approximate Numbers and Significant Figures.

(a) Approzimate Numbers. In the discussion of approximate compu-
tation, it is convenient to make a distinction between numbers which are
- absolutely exact and those which express approximate values. Such
numbers as 2, 1/3, 100, etc. are exact numbers because there is no approxi-
'mation or uncertainty associated with them. Although such numbers as
m, V2, ¢, etc. are exact numbers, they cannot be expressed exactly by a
finite number of digits. When expressed in digital form, they must be
written as 3.1416, 1.4142, 2.7183, etc. Such numbers are therefore only
approximations to the true values and in such cases are called approximate
numbers. An approximate number is therefore defined as a number which
is used as an approximation to an exact number and differs only slightly
from the exact number for which it stands.*

(b) Significant Figures. A significant figure is any one of the digits
1,2,3,- - -9;and 0 is a significant figure except when it is used to fix
the decimal point or to fill the places of unknown or discarded digits.
Thus, in the number 0.00263 the significact figures are 2, 6, 3; the zeros
are used merely to fix the decimal point and are therefore not significant.
In the number 3809, however, all the digits, including the zero, are signifi-
cant figures. In a number like 46300 there is nothing in the nuraber as
written to show whether or not the zeros are significant figures. The
ambiguity can be removed by writing the number in the powers-of-ten
notation as 4.63 X 104, 4.630 X 10%, or 4.6300 X 10% the number of
significant figures being indicated by the factor at the left.

3. Rounding of Numbers. If we attempt to divide 27 by 13.1, we get
27/13.1 = 2.061068702 - - -,

a quotient which never terminates. In order to use such a number in a
practical computation, we must cut it down to a manageable form, such
as 2.06, or 2.061, or 2.06107, etc. This process of cutting off superfluous
digits and retaining as many as desired is called rounding off.

To round off or simply round a number is to retain a certain number
of digits, counted from the left, and drop the others. Thus, to round off =
to three, four, five, and six figures, respectively, we have 3.14, 3.142,
3.1416, 3.14159. Numbers are rounded off so as to cause the least possible
error. This is attained by rounding according to the following rule:

* Some readers may object to the term “ approximate number ” and insist that one
should always say “ approximate value” of a number. The shorter term, however,
is less cumbrous, is perfectly definite as defined above, and reminds us by its very
name that it stands for the approximate value of a number. It has been used in
this sense by no lesg an authority than Jules Tannerv in his Lecons d’AritAmétigue.
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To round off a number to n significant figures, discard all digits to the
right of the nth place. If the discarded number is less than half a unit
in the nth place, leave the nth digit unchanged; if the discarded number
is greater than half a unit in the nth place, add 1 to the nth digit. If
the discarded number is ezactly half a unit in the nth place, leave the nth
digit unaltered if it is an even number, but increase it by 1 if it is an
odd number; in other words, round off so as to leave the nth digit an
even number in such cases.

When a number has been rounded off according to the rule just stated,
it is said to be correct to n significant figures.

The following numbers are rounded off correctly to four significant
figures:

29.63243 becomes 29.63

81.9773 “ 81.98
4.4995001 «“ 4.500
11.64489 “ 11.64
48.365 “  48.36
67.495 “ 67.50

When the above rule is followed consistently, the errors due to rounding
are largely cancelled by one another.

Such is not the vase, however, if the computer follows an old rule which
is sometimes advocated. The old rule says that when a 5 is dropped the
preceding digit should always be increased by 1. This is bad advice and
is conducive to an accumulation of rounding errors and therefore to
inaccuracy in computation. It should be obvious to any thinking person
that when a 5 is cut off, the preceding digit should be increased by 1 in
only half the cases and should be left unchanged in the other half. Since
even and odd digits occur with equal frequency, on the average, the rule
that the odd digits be increased by 1 when a 5 is dropped is logically sound.

The case where the number to be discarded is exactly half a unit in the
nth place deserves further comment. From purely logical considerations
the digit preceding the discarded 5000 - - - might just as well be left odd,
but there is a practical aspect to the matter. Rounded numbers must often
be divided by other numbers, and it is highly desirable from the stand-
point of accuracy that the division be exact as often as possible. An even
number is always divisible by 2, it may be divisible by other even numbers,
and it may also be divisible by several odd numbers; whereas an odd
number is not divisible by any even number and it may not be divisible by
any odd number. Hence, in general, even numbers are exactly divisible
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by many more numbers than are odd numbers, and therefore there will
be fewer left-over errors in a computation when the rounded numbers are
left even. The rule that the last digit be left even rather than odd is
thus conducive to accuracy iu computation.

In certain rare instances the rule for cutting off 50000 - - - should be
modified. For example, if a 5 is to be cut off from two or more numbers
in 8 column that is to be added, the preceding digit should be increased
by 1 in half the cases and left unchanged in the other half, regardless of
whether the preceding digit is even or odd. Other cases might arise
where common sense should be the guide in making the errors neutralize
one another.

4. Absolute, Relative, and Percentage Errors. The absolute error of
a number, measurement, or calculation is the numerical difference between
the true value of the quantity and its approximate value as given, or
obtained by measurement or calculation. The relative error is the absolute
error divided by the true value of the quantity. The percentage error is
100 times the relative error. For example, let @ represent the true value
of some quantity. If AQ is the absolute error of an approximate value
of Q, then

AQ/Q = relative error of the approximate quantity.
100AQ/Q = percentage error of the approximate quantity.

If a number is correct to n significant figures, it is evident that its
absolute error can not be greater than half a unit in the nth place. For
example, if the number 4.629 is correct to four figures, its absolute error
is not greater than 0.001 X 4 = 0.0005.

Remark. It is to be noted that relative and percentage errors are
independent of the unit of measurement, whereas absolute errors are
expressed in terms of the unit used.

5. Relation between Relative Error and the Number of Significant
Figures. The belief is widespread, even in scientific circles, that the
accuracy of a measurement or of a computed result is indicated by the
number of decimals required to express it. This belief is erroneous, for
the accuracy of a result is indicated by the number of significant figures
required to express it. The true index of the accuracy of a measurement
or of a calculation is the relative error. For example, if the diameter of
a 2-inch steel shaft is measured to the nearest thousandth of an inch, the
result is less accurate than the measurement of a mrle of railroad track
to the nearest foot. For although the ahsolute errors in the two measure-
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ments are 0.0005 inch and 6 inches, respectively, the relative errors are
0.0005/2 = 1/4000 and 1/10,560. Hence in the measurement of the shaft
we make an error of one part in 4000, whereas in the case of the railroad
we make an error of one part in 10,560. The latter measurement is clearly
the more accurate, even though its absolute error is 12,000 times as great.

The relation between the relative error and the number of correct figures
is given by the following fundamental theorem:

Theorem I. If the first significant figure of a number is k, and the
number 1s correct to n significant figures, then the relative error is less
than 1/(k X 107).

Before giving a literal proof of this theorem we shall first show that it
holds for several numbers picked at random. Henceforth we shall denote
absolute and relative errors of numbers by the symbols E, and E,,
respectively.

Ezample 1. Let us suppose that the number 864.32 is correct to five
significant figures. Then k =8, n =15, and E, = 0.01 X } = 0.005. For
the relative error we have

B < 0.005 5 1
"= 864.32— 0.005 864320 — 5 2 X 86432 —1
1 1 1

T 2(86432—3) “2X8X 10 <8 10°

Hence the theorem holds here.

Ezample 2. Next, let us consider the number 369,230. Assuming that
the last digit (the zero) is written merely to fill the place of a discarded
digit and is therefore not a significant figure, we have k = 3, n == 5, and
E,=10X 4 =5. Then

oS = 1 -
= 369930 —5 2 X.36923 —1  2(36923—13)
1 1
<IX3IX10* <3X10°

Ezample 3. Finally, suppose the number 0.0800 is correct to three
significant figures. Then k == 8, n =3, £; = 0.0001 X } == 0.00005, and

< 0.00005 - 5 1
"= 0.0800 — 0.00005 8000 —5 1600 —1
1 1

= 2(800—73) <8x 107
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It is to be noted that in this example the relative error is not certainly
less than 1/(2k X 10**), as was the case in Examples 1 and 2 above.
To prove the theorem generally, let

N == any number (exact value),
n = number of correct significant figures,
m = number of correct decimal places. -

Three cases must be distinguished, namely m < n, m ==n, and m > n.

Case 1. m < n. Here the number of digits in the integral part of N
is n—m. Denoting the first significant figure of N by k, as before, we

have
E,=1/10m X §, N g_k X 10*m1—1/10m X }.

Hence
B < 1/10™ X 3 — 1™
"=k X101 —1/10™ X } 2k X 10" X 10™ —10™™
1 1

T X100V —1 2(kX10m—3)

Remembering now that n is a positive integer and that k stands for anv
one of the digits from 1 to 9 inclusive, we readily see that 2k X 10! —1
> k X 10 in all cases except k=1 and n==1. But this is the trivial
case where N =1, 0.01, etc.; that is, where N contains only one digit
different from zero and this digit is 1—a case which would never occur
in practice. Hence for all other cases we have 2k X 10! —1 > k X 10%2,
and therefore

1
E < k X 10!

Case 2. m=n. Here N is a decimal and k is the first decimal figure.
We then have

E.<1/10mX 3 N=kX10°—1/10" X }.

g 10mX3 _ 10-m - 1
CUTSEX10T—10m X 3 2k X 100 —10 2k X 10" —1
1 1

T X107 —1 SEX107

Case 8. m > n. In this case k occupies the (m —n 4 1)th decimal
place and therefore
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N=kX10-m) —1/10" X §, E,=<1/10" X }.

