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ER1 inTrRODUCTION

The concept of sets is fundamental in all branches of mathematics. It was developed by
German mathematician George Cantor. This chapter introduces the notations and terminology
of set theory. Classical set theory, also termed as crisp set theory, is fundamental to the study of
pure mathematics.

EP] NuMBER SYSTEM

The number system plays a key role in mathematics. The real number system R is one of the
most important and beautiful mathematical system. There are different ways of introducing the
real number system, but the most common way is to start with Peano’s Axioms for the natural
numbers. The axioms for natural numbers, discovered by the Italian Mathematician Peano are:

(i) 1 is a natural number.

(ii) Each natural number n has a successor (n+1).

(iii) