

OVERVIEW

Pharmacology is the study of drugs. In general pharmacology section, important definitions, salient features of routes of drug administration, pharmacokinetics and pharmacodynamics are highlighted.

DEFINITIONS

Pharmacology: The science that deals with the study of drugs and their interaction with the living systems.

Drug (*Drogue*—a dry herb in French) is a substance used in the diagnosis, prevention or treatment of a disease. WHO definition: "A drug is any substance or product that is used or intended to be used to modify or explore physiological systems or pathological states for the benefit of the recipient."

Pharmacokinetics is the study of absorption, distribution, metabolism and excretion of drugs, i.e. what the body does to the drug (in Greek, *Kinesis* = movement).

Pharmacodynamics is the study of **effects of drugs** on the body and their **mechanisms of action**, i.e. what the drug does to the body.

Pharmacoeconomics deals with the cost, i.e. economic aspects of drugs used therapeutically. **Pharmacogenomics** is a branch of pharmacogenetics and deals with the **use of genetic information** to guide the choice of drugs in a person.

Pharmacoepidemiology is the study of both useful and adverse effects of drugs on **large numbers** of people.

Toxicology deals with the **adverse effects** of drugs and also the study of **poisons**, i.e. detection, prevention and treatment of poisonings.

Adverse drug reaction—"is any response to a drug that is noxious and unintended and that occurs at doses used in man for prophylaxis, diagnosis or therapy."

Toxic epidermal necrolysis (TEN) is the most serious form of drug allergy with cutaneous reactions that can be fatal. Aminopenicillins, sulphonamides, sulfones, phenytoin, barbiturates, carbamazepine, phenylbutazone and quinolones are some drugs associated with TEN and SJS.

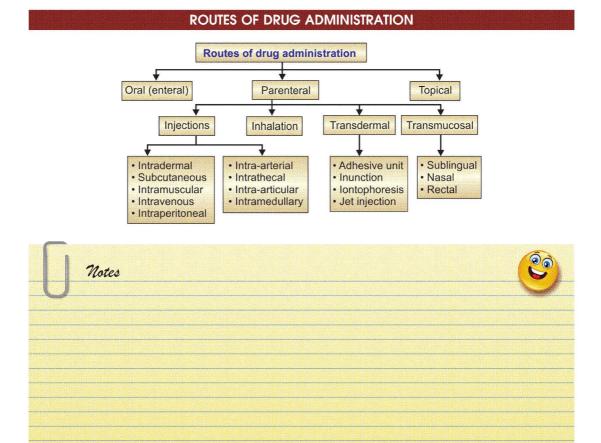
Teratogenicity is the ability of a drug to cause **fetal abnormalities** when administered to a pregnant woman.

Chemotherapy is the use of drugs and chemicals for the treatment of infections. It also includes the use of chemical compounds to treat malignancies.

Pharmacopoeia (in Greek, *Pharmacon* = drug; *poeia* = to make) is the official publication containing a list of drugs and medicinal preparations approved for use, their formulae and

other information needed to prepare a drug. Pharmacopoeia also has information on the sources of drugs, their physical properties, doses and tests for identity, purity and potency.

Chronopharmacology involves the correlation of drug effects to *circadian rhythm* to obtain optimum therapeutic effects and minimise the adverse effects, e.g. bronchospasm usually occurs at night.


- Blood pressure rises at dawn and dusk and is the lowest at midnight.
- Acute myocardial infarction is more common in the morning hours.

Chronotherapy is the administration of drugs to match the circadian rhythm.

Chronobiotics are drugs that can be used to modify or reset the circadian rhythm and may be useful in sleep disorders and jet lag.

Absorption is the passage of the drug from the site of administration into the circulation. **Bioavailability** is the fraction of the drug that reaches the systemic circulation following administration by any route.

Bioequivalence Comparison of bioavailability of different formulations of the same drug is the study of bioequivalence.

Table 1.1: Salient features of important routes of drug administration			
Route	Advantages	Disadvantages	Other important features
Enteral route	 Safest route Most convenient Most economical Drugs can be selfadministered Non-invasive route 	 Onset of action is slower Irritant and unpalatable drugs cannot be administered. Some drugs may not be absorbed, e.g. streptomycin. Irritation to the GIT may lead to vomiting. Absorption may be irregular. Drugs may be destroyed by gastric juices, e.g. insulin. Cannot be given to unconscious and uncooperative patients. May undergo extensive first pass metabolism. 	Sometimes drugs are coated with substances, like synthetic resins, gums, sugar, colouring and flavouring agents making them more acceptable.
Enteric coated tablets	 Frequency of administration may be reduced. Therapeutic concentration may be maintained for longer periods. 	 Failure may result in the release of the entire amount of drug in a short time, leading to toxicity. More expensive 	
Parente- ral route	 Action is more rapid and predictable. Can be employed in an unconscious or uncooperative patient. Gastric irritants can be given parenterally. Can be used in patients with vomiting or those unable to swallow. Digestion by the gastric and intestinal juices and the first pass metabolism are avoided. 	 Asepsis must be maintained. Injections may be painful More expensive Less safe and inconvenient Injury to nerves and other tissues possible 	Drugs are directly delivered into tissues
Subcuta- neous route	 Absorption slow and uniform Reliable Duration of action prolonged Can be trained for self-injection 	 Irritant drugs cannot be injected because they can cause severe pain. In shock, absorption is not dependable because of vasoconstriction. Repeated injections at the same site can cause lipoatrophy resulting in erratic absorption. 	E.g. insulin, heparin
Intra- muscular	Reliable routeAbsorption is rapid.	IM injection may be painful or may result in an abscess.	• Aqueous drug solution injected into a large muscle, like deltoid, gluteus.

vomiting, those unable to swallow and after

gastrointestinal surgery.

 Useful in unconscious and uncooperative patients.

Table 1.1: Salient features of important routes of drug administration (contd.) Route Advantages Disadvantages Other important features Soluble substances, Nerve injury should be avoided; Absorption by simple irritant solutions can damage diffusion mild irritants, depot preparations, suspenthe nerve, if injected near a nerve. • Maximum 10 ml sions and colloids · Local infection and tissue nec- Oily solution absorbed can be injected. rosis are possible. slowly Infants → use rectus femoris as gluteus not developed Intra-· Most useful route in · Once injected, the drug cannot · May be given as bolus, venous emergencies be withdrawn. slow injection or infusion. • Provides predictable Thrombophlebitis possible • Generally 1 litre in 3-4 blood concentrations. Extravasation may cause hrs. - 100% bioavailability irritation and sloughing. · Large volumes of solu-· Only aqueous solutions can be tions can be given. given IV; but not suspensions, Irritants can be given. oily solutions and depot prepa- Rapid dose adjustments rations. · Self-medication is difficult. are possible. Inhalation • Almost instantaneous Irritant gases may enhance Volatile liquids and gases absorption of the drug pulmonary secretions, should only In pulmonary diseases, be avoided. it serves almost as a local • Drug particles may induce cough, e.g. cromolyn sodium. Smaller dose needed. First pass metabolism avoided. Blood levels of volatile anaesthetics can be conveniently controlled. Sublingual • Absorption is rapid. Buccal ulceration can occur. E.g. nitroglycerin, nifedi- First pass metabolism is Drugs which cannot be given pine. avoided. by this route are: After the desired effect - Lipid-insoluble drugs is obtained, the drug can - Drugs of higher molecular weight be spat out to avoid the - Irritants unwanted effects. - Unpalatable drugs Rectal Gastric irritation avoided. Irritation of the rectum can Drug absorbed from the upper part of gut -carried Can be administered by by superior occur. unskilled persons. Absorption may be irregular haemorrhoidal vein to • Useful in geriatric and unpredictable. portal circulation. patients, patients with From lower part of gut-

middle and inferior

haemorrhoidal veins to

systemic circulation.

Table 1.2: Salient features of pharmacokinetic processes

Definition

Absorption

Definition: Absorption is the passage of the drug from the site of administration into the circulation.