10" X } _ 10
kEX10™ X 101 —10™ X 3 2k X 10™ X 10" —10-™
2k X 10"t —1 ~ k X 10

The theorem is therefore true in all cases.

Corollary 1. Except in the case of approximate numbers of the form
k(1.000- - )X 107, in which k is the only digit different from zero, the
relative error is less than 1/(2k X 10").

Corollary 2. If k =5 and the given approximate number is not of the
form k(1.000- - -)X 107, then E, < 1/10%; for in this case 2k = 10 and
therefore 2k X 107! = 10m,

To find the number of correct figures corresponding to a given relative
error we can not take the converse of the theorem stated at the beginning
of this article, for the converse theorem is not true. In proving the
formula for the relative error we took the lower limit for N in order to
obtain the upper limit for E,. Thus, for the lower limit of N we took
its first significant figure multiplied by a power of 10. In the converse
problem of finding the number of correct figures corresponding to a given
relative error we must find the upper limit of the absolute error E,;
and since E, = NE,, we should use the upper limit for N. This upper
limit will be % + 1 times a power of 10, where k is the first significant
figure in N. For example, if the approximate value of N is 6895, the
lower limit to be used in finding the relative error is 6 X 10%, whereas the
upper limit to be used in finding the absolute error is 7 X 102.

To solve the converse problem we utilize Theorem II:

SE =

Theorem II. If the relative error in an approzimate number is less
than 1/0(k 4 1) X 10"*], the number is correct to n significant figures,
or at least is in error by less than a unit tn the nth significant figure.

To prove this theorem let

N = the given number (exact value),

n == number of correct significant figures in N,
k == first significant figure in N,

p = number of digits in the integral part of N.

Then
n — p = number of decimals in N,

and N = (k+1)X 1072,
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Let

E< 3 .
(k+ 1) X 10

Then

1 1

kF+1)X10™ 107
Now 1/107 is one unit in the (n—p)th decimal place, or in the nth
significant figure. Hence the absolute error E, is less than a unit in the
nth significant figure.

If the given number is a pure decimal, let

p = number of zeros between the decimal point and first significant
figure. Then n -+ p = number of decimals in N, and

B, <(k+1) X 107 X

(k+1)
N="Tom
Hence if
1 ,
E<Grpxio—’
we have
(k+1) 1 - 1 .
. < 109+ X (k+1)X 10™? 10n+?

But 1/10n? is one unit in the (n + p)th decimal place, or in the nth
significant figure. Hence the absolute error E, is less than a unit in the
nth significant figure.

Corollary 8. 1f E, < 1/[2(k + 1)X 10%*], then E, is less than half
a unit in the nth significant figure and the given number is correct to n
significant-figures in all cases.

Corollary 4. Since k may have any value from 1 to 9 inclusive, it is
evident that k¥ 4 1 may have any value-from 2 to 10. Hence the upper
and lower limits of the fraction 1/[2(% + 1)X 10**] are 1/(4 X 10%?)
and 1/(2 X 10"), respectively. We can therefore assert that

If the relative error of any number is not greater than 1/(2 X 10m) the
number is certainly correct to n significant figures.

Remark. The reader can readily see from the preceding discussion that
the absolute error is connected with the number of decimal places, whereas
the relative error is connected with the number of significant figures.

6. The General Formula for Errors. Let
(l) N_f(uuubu'h' ‘ 'uu)
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denote any function of several independent quantities u,, 4,,* - - uy, Which
are subject to the errors Au,, Au,, - - - Auy, respectively. These errors in
the u’s will cause an error AN in the function N, according to the relation

(?) N 4 AN == f(u, + Aty, U2 + Auy, - - - uy + Auy).

To find an expression for AN we must expand the right-hand member
of (2) by Taylor’s theorem for a function of several variables. Hence
we have

f(“1+A“nuz+Auz,' . '“h+Aun)=f(un"2,' . '“u) +Au1%f“‘

+oud o pan e i) Lt T

0
+2Au,Auzﬁ+. S PR

Now since the errors Au,, Au,, - - - Au, are always relatively small,* we
may neglect their squares, products, and higher powers and write

(3), N+ AN = f(usuz, s, * - * Un)
+Au,,‘f +Auzaf "+A“"£L{

Subtracting (1) from (3), we get

Bf 8f R of
A u, Au, + , Au, 4 + o, Auy,
or

oN oN
(6.1) AN = F — Aw, + Au.,-{a Au3+...+aT"Au

This is the general formula for computing the error of a function, and
it includes all possible cases. It will be observed that the right-hand
member of (6.1) is merely the total differential of the function N.

For the relative error of the function N we have

AN oN Au, oN Au, oN Au,
(6.2) B=F~—%u® Toun vt Taw-
When N is a function of the form
Kam™b"cP
(6. 3) N = W >

* A quantity P is said to be relatively small in comparison with & second quantity
Q when the ratio P/Q is small in comparison with unity. The squares and products
of such small ratios ars negligible in most calculations.
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then by (6.2) the relative error is
E, = AN/N = m(Aa/a) + n(Ab/b) + p(Ac/c) — q(Ad/d) —r(Ae/e).

But since the errors Aa,- - - Ae, etc. are just as likely to be negative as
positive, we must take all the terms with the positive sign in order to be
gure of the maximum errqr in the function N. Hence we write

(6.4) E-=m|Aa/a|+ n|Ab/b|+p|ac/c|+q|ad/d|+r]|ae/e].

7. Application of the Error Formulas to the Fundamental Operations
of Arithmetic and to Logarithms. We shall now apply the preceding
results to the fundamental operations of arithmetic.

7a). Addition. Let LT
o Ne=u+ut -+t

Then -
(7'1) AN:E“=Au1+Au2+"'+Au,‘.

The absolute error of a sum of approximate numbers is therefore equal to
the algebraic sum of their absolute errors.

The proper way to add approximate numbers of different accuracies is
shown in the two examples below.

Ezample 1. Find the sum of the approximate numbers 561.32, 491.6,
86.954, and 3.9462, each being correct to its last figure but no farther.

Solution. Since the second number is known only to the first decimal
place, it would be useless and absurd to retain more than two decimals
in any of the other numbers. Hence we round them off to two decimals,
‘add the four numbers, and give the result to one decimal place, as shown
below :

491.6
561.32
86.95
3.95

1143.8

By retaining two decimals in the more accurate numbers we eliminate
the errors inherent in these numbers and thus reduce the error of the sum
to that of the least accurate number. The final result, however, is unrertain
by one unit in its last figure.

Ezample 2. Find the sum of 36490, 994, 557.32, 29500, and 86939,
assuming that the number 29500 is known to only three significant figures.
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Solution. Since one of the numbers is known only to the nearest hundred,
we round off the others to the nearest ten, add, and give the sum to hun-
dreds, as shown below :

29500
86940
36490
990
560

154500 or 1.545 X 10°.

The result is uncertain by one unit in the last significant figure.

In general, if we find the sum of m numbers each of which has been
rounded off correctly to the same place, the error in the sum may be as
great as m/2 unita in the last significant figure.

7b). Averages. An important case in the addition of numbers must
here be considered. Suppose we are to find the mean of several approxi-
mate numbers. Is this mean reliable to any more figures than are the
numbers from which it was obtained? The answer is yes, but in order tc
see why let us consider the following concrete case.

- The first column below contains the mantissas of ten consecutive
logarithms taken from a six-place table. The second column contains these
same mantiissas rounded off to five decimals. The third column gives the
errors due to rounding, expressed in units of the sixth decimal place.

N N E
0.961421 0.96142 1
0.961469 0.96147 —1
0.961516 0.9615°2 —4
0.961563 0.96156 3
0.961611 0.96161 1
0.961658 0.96166 —2
0.961706 0.96171 —4
0.961753 0.96175 3
0.961801 0.96180 1
0.961848 0.96185 —2

Average, 0.9616346 Av., 0.961635 Sum, — 4
== 0.961635 Av., —04

Here we have the relation
N=N4+E
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for each of the numbers and therefore the further relations

SN = 3N’ 4 3E
and
SN/n == 3N'/n 4 3E/n.

It will be noticed that the average of the rounded numbers is in error
by only 0.4 of & unit in the sixth decimal place. We may therefore call it
correct to six decimals, or to one more place than the rounded numbers.

The entries in all numerical tables and the results of all measurements
are rounded numbers in which the error is not greater than half a unit
in the last significant figure. These errors (due to rounding) are in
general as likely to be positive as negative and hence their algebraic sum
is never large. Usually it is less than a unit in the last figure.

