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As a special case, let us assume that the y and z axes are principal
axes. Then I y • = 0 and Eqs. (9-19) and (9-20) reduce to

Myz M.y
(1 ------

x ly I.

y M,I.
tan ¢ =- =--

z M.ly

The first of these equations is the same as Eq. (9-12a), and the second
agrees withEq. (9-14) if we note that tan () = My/M•.

Example

An angle section with unequal legs (L 6 x 4 x t) is subjected to a bending
moment M. = 10 in.-k acting in the xy plane (Fig. 9-15). Determine the
maximum tensile and compressive stresses in the beam using the generalized
flexure formula.

A

Flg.9-15 Example. Angle section
with unequal legs
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The properties of the angle section are given in Appendix E, Table E-5.
The centroidal axes y and z are located at distance c = 0.987 in. from the back
ofthe long leg and distance d = 1.99 in. from the back of the short leg. The cor-
responding moments of inertia are

I y = 6.27 in.4 I. = 17.4 in.4

as obtained from the table.
In order to use the generalized flexure formula, we also need the product

of inertia I~,.. Because it is not a tabulated quantity, we must calculate I yz from
the other properties. One method is to use the formula for rotation of axes for
products of inertia (Eq. C-15b, Appendix C). We must apply this formula to a
rotation from the principal axes to the yz axes, and then, because the product of
inertia is zero for the principal axes, we can wIve for 1y.' The orientation of the
priDcipalaxes 3-4 is given in Table E-5 by the angle ex. For the angle section in
this problem, we obtain

ex = arctan 0.440 = 23.7°
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where M% is the bending moment about the z axis and y is the ordinate
to the point under consideration.

Now consider an element abed cut out between two cross sections,
a distance dx apart, and having length s measured along .the centerline
of the cross section (Fig. 9-21a). The resultant of the normal stresses
acting on the face ad is denoted F1 (Fig. 9-21c) and the resultant on the
face be is denoted F 2' Since the bending moment at face ad is larger
than at be, the force F 1 will be larger than F 2; hence, shear stresses t

must act along the face ed in order to have static equilibrium of the
element. These shear stresses must be parallel to the top and bottom
surfaces of the element, which are free of stress, and must be accom-
panied by complementary shear stresses acting on the cross sections
ad and be. Summing forces in the x direction for the element abed
(Fig. 9-21c), we get

(a)

where t is the thickness of the cross section at ed; that is, t is the thick-
ness at distance s from the free edge of the cross section (Fig. 9-21b).
Using Eq. (9-26), we conclude that

is M %1 isF1 = t1x dA = --/- ydA
o % 0

where dA is an element of area on the side ad of the element, y is the
coordinate of the element dA, and M%l is the bending moment at this
cross section. An analogous expression is obtained for the force F 2:

fs M%2 isF 2 = t1x dA = --/- ydA
o % 0

Substituting the expressions for F 1 and F 2 into Eq. (a), we get

M%2- M %1 1 is dA
t= - Y

dx /%t 0

The quantity (M: 2 - M:1)/dx is the rate of change of the bending
moment and is equal to - Vy, where Vy is the shear force in the y
direction (equal to P in Fig. 9-21). Therefore, the equation for the shear
stresses is

Vy ist = -- ydA
/ %t 0

This equation gives the shear stresses at any point in the cross section
at distance s from the free edge. The integral on the right-hand side
represents the first moment with respect to the neutral axis (the z axis)
of the area of the cross section from s = 0 to s = s. Denoting this first
moment by Q%, and using only the absolute value of the shear stress
because its direction can be determined by inspection, we can write the
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Fig. 9-25 Shear centers S of sections
consisting of two intersecting narrow
rectangles
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For all cross sections consisting of two narrow intersecting rec-
tangles, as in the examples of Fig. 9-25, the shear stresses have resultant
forces that intersect at the junction of the rectangles. Therefore, the shear
center S is located at the junction, as shown in the figure.

The locations of the shear centers for most structural shapes are
given in this section, either in the preceding discussions or in the ex-
amples and problems that follow.·

Example 1

Locate the shear center S of the thin-walled semicircular cross section shown in
Fig. 9-26.

Let us consider a section bb defined by the distance s measured along the
median line of the cross section. The central angle subtended between point a,
which is at the edge of the section, and section bb is denoted by O. Therefore,
we have s = rO, where r is the radius of the median line. The first moment of the
area between a and section bb is

Qz = fydA = J: (r cos ¢)(rt)d¢ = r2t sin 0

where t is the thickness of the section. Thus, the shear stress t at section bb is

VyQz Y,r2 sin 0
t = -- = -'--:---

I zt I z

Substituting lz = 1tr3t/2, we get

When 0 = 0 or 1t, this expression gives t = 0; and, when 0 = 1t/2, it gives the
maximum shear stress.

The moment about the center 0 due to the shear stresses t is

Fig. 9-26 Example 1. Shear center of
a thin-walled semicircular section

2Vy sin 0
t=----:.--

1trt
(9-46)

f i"2Y,r sin 0 dO 4rY,
T= rrdA = =--

o 1t 1t

which must be the same as the moment due to the force Vy acting at the shear
center; henc::,

4rY,
T= Y,e=~

• The first delermination ofa shear center was made by Timoshenko in 1913 (Ref.
9-1). For additional information and for the historical development of the shear-center
concept, see Refs. 9-1 through 9-20.
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·9.3-6 A beam of semicircular cross section of radius r is
subjected to a bending couple M having its vector at an
angle 0 to the z axis (see figure). Determine the maximum
tensile stress U m.. in the beam for 8 = 0, 45°, and 90°.

9.3-7 An angle section with unequal legs is subjected
to a bending moment M having its vector along axis 1-1,
as shown in the figure. Calculate the maximum tensile
stress u, and the maximum compressive stress U c in the
beam if the angle is an L 8 x 6 x I section and M =

25 in.-k.

9.3-8 Solve the preceding problem for an L 7 x 4 x !
angle section with M = 15 in.-k.

·9.3-9 A beam of Z-section is subjected to a bending
moment M acting in the 2-2 plane, as shown in the figure.
Calculate the maximum tensile stress u, and the maximum
compressive stress uc if the moment M = 4 kN .m and the
dimensions are b = 90 mm, h = 180 mm. and t = 15 mm.
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9.3-' A channel section is subjected to a bending couple
M having its vector at an angle 8 to the z axis (se~ figure).
Calculate the maximum tensile stress u, and maximum
compressive stress Uc in the beam. Use the following data:
C 8 x 11.5 section, M = 30 in.-k, tan 8 = t.
9.3-2 Solve the preceding problem for a C 6 x 13 chan-
nel section with M = 5.0 in.-k and 8 = 15°.

9.3-3 An angle section with equal legs is subjected to a
bending moment M having its vector along the I-I axis,
as shown in the figure. Calculate the maximum tensile
stress u, and maximum compressive stress Uc if the angle
is an L6 x 6 x i section and M = 20 in.-k.

9.3-4 Solve the preceding problem for an L 4 x 4 x !
angle section with M = 6 in.-k.

9.3-5 The cross section of a beam is in the form of an
equilateral triangle with sides of length b (see figure). The
beam is subjected to a bending couple M having its vector
at an angle 8 to the z axis. (a) Derive formulas for the
stresses Ua and Ub at points A and B, respectively, in terms
of M, b, and 8. (b) Plot a graph of the maximum tensile
stress UlnaX as a function of the angle 8 for 8 varying from
oto 90°. Let the ordinate of the graph be the nondimen-
sional quantity umaxb3/32M.
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