- Involves processes like diffusion, filtration and specialised transport.
- Lipid-soluble, unionised drugs are well-absorbed.
- Acidic drugs absorbed from the stomach and basic drugs absorbed from the intestines.

Distribution

- After a drug reaches systemic circulation, it gets distributed to other tissues.
- Involves processes, like filtration, diffusion and specialised transport. Unionised lipidsoluble drugs widely distributed.

Redistribution: Highly lipid-soluble drugs given i.v./inhalation are rapidly distributed into highly perfused tissues, like brain and heart, but soon get redistributed into less vascular tissues, like muscle and fat → termination of drug action.

Metabolism/biotransformation (Fig 1.6 and Table 1.4) Biotransformation is the process of biochemical alteration of the drug in the body.

- It converts the drugs into more polar, watersoluble compounds for easy excretion through kidneys.
- Some drugs, like frusemide, excreted unchanged. Drugs largely metabolised in liver and to a small extent by the kidney, lungs, gut, mucosa, blood and skin.
- Some metabolites may also be active and action gets prolonged.
- · Active metabolite may be toxic.

Excretion

Drugs are converted to water-soluble metabolites and some are directly excreted.

Excretion through kidneys, intestines, biliary system, lungs, sweat, saliva and milk.

Ionised drugs of low mol wt (<10,000) easily filtered by glomerular membrane.

Large water-soluble conjugates excreted in bile.

Salient features

Factors influencing absorption:

- · Disintegration and dissolution time
- · Particle size
- pH and ionisation
- Area and vascularity of absorbing surface
- Formulation
- Lipid solubility
- Gastrointestinal motility
- Diseases
- · Presence of food
- Metabolism.

Factors influencing distribution:

- · Lipid solubility, ionisation
- Blood flow
- Binding to plasma proteins and cellular proteins:

Some drugs bind to specific tissues due to special affinity – serve as drug reservoir, delays elimination and prolongs action.

Factors influencing metabolism:

- Genetic variation: Example atypical pseudocholinesterase.
- Environmental pollutants: Like cigarette smoke, cause enzyme induction.
- Age: Extremes of age enzyme activity is low.
- Diseases of the liver: Reduced metabolism:

Cells of proximal tubules actively secrete acids and bases.

Acids—penicillin, salicylic acid, probenecid Base—amphetamine

Drugs may compete for same transport system. Some drugs reabsorbed from the gut and carried back to liver called **'enterohepatic circulation'**.

	Table 1.3: Some impo	ortant concepts in pharmaco	kinetics
	Definition	Examples	Other salient features
Prodrug	Inactive form of a drug which gets metabolised to the active derivative in the body.	Levodopa, enalapril	 ↑ drug availability at the site, e.g. Levodopa Prolong duration of action, e.g. bacampicillin Improve tolerability, e.g. cyclophosphamide Drug targeting, e.g. selective toxicity to infected cells, e.g. zidovudine Improve stability, e.g. aspirin more stable at gastric pH
First pass metabolism	Metabolism of a drug during its passage from the site of absorption to systemic circulation.	Nitroglycerine, propranolol, salbutamol, insulin	 Partial → give higher dose Complete → change route of administration
Bioavailability (Fig. 1.1)	Fraction of the drug that reaches the systemic circulation following administration by any route.	Chlortetracycline → 30%, Carbamazepine → 70%, Diazepam→100%	 Transdermal → 80–100% bab IM/SC inj → >75% Large bab variations → toxicity or therapeutic failure, e.g. halofantrine Comparison of bioavailability of different formulations of a drug is study of bio-equivalence.
Plasma protein binding (Fig. 1.2)	On reaching circulation, most drugs bind plasma proteins. Acidic drugs bind albumin; Basic drugs bind alpha acid glycoprotein.	Warfarin \rightarrow 99%, Morphine \rightarrow 35%, Ethosuximide and Lithium \rightarrow 0%	 Only free fraction available for action Serves as a reservoir and prolongs action. Competition for binding sites → displacement interactions, e.g. warfarin and indomethacin. Highly protein-bound drugs use carefully in chronicliver/kidney disease.
Volume of distribution	Volume necessary to accommodate entire amount of drug administered, if the drug is homogeneously distributed.	Small V _d —aspirin, aminoglycosides; Large V _d —pethidine, chloroquine	 Drug retained mostly in plasma → small V_d Drugs widely distributed → large V_d Knowledge of V_d useful for treatment of poisoning; small V_d drugs easily removed by haemodialysis. Tissue permeability, protein binding influence V_d