The foregoing considerations justify the computer in retaining one more
figure in the mean of a set of numbers than are given in the numbers
themselves. But rarely should he retain the mean to more than one
additional figure.

7¢). Subtraction. Here

N=u—u,
and

(7.2) AN = E, = Au;, — A,

Since the errors Au, and Au, may be either positive or negative, Lowever,
we must take the sum of the absolute values of the errors in oraer to get
the maximum error. We then have the result that the absolute error of
the difference of two approximate numbers may equal the sum of their
absolute errors.

When one approximate number is tb be subtracted from another, they
must both be rounded off to the same place before subtracting. Thus, to
subtract 46.365 from 779.8, assuming that each number is approximate and
correct only to its last figure, we have

779.8 —46.4 — 733.4.

It would be absurd to write 779.800 — 46.365 = 733.435, because the last
two figures in the larger number as here written are not zeros.

7d). Loss of Significant Figures by Subtraction.

The most serious error connected with the subtraction of approximate
numbers arises from the subtraction of numbers which are nearly equal.
Suppose, for example, that the numbers 64.395 and 63.994 are each correct
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to five figures, but no more. Their difference, 64.395 — 63.994 -= 0.401,
is correct to only ¢hree figures. Again, if the numbers 16950 and 16870
are each correct to only four significant figures, their difference 16950 —
16870 = 80 is correct to only one significant figure, and even this figure
may be in error by one unit.

Errors arising from the disappearance of the most important figures en
the left, as in the two examples of the preceding paragraph, are of frequent
occurrence and sometimes render the result of a computation worthless.
They must be carefully guarded against and eliminated wherever possible.

The inaccuracy resulting from the loss of the most important significant
figures in the subtraction of two nearly equal numbers can ke lessened, and
sometimes entirely avoided, in one of two ways:

1. By approximating each of the numbers with sufficient accuracy
before subtraction, when this is possible. Thus, to find the difference
V2.03 — V2 correct to five significant figures, we take /2.03 = 1.424781
and V2 — 1.414214. Then 1.424781 — 1.414214 — 0.010567. Note that
a slide-rule computation is worthless in such a case as this.

This method is limited when the two given numbers are approximate and
true to only a few digits.

2. By transforming the expression whose value is desired. Thus, to find
the value of 1 — cos z when z is small and no extended table is at hand,
write 1 — cos z = 2 sin? (z/2) in some cases, and in other cases replace
cos z by its Taylor expansion. Then

z? |« z? Tt A
1—cosz=1—(1—5+a—- <) -5
In finding the area of a circular segment having a small central angle,
replace sin 6 by its Taylor expansion. Thus

R? . R? 6 6
Area=—2— (0 —sin 6) =—2—[9—(0—:—3—!+5—- “ 9]

R (6 6°
-t )

otherwise the area of a plainly visible segment might turn out to be zere
when 4- or 5-place tables are used.

Sometimes in the evaluation of such an expression as \a — \/b, where
b is only slightly less than a, one or more significant figures can be saved
by rationalizing the expression as the first step in the calculation. Thus,

a—b

Ve— Vb= Ut
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This method is of value only when fewer digits are lost by taking a —b
then by taking Va— Vb.

The general solution of a certain type of ladder problem in elementary
mechanics is

v—zvcotO—Wp

p—(l—;c)coto

Here the terms in the numerator may be nearly equal for particular values
of W, 6, and g; and the terms of the denominator may also be nearly equal
for certain values of g, I, ¢, and 6. In such cases a slide-rule computation
may be worthless.

In making a transformation to prevent loss of significant figures by sub-
traction, each problem must be treated individually. There is no known
meth.a or procedure that will fit all cases.

The loss of the leading significant figures in the subtraction of two nearly
squal numbers is the greatest source of inaccuracy in most computations,
and it forms the weakest links in a chain computation where it occurs. The
computer must be on his guard against it at all times.

P =

In general, if we desire the difference of two approximate numbers to
n significant figures, and if it is known beforehand that the first m figures
at the left will disappear by subtraction, we must start with m 4 n signifi-
cant figures in each of the given numbers.

7e). Multiplication. In this case
N = uustlg s+ - Uy .

Since this is of the form (6.3), in which m =n =" - - =7 =1, we have
by (6. )

(7.3) E,=AN/N = Au,/u; 4 Auy/u, + -+ - + Aty /U .

The relative error of a product of n approximate numbers is therefore
equal to the algebraic sum of the relative errors of the separate numbers.

The accuracy of a product should always be investigated by means of the
relative error. The absolute error, if desired, can be found from the relation
E, =E,N.

When it is desired to find the v -oduct of two or more approximate
numbers of different accuracies, the more accurate numbers should be
rounded off so as to contain one more significant figure than the least
accurate factor, for by so doing we eliminate the error due to the more
accurate factors and thus make the error of the product due solely to the
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errors of the less accurate numbers. The final result should be given to
as many significant figures as are contained in the least accurate factor,
and no more. The proper method of procedure in such cases will be illus-
trated by examples later on.

7f). Division. Here we have
N=u,/u,.

This is also of the form (6. 3), where the exponents are all unity. Hence-
by (6. 4)

(7. 4) Er == Auﬁ/ul + Auz/‘Uz .

The relative error of a quotient is therefore equal to the algebraic sum ot
the relative errors of divisor and dividend, but in order to get the maximum
error one should take the arithmetical sum of the errors.

A simple formula for the absolute error of a quotient can be found
directly, as follows:

Let AQ = absolute error of the quotient u,/u,. Then

u Au, Au,
u, + Au, Uy U AW, — w,AU, \ Us
U, + Au, Uy U (U2 4 Au,) Uu; 4 Au,

Now let » denote the greatest absolute value of either Au,/u, or Au,/u,,
and take the signs of Au, and Au, so as to get the greatest value of AQ.
Then since Au,/u, = o, we have Au, = ou,; and therefore if 4, and u, are
both subject to errors of the same order of magnitude we have

ul(w+w) 211.14»
< — == .
AQ: Uz — Uz ‘Uz(l—w)

If only u, or u, is subject to error and the other is free from error in
comparison with it, then

u.(w) — Uw
Uy — wU, %, (1 — o) ’

AQ =

Finally, if  is negligible in comparison with 1, we get

(7-5) AQ = 2(w/Usz)w
if u, and u, are both subject to errors of the same order of magnitude ; and
(7.6) AQ = (u1/Usz)w

if only u, or u is subject to error.
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As in the case of products, the accuracy of a quotient should always be
investigated by means of the relative error, and all the statements made
above in regard to products hold for quotients. In particular, if one of
the numbers (divisor or dividend) is more accurate than the other, the
more accurate number should be rounded off so as to contain one more
significant figure than the less accurate one. The result should be given
to as many significant figures as the less accurate number, and no more.
The following examples will illustrate the proper methods of investigating
the accuracy of products and quotients.

Ezample 1. Find the product of 349.1 X 863.4 and state how many
figures of the result are trustworthy.

Solution. Assuming that each number is correct to four figures but
no more, we have Au, = 0.05, Au, = 0.05. Hence

Bo= 005 g%g% — 0.000143 + 0.000057 — 0.00020.

"= 3491
The product of the given numbers is 301413 to six figures. The absolute
error of this product is
E, = 301413 X 0.00020 = 60, possibly.

The true result therefore lies between 301473 and 301353, and the best
we can do is to take the mean of these numbers to four significant

figures, or
349.1 X 863.4 = 301400 = 3.014 X 10°.

Even then there is some uncertainty about the last figure.

Theorem II of Art. 5 also tells us that the above result is uncertain in
the fourth figure, but that the error in that figure is less than a unit.

Ezample 2. Find the number of correct figures in the quotient
56.3/V 5, assuming that the numerator is correct to its last figure but

no farther.

~ Solution. Here we take V5 =2.236 so as to make the divisor free
from error in comparison with the dividend. Then

0.05
E, = 5o < 0.0009;

and since 56.3/2.236 — 25.2 we have
E, < 25.2 X 0.0009 < 0.023.
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Since this error does not affect the third figure of the quotient, we take
25.2 as the correct result.

Note that formula (7.6) also gives this result.

We could have seen at a glance, without any investigation, that the error
of the quotient in this example would be less than 0.025; for the denomi-
natu is free from error and the possible error of 0.05 in the numerator is
to be divided by 2.236, thereby making the error of the quotient less than
half that amount.

Ezample 8. Find how many figures of the quotient 4.89x/6.7 are trust-
worthy, assuming that the denominator is true to only two figures.

Solution. The only appreciable error to be considered here is the possible
0.05 in the denominator. The corresponding relative error is

E < %‘973 < 0.0075.

The quotient to three figures is
489 X314
6.7

Hence the possible absolute error is Es = 2.29 X 0.0075 < 0.02. Since the
third figure of the quotient may be in error by nearly two units, we are
not justified in calling the result anything but 2. 3, or

4.897
6.7

Formula (7.6) also gives this same result.

2.29.

=23.

Ezample 4. Find the number of trustworthy figures in the quotient of
876.3/494.2, assuming that both numbers are approximate and true only
to the number of digits given.

