As a special case, let us assume that the y and z axes are principal axes. Then $I_{yz} = 0$ and Eqs. (9-19) and (9-20) reduce to

$$\sigma_x = \frac{M_y z}{I_y} - \frac{M_z y}{I_z}$$
$$\tan \phi = \frac{y}{z} = \frac{M_y I_z}{M_z I_y}$$

The first of these equations is the same as Eq. (9-12a), and the second agrees with Eq. (9-14) if we note that $\tan \theta = M_y/M_z$.

Example

An angle section with unequal legs ($L 6 \times 4 \times \frac{1}{2}$) is subjected to a bending moment $M_z = 10$ in.-k acting in the xy plane (Fig. 9-15). Determine the maximum tensile and compressive stresses in the beam using the generalized flexure formula.

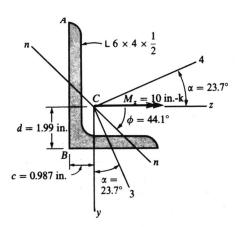


Fig. 9-15 Example. Angle section with unequal legs

The properties of the angle section are given in Appendix E, Table E-5. The centroidal axes y and z are located at distance c = 0.987 in. from the back of the long leg and distance d = 1.99 in. from the back of the short leg. The corresponding moments of inertia are

$$I_y = 6.27 \text{ in.}^4$$
 $I_z = 17.4 \text{ in.}^4$

as obtained from the table.

In order to use the generalized flexure formula, we also need the product of inertia I_{yz} . Because it is not a tabulated quantity, we must calculate I_{yz} from the other properties. One method is to use the formula for rotation of axes for products of inertia (Eq. C-15b, Appendix C). We must apply this formula to a rotation from the principal axes to the yz axes, and then, because the product of inertia is zero for the principal axes, we can solve for I_{yz} . The orientation of the principal axes 3-4 is given in Table E-5 by the angle α . For the angle section in this problem, we obtain

$$\alpha = \arctan 0.440 = 23.7^{\circ}$$

where M_z is the bending moment about the z axis and y is the ordinate to the point under consideration.

Now consider an element abcd cut out between two cross sections, a distance dx apart, and having length s measured along the centerline of the cross section (Fig. 9-21a). The resultant of the normal stresses acting on the face ad is denoted F_1 (Fig. 9-21c) and the resultant on the face bc is denoted F_2 . Since the bending moment at face ad is larger than at bc, the force F_1 will be larger than F_2 ; hence, shear stresses τ must act along the face cd in order to have static equilibrium of the element. These shear stresses must be parallel to the top and bottom surfaces of the element, which are free of stress, and must be accompanied by complementary shear stresses acting on the cross sections ad and bc. Summing forces in the x direction for the element abcd (Fig. 9-21c), we get

$$\tau t \, dx = F_1 - F_2 \tag{a}$$

where t is the thickness of the cross section at cd; that is, t is the thickness at distance s from the free edge of the cross section (Fig. 9-21b). Using Eq. (9-26), we conclude that

$$F_1 = \int_0^s \sigma_x dA = -\frac{M_{z1}}{I_z} \int_0^s y dA$$

where dA is an element of area on the side ad of the element, y is the coordinate of the element dA, and M_{z1} is the bending moment at this cross section. An analogous expression is obtained for the force F_2 :

$$F_2 = \int_0^s \sigma_x dA = -\frac{M_{z2}}{I_z} \int_0^s y dA$$

Substituting the expressions for F_1 and F_2 into Eq. (a), we get

$$\tau = \frac{M_{z2} - M_{z1}}{dx} \frac{1}{I_z t} \int_0^s y \, dA$$

The quantity $(M_{z2} - M_{z1})/dx$ is the rate of change of the bending moment and is equal to $-V_y$, where V_y is the shear force in the y direction (equal to P in Fig. 9-21). Therefore, the equation for the shear stresses is

$$\tau = -\frac{V_{y}}{I_{z}t} \int_{0}^{s} y \, dA$$

This equation gives the shear stresses at any point in the cross section at distance s from the free edge. The integral on the right-hand side represents the first moment with respect to the neutral axis (the z axis) of the area of the cross section from s=0 to s=s. Denoting this first moment by Q_z , and using only the absolute value of the shear stress because its direction can be determined by inspection, we can write the

Fig. 9-25 Shear centers S of sections consisting of two intersecting narrow rectangles

For all cross sections consisting of two narrow intersecting rectangles, as in the examples of Fig. 9-25, the shear stresses have resultant forces that intersect at the junction of the rectangles. Therefore, the shear center S is located at the junction, as shown in the figure.