Enzyme induction	Definition Synthesis of microsomal	Examples	Salient features
	Synthesis of microsomal		
Induction	enzymes ↑ed by drugs— enzyme inducers cytochrome P450 enzymes induced	Phenobarbitone, rifampicin, alcohol, cigarette smoke, DDT, griseofulvin	 Therapeutic failure, e.g. failure of oral contraceptives in patients taking rifampicin. Toxicity: High amounts of toxic intermediate metabolites, e.g. paracetamol
			3. Tolerance to drugs → autoinduction, e.g. carbamazepine
			 Result in disease → anti- epileptics ↑ vit D break- down → osteomalacia
			 Variable response → in chronic smokers, alcoholics
			6. Therapeutic application → phenobarbitone in neonatal jaundice
Enzyme inhibition	Inhibition of CYP 450 and other enzymes by drugs	Chloramphenicol, erythromycin, ciprofloxacin	1. Irreversible binding of enzymes → suicide inhibitors, e.g. selegiline, ticlopidine
			 Non-microsomal enzyme inhibitors → e.g. allopurinol inhibits XO, NSAIDs inhibit COX, theophylline inhibits PDE
First order kinetics (Fig. 1.3)	A constant fraction of the drug is metabolised/ eliminated per unit time.	Most drugs	1. First order kinetics applies also for absorption.
Zero order kinetics	A constant amount of drug present in the body is metabolised/eliminated per unit	phenytoin, heparin	1. Enzyme gets saturated and in over dose high toxicity.
	time.		 Mixed order kinetics: Initially first order, higher dose → zero order, e.g. phenytoin, warfarin
Plasma half- life (Fig. 1.4)	Time taken for plasma concn of a drug to be reduced to half of its value. Biological half-life —time required for total amount of drug in the body to be reduced to half.	Esmolol \rightarrow 10 min, Aspirin \rightarrow 4 hours, Suramin \rightarrow 90 days, Mefloquine \rightarrow 16–24 days	 Indicates duration of action, frequency of administration, time needed for steady state and helps to calculate loading and maintenance dose. Plasma protein binding,
	Biological effect t½—time required for biological effect of drug to be halved.		enterohepatic circulation, metabolism and tissue storage influence t½

	Table 1.3: Some importe	ant concepts in pharmaco	okinetics (contd.)
	Definition	Examples	Other salient features
Therapeutic drug monitoring	Treatment monitored by measuring plasma drug concentrations.	Theophylline, lithium, digoxin, aminoglycosides	Needed for: 1. Drugs with low safety margin to avoid thera- peutic failure, e.g. digoxin, theophylline, lithium.
			 To reduce risk of toxicity, e.g. aminoglycosides. When there are no reliable methods to assess benefit, e.g. antidepressants.
			4. To treat poisoning.
			Unexplainable therapeutic failure to check patient compliance.

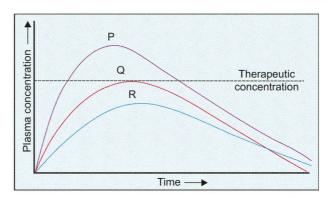


Fig. 1.1: Study of bioequivalence—three different oral formulations—P, Q and R of the same drug yield different bioavailability values. The area under each curve gives the bioavailability of the respective formulation

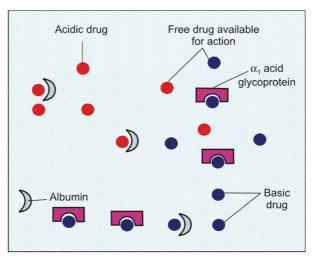


Fig. 1.2: Plasma protein binding. Acidic drugs bind albumin and basic drugs bind α_1 acid glycoprotein

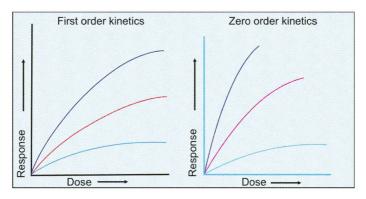


Fig. 1.3: First order kinetics: As the plasma concentration rises, metabolism and excretion proportionately increase; Zero order kinetics: In higher doses, the drug accumulates and the plasma concentration rises resulting in toxicity

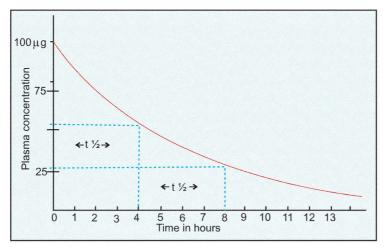


Fig. 1.4: Plasma concentration—time curve following intravenous administration of a drug. Plasma t½ of the drug = 4 hours

Fig. 1.5: Drug accumulation and attainment of steady state concentration. On oral administration, it takes 4–5 half lives to attain steady state concentration.

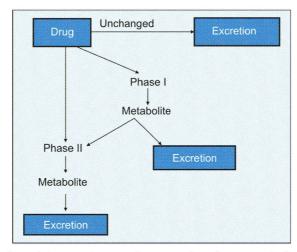
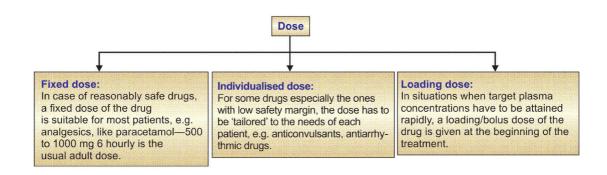



Fig. 1.6: Phases in metabolism of drugs. A drug may be excreted as phase I metabolite or as phase II metabolite. Some drugs may be excreted as such.

Table 1.4:	Important drug biotransformation reactions
Reactions	Example of drugs
Phase I reactions	
Oxidation	Phenytoin, diazepam, ibuprofen, amphetamine, chlorpromazine, dapsone
Reduction	Chloramphenicol, halothane
Hydrolysis	Pethidine, procaine, enalapril
Phase II reactions	
Conjugation reactions	
Glucuronide conjugation	Chloramphenicol, morphine, diazepam, aspirin
Acetylation	Sulphonamides, isoniazid
Methylation	Adrenaline, noradrenaline, dopamine, histamine
Glutathione conjugation	Paracetamol
Sulfate conjugation	Paracetamol, steroids
Amino acid conjugation	Salicylic acid, benzoic acid

Processes	Methods	Examples
Absorption		
• Oral	Sustained release preparation, coating with resins, etc.	Iron, deriphylline
• Parenteral	 Reducing solubility—oily suspension Altering particle size 	Procaine + penicillin, depot progestir Insulin zinc suspension as large crysta that are slowly absorbed
	3. Pellet implantation	DOCA
	- Sialistic capsules	Testosterone
	4. Reduction in vascularity	Adrenaline + lignocaine
	of the absorbing surface	(vasoconstrictor)
	5. Combining with protein	Protamine + zinc + insulin
	6. Chemical alteration—esterification	Estrogen
		Testosterone
 Dermal 	Transdermal adhesive patches,	Scopolamine
	Ointments	Nitroglycerin
	Ocuserts (transmucosal)—used in eye	Pilocarpine
Distribution	Choosing more protein bound	Sulphonamides, like
	member of the group	sulfamethoxypyridazine
Metabolism	Inhibiting the metabolising	Physostigmine prolongs
	enzyme cholinesterase	the action of acetylcholine
	By inhibiting the enzyme peptidase	Cilastatin—prolongs the
	in renal tubular cells	action of imipenem
Excretion	Competition for same transport system— for renal tubular secretion	Probenecid prolongs the action of penicillin and ampicillin