Solution. Here the largest relative error is

0.05
0= go15 = 0000101,
and the quotient is
876.3

494.2

= 1.7732.
Hence by (7.5)
AQ — 2(1.7732) (0.000101) — 0.000358.

Since this error affects the fourth decimal place but not the third, we take
the quotient to be 1.773.
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Note. The greatest and least values of the above quotient are

876.35 876.25
494.15 494.25

These values agree to four significant figures and both give 1.773.

=1.7734 and = 1.7729.

79). Powers and Roots. Here N has the form

N o=ym,
Hence by (6.4)
E, = m(Au/u).
For the pth power of a number we put m == p-and have
E, = p(Au/u).
The relative error of the pth power of 4 number is thus p times the

relative error of the given number.
For the rth root of a number we put m == 1/r and get

E,

A

1 au
r u

Hence the relative error of the rth root of an approximate number is only
1/rth of the relative error of the given number.

Ezample. Find the number of trustworthy figures in (0.3862)4, as-
suming that the number in parentheses is correct to its last figure but
no farther.

Solution. Here the relative error of the given number is

. 0.00005
By w— 0.3862 < 0.00013.

The relative error of the result is therefore less than 4 X 0.00013, or
0.00052.

The required number to five figures is (0.3862)¢ == 0.022246. Hence
the absolute error of the result is 0.022246 X 0.00052 == 0.000012.. Since
this error affects the fourth significant figure of the result, the best we

can do is to write
(0.3862)* == 0.02225

and say that the last figure is uncertain by one unit.

The relative error of the fourth root of 0.3862 is less than }(0.00013)
== 0.000032, and since this fourth root is 0.78832 the absolute error of
the result is about 0.78832 )X 0.000032 == 0.000026. Hence the fourth

root is 0.7883 correct to four figures.
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7h). Logarithms. Here we have

N =log,, u = 0.43429 log, u.
Hence
AN = 0.43429 (Au/u),
or
. .1 Au
AN<3 o

The absolute error in the common logarithm of a mumber is thus less
than half the relative error of the given number.

An error in a logarithm may cause a disastrous error in the anti-
logarithm or corresponding number, for from the first formula for AN
above we have

uAN
Ay = 043429 — 2.3026uAN.
The error in the antilog may thus be many times the error in the loga-
rithm. For this reason it is of the utmost importance that the logarithm
of a result be as free from error as possible.

Ezample 1. Suppose N =log;ou = 3.49853 and AN < 0.000005, so
that the given logarithm is correct to its last figure. Then u = 3151.6
and therefore

Au=2.3 X 3151.6 X 0.000005 = 0.036.

Since this error does not affect the fifth figure in u, the antilog is correct
to five figures.

Ezample 2. Suppose N = log,o 4 == 2.96384 and AN == 0.00001. Then
v =920.11 and

Ay == 2.3 X 920.11 X 0.00001 = 0.021.

This error affects the fifth figure in  and makes it uncertain by two units.

Inasmuch as the logarithm of most results is obtained by the addition
of other logarithms, it is evident that such & logarithm is likely to be
in error by a unit in the last figure, due to the addition of rounded
numbers. Hence the corresponding number may frequently be in error
by one or two units in its last significant figure when the number of
significant figures in the antilog is the same as the number of decimals
in the logarithm.

Remarks. The reader should bear in mind the fact that the numbes
of correct figures in the antilog corresponds to the number of correct
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decimals in the logarithm. The integral part, or characteristic, of the
logarithm plays no part in determining the accuracy of the antilog. This
fact is at once evident from a consideration of the equation

Au/u == 2.3AN.

For inasmuch as the number of correct figures in the antilog u is mea-
sured by its relative error, and since this latter quantity depends only on
the absolute error AN and not at all on the characteristic, it is plain that
the accuracy of the antilog depends only on the number of correct decimals
in the mantissa.

It is an easy matter to determine the number of correct figures in any
antilog when the number of correct decimals in the mantissa is given.
Suppose, for example, that we are using m-place log tables and that the
possible error in the logarithm of a result is one unit in the last decimal
place, as is usually the case. Then AN =1/10™ and we have

23 2.3 1 < 1 )
10 10 X 10m 4.34 X 10m-1 2 X 10m-!

Au/u =

Hence by Corollary 4, Art. 5, the antilog u is certainly correct to m —1
significant figures.

The equation Au/u=1/(4.34 X 10m™') shows that if the mantissa is
in error by two units in its last figure the antilog is still correct to m — 1
significant figures, for in this case the relative error of the antilog is

1

Au/u = G 10

which is less than 1/(2 X 10™!). We are therefore justified in asserting
that if the mantissa of a logarithm is not in error by more than two units
in the last decimal place the antilog is certainly correct to m — 1 signifi-
cant figures. '

8. The Impossibility, in General, of Obtaining a Result More Ac-
curate than the Data Used. The reader will have observed that in all
the examples worked in the preceding pages no result has been more
accurate than the numbers used in obtaining it. This, of course, is what
we should have expecied, but sometimes computers seem to try to get
more figures in the result than are used in the data. When we apply
Corollaries 1 and 4 of Art. 5 to the errors of products, quotients, powers,
roots, logarithms, and antilogarithms, we find that in no case is the result
true to more figures than are the numbers used in computing it. The
results for these operations are as follows:
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(a) Products and Quotients. If k, and k, are the first significant
figures of two numbers which are each correct to n significant figures,
and if neither number is of the form k(1.000- - -) X 107, then their
product or quotient is correct to

n —1 significant figures if k;, =2 and k, = 2,
n — 2 significant figures if either k, =1 or k, = 1.

(b) Powers and Roots. If k is the first significant figure of a number
which is correct to n significant figures, and if this number contains more
than one digit different from zero, then its pth power is correct to

n— 1 significant figures if p <k,
n — 2 significant figures if p = 10k;

and its rth root is correct to

n significant figures if rk = 10,
n — 1 significant figures if rk < 10.

(¢) Logs and Antilogs. If k is the first significant figure of a number
which is correct to n significant figures, and if this number contains
more than one digit different from zero, then for the absolute error in
its common logarithm we have

1
o< @xciom -

If a logarithm (to the base 10) is not in error by more than two units
in the mth decimal place, the antilog is certainly correct to m — 1 signifi-
cant figures.

To prove the foregoing results for the accuracy of products and quotients,
let k, and k, represent the first significant figures of the given numbers.

" Then by Corollary 1 of Art. 5 the relative errors of the numbers are less
than 1/(Rk, X 10') and 1/(Rk, X 10™*), respectively; and since the
relative error of the product or quotient of two numbers may equal the
sum of their relative errors, we have

Relative error of result

1 1 1 1 1
< x10m T 2 <10 (E + T)z X 107 °

Now if (1/k, + 1/k,) =1 we have E, < 1/(2 X 10*), and the product
or quotient is certainly correct to n—1 significant figures. But this
quantity is not greater than 1 if k;, = 2 and %, = 2. Hence in this case
the result is correct to n — 1 significant figures. If, however, either k, =1
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or k, == 1, the quantity (1/k, + 1/k;) > 1 and therefore the relative error
of 'theresult may be greater than 1/(2 X 10**). Hence the result may
‘not beicorrect to n— 1 significant figures, but it is certainly correct to
n— 2 figures.

“To prove the above results for the accuracy of powers and roots let k
represent the first significant figure of the given number. Then the relative
error of this number is less than 1/(2k X 10**). Hence the relative error
of its pth power is less than

P _»? 1
2k X 10" — k 2 X 10"

The result will therefore be correct to n — 1 significant figures if (p/k)= 1,
or p =k, and to n — 2 significant figures if p = 10k.
The error of the rth root is less than

111 1 _10 1
r Rk X 10"  rk 2 X 101 rk 2 X 10"

Hence the result will be correct to n significant figures if rk = 10 and to
n— 1 significant figures if 7k < 10.

To prove the result for the error of the common logarithm we recall
that AN < 3(Au/u), and since Au/u < 1/(%k X 10**) we have

1
4k X 10n7 °

The proof for the accurecy of the antilog has already been given at the
end of Art. 7.

Since the separate processes of multiplication, division, raising to powers,
and extraction of roots can not give a result more accurate than the data
used in obtaining it, no combination of these processes could be expected
to give a more accurate result except by accident. Hence when only these
processes are involved in a computation, the result should never be given
to more significant figures than are contained in the least accurate of the
factors used. Even then the last significant figure will usually be uncertain.
In a computation involving several distinct steps, retain at the end of each
step one more significant figure than is required in the final result.

While it is true in general that a computed result is not more accurate
than the numbers used in obtaining it, an exception must be made in the
cases of addition and subtraction. When only these processes are involved,
the result may be much more accurate than one of the quantities added or
subtracted. For example, the sum 3463 + /3 == 3463 + 1.7 == 3464.7 is
correct to five significant figures (assuming 3463 to be an exact number)

AN <
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even though one of the numbers used in obtaining it is correct to only twe
figures. A similar result would evidently follow in the case of subtraction.

9. Further Considerations on the Accuracy of a Computed Result.
In commenting on formulas (7.1) and (7.3), it was stated that the
absolute error of a sum is equal to the algebraic sum of the errors of the
numbers added, and that the relative error of a product is equal to the
algebraic sum of the relative errors of the factors. The word “ algebraic”
deserves emphasis in these cases because errors of measuremnt and errors
due to rounding are compensating to a very great extent, so that in most
cases the error in a computed result is not equal to the arithmetical sum
of the -.rors of the numbers from which the result was obtained.

We saw in (7b) that the error in a-sum was only a small fraction of
the arithmetic sum of the separate errors. That the errors of the factors
in a product are also compensating may be seen by considering the product
of two ezact numbers:

649.3 X 675.8 = 438,796.94.

Now suppose we round off these numbers to 649 and 676. Their product
is then 649 X 676 — 438,724. The actual error of this product is 72.94,
and the relative error is
72.94
438,796.94

The relative errors of the factors are 0.3/649.3 = 0.000462 and — 0.2/675.8
— —0.000296. The relative error of the product is thus less than the
relative error of either factor and is actually equal to their algebraic sum.
The product in this case is more accurate than either factor.

When a long computation is carried out in several steps and the inter-
mediate results are properly rounded at the end of each step, there is no
accumulation of rounding errors. If there were, long astronomical com-
putations, such as those of eclipses and the orbits of comets, would be
worthless. Time and experience have proved the correctness of such
astronomical computations. In a chain computation the loss of significant
figures by subtraction is the chief source of error.

Bad advice is sometimes given in regard to computation. In the addi-
tion of numbers of unequal accuracy, some writers advise that all the
numbers first be rounded off to the number of decimal places given in
the least accurate number. When this is done, the computer throws away
definite information and replaces it with uncertainty. In adding a column
of several numbers, the uncertainties might largely cancel one another,
but this would not be the case with cvly a few numbers. The proper

= 0.000166.
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method is to add the more accurate numbers separately and then round
off their sum to the same decimal place as the least accurate number or
numbers. In this way, the sum is as accurate as the least accurate of the
numbers added.

Similar bad advice is given in the case of multiplication and division.
When multiplying or dividing numbers of unequal accuracy, some writers
advise that all numbers first be rounded off to the same number of signifi-
cant figures as contained in the least accurate factor. To make all factors
as rough as the roughest one is folly. There is no sense in throwing
away perfectly definite information and replacing it with a question mark.
The more accurate factors should be kept with one more significant figure
than the least accurate factor. Then the result will usually be as accurate
as the least accurate factor. The correct procedure in all ordinary com-
putations can be stated in

A Sound and Safe Rule: When computing with rounded or approximate
numbers of unequal accuracy, retain from the beginning one more signifi-
cant figure in the more accurate numbers than are contained in the least
accurate number. Then round off the result to the same number of
significant figures as the least accurate number.

In the case of addition, retain in the more accurate numbers one more
decimal digit than is contained in the least accurate number.

This rule follows from equations (7.1), (7.3), and (7. 4). By retaining
one more digit in the more accurate numbers, we reduce to zero the errors
of those terms and thus reduce the error of the final result.

In the case of subtraction or of addition of only {wo numbers, round of
the more accurate number to the same number of decimal places as the
less accurate one before subtracting or adding.

10. Accuracy in the Evaluation of a Formula or Complex Expression.
The two fundamental problems under this head are the following:

(a) Given the errors of several independent quantities or approximate
numbers, to find the error of any function of these quantities.
(b) To find the allowable errors in several independent quantities in

order to obtain a prescribed degree of accuracy in any function of these
quantities.

10a). The Direct Problem. The first of these problems is solved by
replacing the given approzimafe numbers by the letters @, b,c,- - - or
U1, Uy, Uj, taking the partial derivatives of the function with respect to.
each of these letters, and then substituting in formula (6.1) or (6.2).
An ezact number, such as 2, 3, 10, etc., is not replaced by a letter before
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taking the derivatives.* We shall now work some examples to show the
method of procedure.

Ezample 1. Find the error in the evaluation of the fraction
cos 7° 10°/log,, 242.7, assuming that the angle may be in error by 1’ and
that the number 242.7 may be in error by a unit in its last figure.

Solution. Since this is a quotient of two functions, it is better to
compute the relative error from the formula E, =< Au,/u, 4 Au./u, and
then find the absolute error from the relation E, = NE,. Hence if we
write

cos 7° 10’ cos z
N— log, 242.7 ~ logny /U
we have
Au, = A cos £ = — 8in zAzZ,
Au, = A log,o ¥ = 0.43429 (Ay/y).
< sinz A 0.43429
E = cos T T+ ylogy Y
or
0.435
F, < ] .
F, = tanxaz + ylogy Ay

Now taking z = 7° 10’, Az =1’ = 0.000291 radian, y = 242, Ay = 0.1,
and using a slide rule for the computation, we have

0.435 X 0.1
242 X 2.38

Since N = cos 7° 10’/log 242.7 = 0.41599, we have
E, = 0.00011 X 0.416 = 0.000046,

E, < 0.126 X 0.000291 4 = 0.00011.

or E, < 0.00005. .
The value of the fraction is thercfore between 0.41604 and 0.41594,
and we take the .mean of these numbers to four figures as the best value

of the fraction, or
N = 0.4160.

Ezample 2. The hypotenuse and a side of a right triangle are found
by measurement to be 75 and 32, respectively. If the possible error in

* Adopted or accepted values of physical, chemical, and astronomical constants are
to be treated as exact numbers, but results obtained by using these numbers ac
multipliers or divisors are not to be relied upon to more significant figures than are
used in the constants themselves.
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the hypotenuse is 0.2 and that in the side is 0.1, find the possible error
in the computed angle 4.

Solution. Lettering the triangle in the usual manner, we have
8in 4 == 32/75 == a/c.

.". A ==gin-*(a/c),
and
AA = (04 /0a)Aa + (04 /0c)Ac.

Now

04/0a == 1/V/ ¢ — a?,

04/9c = —a/(cV c*—a?).
Taking the numerical values of ¢ and a in such a manner as to give the
upper limits for 04/0a and 04/9c, and remembering that Ae==0.1,
Ac = 0.2, we have

1 X 0.1+ _ 321 v 0.2=0.00275,

A< —
V (74.8)* — (32.1)? 74.8V/ (74.8)* — (32.1)?
or

AA < 0.0028 radian == 9" 38”.

The possible error in A is therefore less than 9" 38”.

10b). The Inverse Problem. We now turn our attention to the second
fundamental problem mentioned at the beginning of this article: that
of finding the allowable errors in u,,u,, - - ‘u, when the function N is
desired to a given degree of accuracy. This problem is mathematically
indeterminate, since it would be possible to choose the errors Au,, Au,, ete.
in a variety of ways so as to make AN less than any prescribed quantity.
The problem is solved with the least labor by using what is known as
the principle of equal effects.* This principle assumes that all the partial
differentials (0N/0u,)Awu,, (0N/0u;)Au,, etc., contribute an equal amount
in making up the total error AN. Under these conditions all the terms
in the right-hand member of equation (6.1) are equal to one another,
so that

oN oN oN
AN=nEIAu1=nEAu2=- =nau“ Ay, .
Hence
AN AN AN
Au, = @, Auzj@,- .. Aunr;l—a--ﬁ'
" du, du,

* See Palmer’s Theory of Measurements, pp. 147-148.
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Ezample 3. Two sides and the included angle of a trianglar city lot
are approximately 96 ft., 87 ft., and 36°, respectively. Find the allowable
errors in these quantities in order that the area of the lot may be deter-
mined to the nearest square foot.

Solution. Writing 6 — 96, ¢ =87, 4 = 36°, and denoting the area
by u, we have

u == }bcsin A = }(96 X 87 sin 36°) = 2455 sq. ft.
Hence
0u/db == }csin A, 0u/dc = }bsin A, du/24 = }bc cos A.

Substituting these quantities in (6.2), we find
Au/u = Ab/b 4 Ac/c + AA/tan A.

Now since the area is to be determined to the nearest square foot we
must have Au < 0.5; and by the principle of equal effects we must have

Ab 1 Au 0.5 1
B T3 w <3xeass 14730 < 0-000068.

Hence Ab < 96 X 0.000068 = 0.0065 ft.
In like manner ,

‘A
-ci= % ‘:‘—“, or ac < 87 X 0.000068 — 0.0059 ft.;
and
1 Au
5 == ?%42’ or A4 < tan 36° X 0.000068 — 0.000049 r-dian.
u

Hence from a table for converting radians to degrees we find A4 = 10”.
It thus appears that in order to attain the desired aceuracy in the area
the sides must be measured to the nearest hundredth of a foot and the
included angle to the nearest 20” of arec.
This problem could also be solved by assuming that the possible errors
in the measured sides might be 0.005 ft. and then computing the per-
missible error in the measured angle.

Ezample 4. The value of the function 6z*(log,, z-— sin 2y) is required
correct to two decimal places. If the approximate values of z and v are
15.2 and 57°, respectively, find the permissible errors in these quantities.