The locations of the shear centers for most structural shapes are given in this section, either in the preceding discussions or in the examples and problems that follow.*

Example 1

Locate the shear center S of the thin-walled semicircular cross section shown in Fig. 9-26.

Let us consider a section bb defined by the distance s measured along the median line of the cross section. The central angle subtended between point a, which is at the edge of the section, and section bb is denoted by θ . Therefore, we have $s = r\theta$, where r is the radius of the median line. The first moment of the area between a and section bb is

$$Q_z = \int y \, dA = \int_0^\theta (r \cos \phi)(rt) \, d\phi = r^2 t \sin \theta$$

where t is the thickness of the section. Thus, the shear stress τ at section bb is

$$\tau = \frac{V_y Q_z}{I_z t} = \frac{V_y r^2 \sin \theta}{I_z}$$

Substituting $I_z = \pi r^3 t/2$, we get

$$\tau = \frac{2V_y \sin \theta}{\pi r t} \tag{9-46}$$

When $\theta = 0$ or π , this expression gives $\tau = 0$; and, when $\theta = \pi/2$, it gives the maximum shear stress.

The moment about the center O due to the shear stresses τ is

$$T = \int \tau r \, dA = \int_0^{\pi} \frac{2V_y r \sin \theta \, d\theta}{\pi} = \frac{4rV_y}{\pi}$$

which must be the same as the moment due to the force V_y acting at the shear center; hence,

$$T = V_{y}e = \frac{4rV_{y}}{\pi}$$

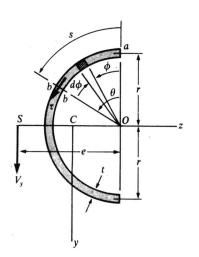
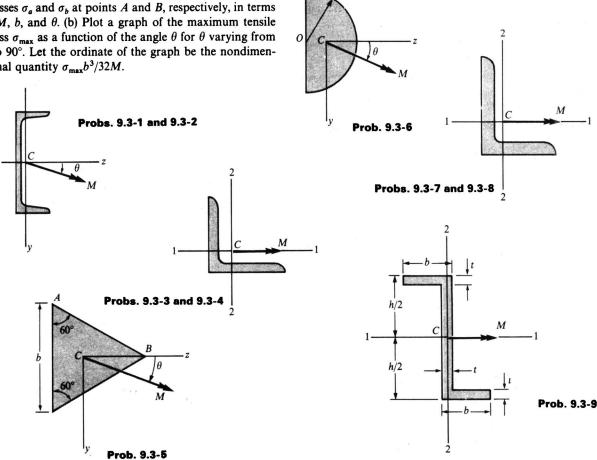



Fig. 9-26 Example 1. Shear center of a thin-walled semicircular section

^{*} The first determination of a shear center was made by Timoshenko in 1913 (Ref. 9-1). For additional information and for the historical development of the shear-center concept, see Refs. 9-1 through 9-20.

- **9.3-1** A channel section is subjected to a bending couple M having its vector at an angle θ to the z axis (see figure). Calculate the maximum tensile stress σ_t and maximum compressive stress σ_c in the beam. Use the following data: $C \times 11.5$ section, M = 30 in.-k, $\tan \theta = \frac{1}{3}$.
- **9.3-2** Solve the preceding problem for a C 6 \times 13 channel section with M = 5.0 in.-k and $\theta = 15^{\circ}$.
- **9.3-3** An angle section with equal legs is subjected to a bending moment M having its vector along the 1-1 axis, as shown in the figure. Calculate the maximum tensile stress σ_t and maximum compressive stress σ_c if the angle is an L 6 \times 6 \times $\frac{3}{4}$ section and M = 20 in.-k.
- **9.3-4** Solve the preceding problem for an L 4 × 4 × $\frac{1}{2}$ angle section with M = 6 in.-k.
- **9.3-5** The cross section of a beam is in the form of an equilateral triangle with sides of length b (see figure). The beam is subjected to a bending couple M having its vector at an angle θ to the z axis. (a) Derive formulas for the stresses σ_a and σ_b at points A and B, respectively, in terms of M, b, and θ . (b) Plot a graph of the maximum tensile stress σ_{\max} as a function of the angle θ for θ varying from 0 to 90°. Let the ordinate of the graph be the nondimensional quantity $\sigma_{\max} b^3/32M$.