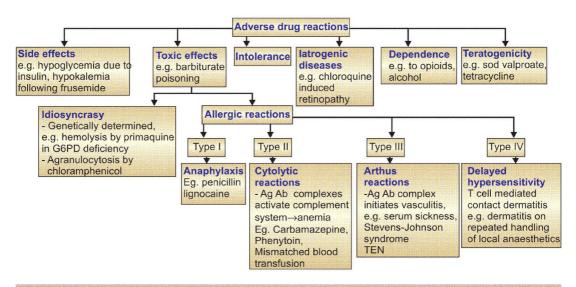
RECEPTOR Receptor Receptor is a macromolecular Antagonist binds to the receptor and Agonist binds to the prevents the action of the agonist on site on the cell to which an receptor and produces a agonist binds and brings the receptor; has affinity but no response→ has both intrinsic activity, e.g. tubocurarine is about a response, e.g. affinity and intrinsic activity, adrenergic receptor, antagonist at nicotinic receptors. e.g. adrenaline (α,β receptor; Inverse agonist: binds to the receptor opioid receptor morphine mu(µ) receptor. and produces effect opposite to that of Partial agonist: binds to the pure agonist e.g. β carbolenes on receptor but has low intrinsic GABA receptor. activity, e.g. pentazocin at µ receptor, pindolol at β receptor Receptor types 2.G-protein coupled 3. Enzymatic receptors 1.lon channels 4. Nuclear receptors (ionotropic receptor) receptors (kinase linked receptor) (Transcription factors (metabotropic receptor) e.g. nicotinic receptor or receptors that regulate e.g. Insulin receptor eg. Adrenergic and JAK-STAT kinase binding. gene transcription), muscarinic receptors e.g. Steroid, thyroid, e.g. Growth hormone, Effector pathways Vitamin D receptor interferons - Adenylyl cyclase pathway - Phospholipase C/IP3 - DAG

- Ion channel regulation

Factors Modifying Drug Actions

- Body weight: For obese and underweight—calculate the dose.
- Age—newborn, infants and elderly more prone to ADRs.
- Gender, species and race—blacks tolerant to atropine.
- Diet and environment—pollutants like DDT cause enzyme induction.
- Route and time of drug administration: Magnesium sulphate—different actions by different routes.
- · Genetic factors: Production of drug-metabolising enzymes is genetically controlled and could vary.
- Dose, e.g. tetracyclines chelate calcium in food and interfere with absorption
- · Diseases, e.g. cardiac, renal, liver and endocrine dysfunction
- · Repeated dosing—cumulation, tolerance
- Psychological factor—doctor's personality can influence; placebo
- Presence of other drugs—drug interactions.

Drug interactions: Alteration in the duration or magnitude of the pharmacological effects of one drug by another drug. It could result from pharmacokinetic and pharmacodynamic mechanisms.


Orphan drugs: Drugs used for the prevention and treatment of rare or orphan diseases, e.g. acetylcysteine for paracetamol poisoning.

Orphan diseases are diseases that affect only small number of patients (as per WHO < 6.5–10 per 10,000 persons). For example, Gaucher's disease, Kyasanur Forest disease, acromegaly.

	Table 1.6: Some impo	rtant concepts in pharmacod	ynamics
	Definition	Examples	Other salient features
Receptor	Macromolecular site on the cell with which an agonist binds to bring about a change.	Muscarinic receptor, opioid receptor, adrenergic receptor	Functions: Recognises the ligand, propagates the message. Families: GPCRs, ion channels, enzymatic receptors, nuclear receptors.
Therapeutic index (TI)	TI indicates the safety margin of the drug. It is the ratio of LD50 to ED50.	TI of penicillin and diazepam: High Lithium: Low	TI varies from species to species; may vary for each action; higher the TI safer is the drug.
Additive effect	Effect of two or more drugs get added up and the total effect is equal to the sum of their individual effects.	Ephedrine + theophylline, nitrous oxide + ether	
Synergism	Action of one drug is enhanced or facilitated by another drug and the combination is synergistic.	Acetylcholine + physostigmine Levodopa + carbidopa	Synergistic combinations are generally preferred
Antagonism	One drug opposing or inhibiting the action of another.	Chemical antagonism Chelating agents, antacids Physiological antagonism Adrenaline + histamine Insulin + glucagon Pharmacological antagonism Reversible antagonism:	

	Definition	Examples	Other salient features
		Acetylcholine plus atropine Irreversible antagonism: Adrenaline plus phenoxybenzamine. Non-competitive antagonism Verapamil blocks cardiac calcium channels	
Tolerance	Requirement of higher doses of a drug to produce a given response.	Morphine, barbiturates, opioids Natural tolerance—some species less sensitive to the drug. Acquired tolerance develops on repeated administration.	Mechanisms: Pharmacokine-tic—changes in ADME of drug Pharmacodynamic—target tissue less responsive to the drugs, like down regulation of receptors.
Tachyphylaxis (acute tolerance)	Some drugs given repeatedly at short intervals → tolerance develops rapidly.	Ephedrine, amphetamine, tyramine, 5HT	Displacing NA from symp nerve endings—depletion of NA stores
Placebo (dummy medication)	Inert dosage form with no specific biological activity, but resembles the actual preparation in appearance.	Distilled water inj, vitamins, minerals, lactose	Used in clinical trials as a comparator To please a patient psychologically Placebo reactors: People more likely to respond to placebo.

Table 1.7: Phases of clinical trials			
Phases	Number of subjects	Objectives	Conducted by
Phase I	20–50 normal volunteers	To establish safety, to know biological effects, pharmacokinetic profile and to design a safe dose	Clinical pharmacologist
Phase II	100–300 patients	To establish efficacy, detect adverse effects and pharmacokinetics	Clinical pharmacologists and clinical investigators
Phase III	250 to >1000 selected patients	To establish efficacy, safety, to identify latent side effects, tolerance; design ideal dose range and to compare with existing drugs	Clinical investigators
Phase IV (post- marketing surveillance)	2,000 to > 10,000 patients	Long-term safety and efficacy; to identify other possible therapeutic uses	Medical practitioners

Compilation of some useful examples

Drugs that are almost completely absorbed on oral ingestion (100% bioavailability)

- Diazepam
- Phenylbutazone
- Doxycycline
- Chlordiazepoxide
- Lithium
- Salicylic acid
- Digitoxin
- Minocycline
- Valproic acid
- Indomethacin
- Phenobarbitone
- Linezolid

Drugs that undergo extensive first pass metabolism

- Propranolol
- Lignocaine
- Verapamil
- Pentazocine
- Nitroglycerin
- Testosterone
- Hydrocortisone
- Metoprolol Chlorpromazine
- Morphine
- Pethidine
- Insulin
- Isoprenaline
- Levodopa

Phenytoin

Sulfonamides

Drugs that are highly bound to plasma proteins

- Warfarin
- Diazepam
- Phenylbutazone
- Indomethacin
- Tolbutamide
- Clofibrate
- Salicylates
- Frusemide

Absorption increased by fatty food

- Halofantrine
- Albendazole
- Atovaguone
- Griseofulvin
- Efavirenz
- Posaconazole

Apparent volume of distribution (V_d)

Low V drugs

- Heparin
- Warfarin
- Aminoglycosides
- High V drugs
- Pethidine
- Digoxin
- Chloroquine

- Aspirin
- Furosemide
- Ampicillin
- Amoxicillin
- Nortriptyline
- Fluoxetine
- Haloperidol
- Amiodarone

Griseofulvin

Metronidazole

Cigarette smoke

Some microsomal enzyme inducers Phenytoin

- Phenobarbitone
- Rifampicin
- Tolbutamide
- Phenylbutazone
- DDT
- Carbamazepine

Some microsomal enzyme inhibitors

- Cimetidine
- Erythromycin
- Omeprazole

- Grape fruit juice
- Ouinidine
- Fluoxetine

Alcohol

- Ketoconazole
- Chloramphenicol

Pyrimethamine

Allopurinol

Some folate antagonists

- Sulfonamides
- Trimethoprim
- Methotrexate
- Pemetrexed
- Dapsone

Prodrugs

- Levodopa
- Prednisone
- Enalapril
- Bacampicillin
- Cortisone
- Azathioprine Cyclophosphamide
- Zidovudine

→ Dopamine

Proguanil

- → Prednisolone
- → Enalaprilat
- → Ampicillin
- → Hydrocortisone
- → Mercaptopurine
- → Aldophosphamide
- → Zidovudine tri
 - phosphate

Compilation of some useful examples (contd.)

Hit and run drugs

- Reserpine
- Omeprazole

Drugs metabolised by zero-order kinetics

- Alcohol
- Phenytoin
- Salicylates
- Heparin
- Phenylbutazone

Drugs that undergo enterohepatic recycling

- Tetracyclines
- Amphetamine
- Doxorubicin
- Metronidazole
- Mefloquine
- Morphine
- Indomethacin
- Phenytoin
- Estradiol

Drugs available as transdermal patches

- Nitroglycerin
- Hyoscine
- Fentanyl
- Estrogen
- Testosterone

Drugs to which tolerance develops easily

- Nitrates
- Hydralazine
- Barbiturates
- Opioids

Agents which exhibit tachyphylaxis

- Ephedrine
- Amphetamine
- 5-HT
- Tyramine

Drugs which need tapering (after long-term use)

- β blockers
- Glucocorticoids
- Antiepileptics
- Clonidine Antidepressants
- Sedatives
- Antipsychotics Drugs with very short t1/2 (2-10 min)
- Dobutamine
- Sodium nitroprusside
- Dopamine
- Alteplase
- Esmolol
- 5-Fluorouracil
- Adenosine

Drugs with long t1/2

Drug	t½ in days
Chloroquine	10-24
• Etanercept	3–4
• Phenylbutazone	3–4
Mefloquine	16–24
• Cold calts	7

- Gold salts
 - 90 Suramin

Some haemodialysable drugs

- Isoniazid
- Ethyl and methanol
- Barbiturates
- Amphetamines
- Methaqualone
- · Lithium
- Phenytoin
- Theophylline
- Salicylates

Histamine liberators

- Morphine
- Tubocurarine
- Pentamidine
- Vancomycin
- Hydralazine
- Amphetamine

Drugs that colour urine

- Rifampicin (orange red)
- Phenazopyridine (orange red)
- Vitamin B complex (vellow)
- Daunorubicin (red)
- Nitazoxanide (Green)

Nitric oxide donors

- Sodium nitroprusside
 Nitrites
- Nitrates

Drugs with low therapeutic index

- Digoxin
- Lithium
- Theophylline
- Quinidine

Drugs which need plasma concentration monitoring or therapeutic drug monitoring

- Lithium
- Carbamazepine
- Digoxin
- Theophylline
- Aminoglycosides

Some teratogenic drugs

- Thalidomide
 - Sodium valproate Phenytoin
- Carbamazepine
- Lithium
- Androgens
- Progestins
- Phenobarbitone Glucocorticoids

Tetracyclines

- Oestrogens Antithyroid drugs
- Anticancer drugs

Drugs to be used with caution in renal failure

- Aminoglycosides
 - Amphotericin Acyclovir
- Cyclosporine Foscarnet
- Pentamidine
- Ifosphamide
- NSAIDs Sulphonamides
- ACE inhibitors
- Anticancer drugs like
 Penicillamine Cisplatin, Methotrexate

Drugs that can produce gingival hyperplasia

- Phenytoin
- Cyclosporin
- Calcium channel blockers

Drugs that can induce haemolysis in G6PD deficient patients

- Sulfonamides
- Primaquine NSAIDs
- Nitrofurans Vitamin K analogs
- Dapsone
- Some vegetables

Drugs excreted in saliva

- Clarithromycin
- Metronidazole
- Phenytoin
- Disulfiram
- Metoclopramide