Solution. Putting
u = 622 (log,o z — sin 2y) = 6(15.2)%(log,s 15.2 — sin 114°)
== 371.9,
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we have

ou/0z = 12z (log,o z — 8in 2y) -+ 6z X 0.43429 — 88.54,

Ou/0y — — 12z7% cos Ry == 1127.7.
Hence
Ay = (0u/0z)Az + (Ou/0y)Ay = 88.54Az + 1127.7Ay.

In order that the required result be correct to two decimal places we
must have Au < 0.005. Then by the principle of equal effects we have

Au 0.005
2 —
or
Au 0.005
%y
= 0" .45.

Since the permissible error in z is only 0.00003, it will be necessary to
take z to seven significant figures in order to attain the required degree
of accuracy in the result. The value of y can then be taken to the nearest
second.

The reason why the permissible errors in z and y are so small in this
example is that the factor log,,z — sin 2y causes the loss of one significant
figure by subtraction.

Remark. It is neither necessary nor desirable to investigate the accuracy
of all proposed computations. But when we are in doubt about the possi-
bility of attaining a certain degree of accuracy in the final result, we
should make the necessary investigation. It usually suffices to carry all
computations to one more figure than is desired in the final result and
then round off the result to the desired number of figures, if the accuracy
of the given independent quantities is such as to permit this.

11. Accuracy in the Determination of Arguments from a Tabulated
Function. In many problems it is necessary to compute some function
of an unknown quantity and then determine the quantity from tabulated
values of the function. Examples of this kind are the determination of
numbers from a table of logarithms, and angles from trigonometric tables.
If the computed function happens to be affected with an error, the argu-
ment determined from this function is necessarily incorrect in some degree.
The purpose of this article is to iuvestigate the accuracy of the argument
whose value is requireds
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In tables of single entry are tabulated functions of a single argument.
Calling z the argument and y the tabulated function, we have

y=1(2).
From this we get the relation
Ay = f’(z) Az, approximately,
from which we have
(11.1) Az = Ay/f (z).

This is the fundamental equation for computing the error in arguments
taken from a table. Here Ay represents the error in the computed function
whose values are tabulated, and Az is the corresponding error in the argu-
ment. It will be noted that the magnitude of Az depends upon three
things: the error in the function, the nature of the function, and the
magnitude of the argument itself. We shall now apply (11.1) to several
functions whose values are tabulated.

1. Logarithms.

(a) f(z) = loga .
f(z) =1/z.
(1) .. Az = zAy, from (11.1).
(%) f(z) =logu .

f(z) = M/z, where M = 0.43429.

oAz =zAy/M = 2.3026zAy.
Hence

(?) Az < 2.31zAy.

2. Trigonometric Functions.

(a) f(z) =sinz.
f (z) =cos z.
(3) .. Az = Ay/cos T = sec TAy radians,
or
(4) (Ar)” = 206264.8 sec zAy seconds.
() f(z) =tanz.

f'(z) =sec?z.
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(5) .. Az == cos? zAy radians,
or
(6) (Az)” = 206264.8 cos® zAy seconds.
(c) f(z) ==log,, 8in z.
o\ cosz
f(z) =M - M cot z.

. Ay .
") S Az = Foots — 2.3026 tan zAy radians,
or
(8) (Az)” < 475000 tan zAy seconds.

(d) f(z) ==log,, tan z.

sec? z M 2M
F@) =M s ~ smocoss — sn2s
. sin 2zA .
oAz = %ﬂ;—z =1.1513 sin 2zAy,
or
9) Az < 1.16 8in 2zAy radians;
and
(10) (az)” < 238000 sin 2zAy seconds.
8. Ezponential Functions.
f(z) =e.
P (z) = eo.
(11) - oAz = Ay/e>.

4. Other Tabulated Functions. By means of the fundamental equation
(11.1) we can compute the error in any argument when the derivative of
the given function is given or can be easily found. In Jahnke and
Emde’s Funktionentafeln, for instance, are tabulated the derivatives of
log T'(z + 1), the error function fZe*'dz, the Weierstrass p-function,
p(u), and Legendre’s polynomials P,(z). Hence by means of these tables
we can determine the arugment and also its error.

Elliptic integrals are functions of two arguments. The error in eack
of these arguments can not be determined uniquely, but by using formula
(6.1) and assuming the principle of equal effects we can find definite
formulas for the errors in the arguments. Thus, denoting an elliptic
irtegral by I and the function of the arguments by F'(6, ¢), we have
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I=F(6,9).
Hence
Al == (3F/06) A0 + (0F/04)Aé.

By assuming that the two terms on the right-hand side are equal, we get

Al Al
M=ar M=
20 ¢

Knowing the error AI of the integral, we can find from these formulas the
corresponding errors in 6 and ¢.

Remarks. Comparison of formulas (3) and (5) shows that the error
made in finding an angle from its tangent is always less than when finding
it from its sine, because cos? z is less than sec z. The latter may have any
value from 1 to. «, whereas the value of the former never exceeds 1.

Formulas (7) and (9) show still more clearly the advantage of deter-
mining an angle from its tangent. It is evident from (9) that the error
in z can rarely exceed the error in g, since sin 2z can not exceed 1, but
(7) shows that when the angle is determined from its logsine the error
in z may be many times that in y.

Let us consider a numerical case. Suppose we are to find z from a
5-place table of log sines. Since all the tabular values are rounded numbers,
the value of Ay may be as large as 0.000005, due to the inherent errors of
the table itself. Taking z == 60° and substituting in (7), we get

AZ = 2.3026 /3 X 0.000005
== 0.00002 radian, about,
- 4.1,
The unavoidable error may therefore be as great as 4 seconds if we find
z from its log sine.
If, on the other hand, we find z from a table of log tangents we have
from (9)
Az < 1.16 X $V3 X 0.000005 — 0.000005 rad.
— 1”.
The error is thus only one-fourth as great as in the preceding case.
The foregoing formulas simply substantiate what has long been known

by computers: that an angle can be determined more accurately from its
tangent or cotangent than from its sine or cosine.

Note. The problem of determining the maxinrum possible error in &
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result found by means of tables is rather involved. The reader will find
& masterly treatment of this matter in J. Liiroth’s Vorlesungen iber
numerisches Rechen, Leipzig, 1900.

However, the problem is of little practical importance, because the errors
in such a computation rarely if ever combine so as to produce their
maximum aggregate effect. They neutralize one another as the calcu-
lation proceeds.

12. The Accuracy of Series Approximations. It is frequently easier
to find the numerical value of a function by expanding it into & power series
and evaluating the first few terms than by any other method. In fact, this
is sometimes the only possible method of computing it. The general
method for expanding functious into power series is by means of Taylor’s
formula. The two standard forms of this formula are the following:

M @) =1@ + @—af @+ E5L @) -+ L= o

+("'—n_!“)—fw [e+0(z—a)], 0<6<1.

() f+B) =f(@) + B (@) + 57 1@+ + gy [ (2)
+ P tom), 0<o<t.
On putting ¢ =0 in (1) we get Maclaurin’s formula:
(3) £(2) =(0) +2(0) + Z-£/(0) +- - -+ h fo0 (0)
+f ™ (82), 0<O< L.

The last term in each of these three formulas is the remainder after
n terms. This remainder term is the quantity in which we shall be
interested in this article. The forms of the remainder given above are
not the only ones, however. Another useful form will be given below.

12a). The Remainder Terms in Taylor’s and Maclaurin’s Series. De-
noting by R.(z) the remainder after n terms in the Taylor and Maclaurin
expansions, we have the following useful forms:

1. For Taylor’s formula (1):

(a) Ra(z) = i"“;]—“)"f(-)[a+o(z—a)], 0<o<,
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() Ra(z) = (n_—11W f.. T (2 — ) tmat,
2. For Taylor’s formula (2):

() Ra(z) = %”—!-f(’"(z +6h), 0<B<1.

®) Ba(e) = gy, 1 o+ h— )t
3. For Maclaurin’s formula:

(@ En(2) — 271 (62), 0<6<1.

(®) Ru(z) = Tn_l_m‘f.'f("’ (z— t)tdt,

It will be observed that the second form (the integral form) is perfectly
definite and contains no uncertain factor 4. In using either form, however,
it is necessary first to find the nth derivative of f(z).

Since the integral form of R,(z) is not usually given in the textbooks
on calculus, we shall show how to apply it to an example.

Ezample. Find the remainder after n terms in the expansion of
logs (z 4+ k).
Solution. Here
f(z) - loge z,
L (2) =1/z,

F7(2) = — (1/2%),

() =2/,

f¥(z) =— (6/2%),

(=)™ (n—1)!
I'I

) 1!
. Ba(z) = (— 1) (n_1;vf (z+h _ {rdf,

Now since ¢ varies from 0 to %, the greatest value of R.(z) is obtained
by putting ¢ =~h in the integrand. We then have, omitting the factor
(— 1), which is never greater than 1,

f (z) =
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b gn1dt 1 * 1 & 1/h\"

B2 < = —a), =g T';.(;)°

Suppose z =1, h == 0.01. Then h/z = 0.01. If, therefore, we wish to

know how many terms in the expansion of log, 1.01 are necessary in order to
get a result correct to seven decimal places we take R, = 0.00000005.

" (1/n) (0.01) = 0.00000005.