- *9.3-6 A beam of semicircular cross section of radius r is subjected to a bending couple M having its vector at an angle θ to the z axis (see figure). Determine the maximum tensile stress σ_{max} in the beam for $\theta = 0$, 45°, and 90°.
- **9.3-8** Solve the preceding problem for an L $7 \times 4 \times \frac{1}{2}$ angle section with M = 15 in.-k.
- *9.3-9 A beam of Z-section is subjected to a bending moment M acting in the 2-2 plane, as shown in the figure. Calculate the maximum tensile stress σ_t and the maximum compressive stress σ_c if the moment $M = 4 \text{ kN} \cdot \text{m}$ and the dimensions are b = 90 mm, h = 180 mm, and t = 15 mm.

Contents

		List of Symbols	xiii
CHAPTER 1			
Tension, Compr	essior	n, and Shear	1
	1.1	Introduction	1
	1.2	Normal Stress and Strain	3
	1.3	Stress-Strain Diagrams	9
	1.4	Elasticity and Plasticity	17
	1.5	Linear Elasticity and Hooke's Law	19
	1.6	Shear Stress and Strain	24
	1.7	Allowable Stresses and Allowable Loads	29
		Problems	35
CHAPTER 2			
Axially Loaded I	Membe	ers	47
	2.1	Introduction	47
	2.2	Deflections of Axially Loaded Members	48
	2.3	Displacement Diagrams	54
	2.4	Statically Indeterminate Structures (Flexibility Method)	57
	2.5	Statically Indeterminate Structures (Stiffness Method)	64
	2.6	Temperature and Prestrain Effects	70
	2.7	Stresses on Inclined Sections	79
	2.8	Strain Energy	86

	*2.9	Dynamic Loading	93
	*2.10	Nonlinear Behavior	101
		Problems	108
CHAPTER 3			
Torsion			131
	3.1	Introduction	131
	3.2	Torsion of Circular Bars	131
	3.3	Nonuniform Torsion	138
	3.4	Pure Shear	141
	3.5	Relationship Between Moduli of Elasticity E and G	146
	3.6	Transmission of Power by Circular Shafts	148
	3.7	Statically Indeterminate Torsional Members	151
	3.8	Strain Energy in Pure Shear and Torsion	155
	3.9	Thin-Walled Tubes	160
	*3.10	Nonlinear Torsion of Circular Bars	167
		Problems	170
CHAPTER 4			
Shear Force and	d Bendi	ing Moment	181
	4.1	Types of Beams	181
	4.2	Shear Force and Bending Moment	184
	4.3	Relationships Between Load, Shear Force, and Bending Moment	188
	4.4	Shear-Force and Bending-Moment Diagrams	192
	7.7	Problems	199
F		Toolenis	177
CHAPTER 5			
Stresses in Bea	ms		205
	5.1	Introduction	205
	5.2	Normal Strains in Beams	207
	5.3	Normal Stresses in Beams	212
	5.4	Cross-Sectional Snapes of Beams	220
	5.5	Shear Stresses in Rectangular Beams	226
	5.6	Shear Stresses in the Webs of Beams with Flanges	232
	*5.7	Shear Stresses in Circular Beams	236
	5.8	Built-Up Beams	238

^{*}An asterisk denotes a difficult or advanced section, example, or problem.

		Contents	ix
	*5.9	Stresses in Nonprismatic Beams	24.
	*5.10	Composite Beams	249
	5.11	Beams with Axial Loads	257
		Problems	262
CHAPTER 6			
Analysis of Stress a	and	Strain	279
- a ·	6.1	Introduction	279
	6.2	Plane Stress	280
	6.3	Principal Stresses and Maximum Shear Stresses	286
	6.4	Mohr's Circle for Plane Stress	294
	6.5	Hooke's Law for Plane Stress	303
	6.6	Spherical and Cylindrical Pressure Vessels (Biaxial Stress)	306
	6.7	Combined Loadings (Plane Stress)	314
	6.8	Principal Stresses in Beams	316
	6.9	Triaxial Stress	318
•	6.10	Three-Dimensional Stress	323
	6.11	Plane Strain	326
Ŧ		Problems	338
CHAPTER 7			
Deflections of Bear	ns		351
	7.1	Introduction	351
	7.2	Differential Equations of the Deflection Curve	351
	7.3	Deflections by Integration of the Bending-Moment Equation	355
	7.4	Deflections by Integration of the Shear-Force and Load Equations	361
	7.5	Moment-Area Method	365
	7.6	Method of Superposition	377
	7.7	Nonprismatic Beams	381
	7.8	Strain Energy of Bending	384
,	* 7.9	Discontinuity Functions	389
,	* 7.10	Use of Discontinuity Functions to Obtain Beam Deflections	399
9	• 7.11	Temperature Effects	405
4	*7.12	Effects of Shear Deformations	407
3	* 7.13	Large Deflections of Beams	414
		Problems	418

X Contents

CHAPTER 8

Statically Indetermina	te Beams	429
8.1	Statically Indeterminate Beams	429
8.2	Analysis by the Differential Equations of the Deflection Curve	431
8.3	Moment-Area Method	434
8.4	Method of Superposition (Flexibility Method)	439
8.5	Continuous Beams	447
*8.6	Temperature Effects	455
*8.7	Horizontal Displacements at the Ends of a Beam	457
	Problems	459
CHAPTER 9		
Unsymmetric Bending]	469
9.1	Introduction	469
9.2	Doubly Symmetric Beams with Skew Loads	470
9.3	Pure Bending of Unsymmetric Beams	474
9.4	Generalized Theory of Pure Bending	481
9.5	Bending of Beams by Lateral Loads; Shear Center	486
9.6	Shear Stresses in Beams of Thin-Walled Open Cross Sections	490
9.7	Shear Centers of Thin-Walled Open Sections	496
*9.8	General Theory for Shear Stresses	501
	Problems	507
CHAPTER 10		
Inelastic Bending		515
10.1	Introduction	515
10.2	Equations of Inelastic Bending	516
10.3	Plastic Bending	517
10.4	Plastic Hinges	522
10.5	Plastic Analysis of Beams	524
*10.6	Deflections	532
*10.7	Inelastic Bending	535
*10.8	Residual Stresses	541
	Problems	542

CHAPTER 11

Columns		551
11.1	Buckling and Stability	551
11.2	Columns with Pinned Ends	553
11.3	Columns with Other Support Conditions	560
11.4	Columns with Eccentric Axial Loads	567 569
11.5	Secant Formula	
*11.6	Imperfections in Columns	574
11.7	Elastic and Inelastic Column Behavior	576
*11.8	Inelastic Buckling	578
11.9	Column Design Formulas	583
	Problems	589
снартев 12		
Energy Methods		597
12.1	Introduction	597
12.2	Principle of Virtual Work	597
12.3	Unit-Load Method for Calculating Displacements	602
12.4	Reciprocal Theorems	617
12.5	Strain-Energy and Complementary Energy	623
12.6	Strain-Energy Methods	635
12.7	Complementary Energy Methods	645
12.8	Castigliano's Second Theorem	655
*12.9	Shear Deflections of Beams	660
	Problems	666
References ar	nd Historical Notes	675
APPENDIX A Systems of U	nits	687
A. 1	Introduction	687
A.2	SI Units	688
A.3	U.S. Customary Units	689
A.4	Conversions	693
APPENDIX B Significant Dig	gits	697
B.1	Significant Digits	697
B.2	Rounding off Numbers	. 699
		. 4

XII Contents

APPENDIX	С	Centroids and	Moments of Inertia of Plane Areas	700
		C.1	Centroids of Areas	700
		C.2	Centroids of Composite Areas	702
		C.3	Moments of Inertia of Areas	704
		C.4	Parallel-Axis Theorem for Moments of Inertia	707
		C.5	Polar Moments of Inertia	710
		C.6	Products of Inertia	712
		C.7	Rotation of Axes	715
		C.8	Principal Axes	716
			Problems	720
APPENDIX	D	Properties of	Plane Areas	724
APPENDIX	E	Properties of Selected Structural-Steel Shapes Section Properties of Structural Lumber Deflections and Slopes of Beams		729
APPENDIX	F			735
APPENDIX	G			736
APPENDIX H	Н	Mechanical Pr	operties of Materials	742
		Answe	ers to Selected Problems	748
		Name	Index	763
		Subje	ct Index	764