1t is evident by inspection that n = 4 will give a remainder much smaller
than the allowable error. Hence we take four terms of the expansion of
loge (z 4+ 1).

The reader can easily verify that the first form of remainder gives the
same result as that just found.

12b). Alternating Series. An alternating series is an infinite series in
which the terms are alternately positive and negative. Such a series is
convergent if (a) each term is numerically less than the preceding and
(b) the limit of the nth term is zero when n becomes infinite.

Alternating series are of frequent oeeurrence in applied mathematics
znd are the most satisfactory for purposes of computation, because it is
always an easy matter to determine the error of a computed result. The
rule for determining the error is simply this:

In a convergent alternating series the error committed in stopping with
any term is always less than the first term neglected.

Thus, since
logs (14 2) =2—2°/2 4+ 2°/83 —2'/4 +2°/5—" - -,

we have

logs (1.01) = 0.01 —

(0.01)2 , (0.01)°

5 T3 —+E&
where R < |(0.01)4/4 | = 0.0000000025.

We therefore get a result true to eight deciraal places by taking only
three terms of the expansion.

12c). Some Important Series and Their Remainder Terms. Below are
given some of the most useful series and their remainder terms, alternating
series not being included because their remainder terms can be computed
by the rule given above.

1. The Binomial Sertes.

m(m— m—1)(m—2)
2! 3!
m(m—1)(m—2): - - (m—n+2)

+ (h—1)1 2+ By

1)1_3+m(

zl_*_...

(1+42)m=1+mz+
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where
() &_m(m—l)(m—z)--~(m—n+1)xu(1+oz)m 0<h<
! b

in all cases. "

®) Ro<|mE=DE=tont D) g5,
m(m—1)(m—2)* - - (m—n+1) z"

() R"<, ! (1+z)"'"',l

if z<0'and n > m.

(d) Bn<|z*|(142z)"if —1<m<O.

If m is a fraction, positive or negative, or & negative integer, the binomial
expansion is valid only when |z | < 1. Also, except when m is a positive
wnteger, a binomial such as (a + b)™ must be written in the form

b\™. a\™.
a"'(1+;) if a >0, or b"'(1+5> if b > a,
before expanding it.
2. Ezponential Series.
. g 2y

zloga)*t | .(zlog a)"
(n—1)! n!

If in (a) we put z =1 we get the following series for computmg e:

() a,'-—1+zloga+(zl°ga) +-- +(

1 1 1
Here
)
Romor.
n!
But since ¢ < 3and 6 = 1, it is plain that
3
(d) R, < -,ﬁu

A more definite formula for R, can be found as follows:
Writing more than n terms of the series (c), we have

1 1 1
o= 141t g+t + oo

1 1 1
tatern it et
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where the remainder after n terms is

1 1 1
B=rterniteragit
1 1 1
'Tx(‘+n+1+<n+1>(n+2>+' ' )

The quantity in parenthesis on the right is clearly less than the sum of
the geometric series

141/n4+1/a241/a%4- - -,

the sum of which is
1 -
1—1/n n—1

Hence
(e) R, < 1

h—D(r—1)1"

By means of this formula (e) we can find the requisite number of
terms in the expansion (c) to give the value of e correct to any desired
number of decimal places. Thus, if we wished to find e correct to ten
decimal places by meaans of the series (c) we would find n from the equa-
tion 1/(n—1)(n— 1) ! ==0.00000000005. With the aid of a table of
the reciprocals of the factorials we find that n— 1 == 13, or n==14. We
should therefore take 14 terms of the series (¢). We find in like manner
that in order to compute e correct to 100 decimal places we should take
71 terms of the series (c).

nl n—1"’

‘8. Logarithmic Series.
(@) log,(m 4 1) =logem - 2[ ! + 1 + —
i T T am 41 T 3(2m 1) T 5(2m 4+ 1)°

1
T @meDeay

]+ 5,

To find an upper limit for R, we have

1 1
By=2 [(2n FOenF ™ T @nE3)emF 1)

1
tEmFnemyne T ]

Each term of the series in brackets, after the first, is less than the corre-
sponding term of the series
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1 1

G D EmF )™ T @n+1)(em F 1)
1

TEEDEnt s T 0

or
1

1 1
Ernea =t @iyt et

which is a geometric series with ratio and sum

1
1
T (em+1)?

1

(2m 4 1)
(qm +1)°

> or 4am(m 4 1) °

1 (2m 4+ 1)?
B.<2 ((2n+ D em+ 1)”"”)4m(m T

. Hence

1 1
T2 mm+ )R+ 1) (@m 1)

Therefore

) 1 1
() B amID L D@

Ezample 1. To compute In 2 * by taking three terms of (a) we have,
since m =1, n =3,

iy L 1 7_ .
In2=2 [§-+m7§+5(3)5] = 0.693004;

and by (b),
1 1

R, < 5 W == 0.000147,

which affects the fourth decimal place. Since the true value of In 2 to
eight decimal places is 0.69314718, the error in the value found above is
0.000143, which is less than 0.000147.

Ezample 2. To find In 5 correct to ten decimal places we have m == 4,
R, = (1/2) - (1/10%*). Hence, by (d),

1 1
2 4X5(2n+1)(9)™

(2n 4 1) (9) 2 =5 X 10® = 500,000,000.

1
1010 4

=1
2

or

We find by trial that n is about 4. 1, and that for n =5 the logarithm wiil
be correct to 11 decimal places.

® Frequently in this book we shall write In for log,.
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12d). Some nth Derivatives. In computing the remainder term in a
series it is necessary to have the nth derivative of the given function.
To facilitate the calculation of R, we therefore give below a list of nth
derivatives of some simple functions. The symbol D denotes differentia-
tion with respect to z, or D == d/dz.

(a) Dra® = a*(log, a)™
(d) Dr gin ¢ == sin[z 4 n(=/2)].
(¢) Dn cos z == cos[z + n(=/2)].
1 (—1)*n!b

(d) Dn (a+ ba:)=. (a+bz)ﬂﬂ o

" 1 _(_1)"1'3'5"'(211—1) i
© b (\/a + bz) 2" (a + bz) me1)/2 bn.

—1)*(n—1)!b"

2 D" loge(a + bz) = : 1()a -(-:bz)ln)' .

(@ Dr(82)m M oge s — (14 3+ 44+ 1/m)

(h) D"log.(1+a:’)—(-—1)""’2(71——1)!cos[nsin-’( 1 )J

V1422 .
(1+$2)”/2
. g DD T (L
0) Drtan~! g == 1+ z2)2 sin [nsm (\/1—}-2‘)].

. 1 —1ipal . in (——
() D"1+z=‘(1(-|-z’))‘-:"’/"s'" [("“"1)“" (v1+z’):|'

a+ Bz - (=1)n!
(k) Dr ((z—-a)’ T b’) Bt [Bb cos(n + 1)6

+ (@ 4 Ba)sin(n 4+ 1)4],

where

p=V(E—a) ¥ &

0 == tan!

zT—a

For an exterisive investigation of nth derivatives the reader is referred
to Steffensen’s Interpolation, pp. 231-241.
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13. Errors in Determinants. When the elements in a determinant are
inexact numbers, due to rounding or otherwise, the value of the deter-
minant may be seriously affected by the loss of the most important sig-
nificant figures in the expansion or evaluation process. The amount of
such losses cannot be determined in advance. We can, however, determine
the upper limit of the error in a determinant whose elements are subject
to given possible errors. For purposes of illustration we consider a deter-
minant of the third order.

Let
T, T, Iy
(1) D=y, y: ys
2, 2, 24

Now if the elements are subject to possible errors of unknown signs but of
magnitudes Az, Ay, etc., which are small in comparison with z,, y,, etc.,
then the value of D will be subject to the possible error AD such that

I, + AL, I+ A, I3+ Arg
() D4 AD= |y, + Ay, ¥+ A4y. y;+ Ay,
2, + Az, 2. 4 Az, 23 1+ Az

By the addition theorem of determinants the right member of (2) can
be expressed as the sum of eight determinants, the first of which is the
original determinant D. Each of three of the remaining determinants
contains one column of error elements, each of three of the others contains
two columns of error elements, and the remaining determinant has three
columns of error elements. All determinants containing more than one
column of error elements will be neglected, because, when expanded, the
resulting terms will all contain second and third powers of the errors and
will therefore be negligible in comparison with terms containirg only the
first powers of the errors. The value of AD is thus the sum of three deter-
minants each containing a single column of error elements.

But those determinants are only the differential of D, and we therefore
have

dr, 1, 1, r, dr. r, ..r. r, dry|
dy. Y Yyl 4 [y dy: oyl 4+ in Y dy.] ,

(2 2 2 2, day oz 2z, dzy|

(3) dD =
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or

(4)  dD = (Y225 —ys2:) doy — (L22s— Iy22) dys + (£:ys — Tay:2)d2,
— ($12s— Y321) A2z ++ (4123 — Z2321) dY: — (213 — Zsy1 ) dz:

+ (§12:— y.21) Aoy — (L12:— I.2,) dys + (51y. — ray,)dz,.

The maximum possible error would occur when the signs of the elements
and the signs of the errors were such that all the eighteen terms in the
right member of (4) were of the same sign—a very remote possibility.

Equation (4) shows that the error in a determinant composed of inexact
elements may be anything from zero up to a number of considerable mag-
nitude. It must be borne in mind, however, that the terms in (4) will
largely cancel one another so that, in general, dD will not be large.

14. A Final Remark. The present chapter may appropriately close
with the following lines from Alexander Pope:

A little learnin ; is a dangerous thing;
Drink deep, or taste not the Pierian spring:
There shallow draughts intoxicate the brain,
And drinking largely sobers us again.

Pope was probably not thinking of approximate calculation when he
wrote those lines, but no better advice could be given with respect to that
subject. A smatter of knowledge of approximate calculation is worse than
no knowledge at all. Fragmentary knowledge may lead to rough results
that cannot be trusted. The author has seen students and teachers obtain
far worse results from applying hazy ideas of the subject than if they had
never heard of it. Their faulty work was due mostly to drastic rounding
of numbers (at the beginning of a computation or at intermediate steps)
or to dropping non-negligible terms in a series.

The essence of this chapter cannot be given in one or two recitations,
nor in two or three. If the teacher has only two or three recitations to
aevote to it, he had better leave it out entirely.

EXERCISES I

1. Round off the following numbers correctly to four significant figures:

63.8543, 93487, 0.0063945, 83615, 363042, 0.090038, 53908.
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2. A carpenter measures a 10-foot beam to the nearest eighth of an
inch, and a machinist measures a 4-inch bolt to the nearest thousandth
of an inch.* Which measurement is the more accurate?

3. The following numbers are all approximate and are correct as far
as their last digits only. Find their sum.

136.421, 28.3, 321, 68.243, 17.482.

4. Find the sum of the following approximate numbers, each being
correct only to the number of significant figures given:

0.15625, 86.43, 191.6, 432.0 X 10, 930.42.

5. The numbers 48.392 and 6852.4 are both approximate and true only
to their last digits. Find their difference and state how many figures in
the result are trustworthy.

8. Find the value of V10 — = correct to five significant figures.

7. The theoretical horsepower available in a stream is given by the
formula
whQ
550 °
where h = head in feet, Q — discharge in cubic feet per second, and w =
weight of a cubic foot of water. The weight of fresh water varies from
62.3 to 62.5 lbs. per cubic foot, depending upon its temperature and purity.

If the measured values of Q and h are Q =463 cu. ft./sec. and
h = 16.42 ft., find the H. P. of the stream and indicate how many figures
of the result are reliable.

H.P =

8. The velocity of water flowing in long pipes is given by the formula

= \/ Efil’_d_ ft./sce.,

where g = acceleration of gravity — 32.2 ft./sec.?
h = head in feet,
= diameter of pipe in feet,
I — length of pipe in feet,
— coefficient of pipe friction.

®* When a measutement is recorded to the nearest unit. the absolute error of the
measurement is not more than half a unit.
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In this problem the factor f is the most uncertain. It varies from 0.01
to 0.05 and is usually somewhere between 0.02 and 0.03. Assuming that
f is within the limits 0.02 and 0.03 and taking

g == 32.2,

h = 112 feet,
d =} foot, (assumed exact)

l == 1865 feet,
find v and indicate its reliability.
9. The velocity of water in a short pipe is given by the formula

_ 2qh
v \/ 5+ fl/d

where ¢, h, f, I, and d have the same meanings as in the preceding
example. Taking ! = 75 feet and the other data the same.as in Ex. 8,
find v and indicate its reliability.

10. The acceleration of gravity at any point on the earth’s surface is
given by the formula

g =32.1721 — 0.08211 cos 2L — 0.000003H,

where H = altitude in feet above sea level, and L = latitude of the place.
It thus appears that the value of ¢ is not 32, nor 32.2, nor even 32.17.

Compute the kinetic energy of a 100-pound projectile moving with a
velocity of 2000 feet per second by taking g equal to 32, 32.2, and 32.17
in succession and note the extent to which the results disagree after the
first two or three figures.

11. How accurately should the length and time of vibration of a pen-
dulum be measured in order that the computed value of g be correct to
0.05 per cent?

12. If in the formula
r2 b
B=t3
the percentage error in R is not to exceed 0.3 per cent, find the allowable
perceniage errors in r and h when r =48 mm. and h = 56 mm.

13. When the index of refraction of a liquid is determined by means
of a refractometer, the index n is given by the formula

n= VN?—sin?4.

1f N = 1.62200 with an uncertainty of 0.00004 and 6 — 38° approximately,
find A9 in order that n may be reliable to 0.02 per cent.
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14. The area of the cross scction of a rod is desired to 0.2 per cent.
How accurately should the diameter be measured?

15. The approximate latitude of a place can be easily found by
measuring the altitude h of Polaris at a known time ¢ and using the
formula

L==h—pcost,

where p == polar distance == 90° — declination.
Treating p as a constant and equal to 1°0730”, and taking h == 41°25,
t == 0h38m42¢ find the error in L due to errors of 1 in k& and 5° in ¢.
16. In the preceding example find the allowable errors in A and ¢ in

order that the error in L shall not exceed 1/, using the same values of p,
t, and h as before.

17. The distance between any two points P, and P, on the earth’s
surface is given by the formula

co8 D == gin L, sin L, 4 cos L, cos L; cos (A, — Az),

where L,, L, and A,, A. denote the respective latitudes and longitudes of
the two places. Find the allowable errors in L,, L., A, As in order that
the error in D shall not exceed 1’ (a geographical mile), taking

L, =36°10' N, L,==158°43'N, A, =82°15" W, A, ==125°42'W.

18. The fundamental equations of practical astronomy are:

1) sin h = sin § 8in L -} cos 8 cos L cos ¢,
(2) cos h cos A = —sin 8 cos L + cos 8 sin L cos ¢,
(3) cos h sin A == cos & sin ¢,

where & denotes declination, ¢ hour angle, k altitude, and A azimuth of
8 celestial body and L denotes the latitude of a place on the earth. The
declination & is always accurately known and may therefore be considered
free from error.

Differentiating (1) by considering & constant and h, L, ¢ as variables,
we have

cos h dh = sin & cos L dL — cos & sin L cos ¢ dL — cos & cos L sin ¢ dt.

Replacing cos 8 sin L cos ¢ and cos §sin ¢ on the right by their values from
(2) and (3), respectively, we get

dh = —(cos A dL + sin A cos L dt).
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Solving for dL,
(4) QL == —(sec A dh -+ tan 4 cos L dt).

This equation shows that the numerical value of dL is least when A is
near 0° or 180°, that is, when the body is near the meridian. If A should
be near 90°, that is, if the body should be near the prime vertical, the
error in L might be enormous. Hence when determining latitude the
observed body should be as near the meridian as possible. '

Using equation (4), compute dL when dh==1’, dt =10%, L = 40°,
A ==10° and 4 = 80°.

19. Using the formula dL = —(sec Adh + tan 4 cos Ldt), find the

allowable errors in ¢ and h in order that the error in L may not exceed 1’
when L =40° and (a) A =10° and (b) 4 = "75°.

20. From the relation
co8 hdh == (sin 8 cos L — cos d sin L cos ¢)dL — cos & cos L sin tdt

we find by means of (2) and (3) of Ex. 18

dh 4 cos AdL

dl=— sin A cos L

This equation shows that d¢ is least numerically when A4 is near 90°, that
is, when the observed body is near the prime vertical; it also shows that
when the body is on or near the prime vertical an error in the assumed
latitude has practically no effect on the error in ¢.

Compute dt when dh =1’, dL =15’, L ==40°, 4 ==10°, and 4 ==80°.

21. Using the formula for dt in the preceding example, find the allow-
able errors in L and h in order that dt may not exceed 3%, taking L == 40°,
A =10° and A = 80°.

22. Using the formula of Ex. 20, take df = 3%, dh = 1/, and find dL
for A — 10° and 4 = 80°.

23. In the equation

r=asin (kl 4+ a)
suppose ‘a, k and a arc subject to the errors Ag, Ak, Aa, respectively.
Compute Az and see which of the errors Aa, Ak, Aa is the most potent
in causing an error in z.

24. Find the value of

I = n'zsin z/z)dz
]

sorrect to five decimal places.
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25. Compute the value of the integral

r/2

I—= V1 =0.162 sin® pdo

correct to five significant figures by first expanding the integrand by the
binomial theorem and then integrating the result term by term.

26. In the formula

sin } (h, — hs)cos } (h, 4 k,)
cos 8in § (62— fa)cos by
k denotes an angle; h,, k,, ks, ¢, ¢, are all positive; (b, —h;) and (¢, —t,)
are small quantities; and (h, —hs) is small in comparison with k,. Find
the maximum error in k& due to errors in ¢ and h, assuming that

| dhy | == | dhy | = | dhs| and | dt, | = | dts|.

27. Using the result found in Ex. 26, find the maximum value
of dk when df == 0205, dh = 0705, h, == 40°, h, == 40° 15", hy = 40° 30’,

tl_t'_'—4--
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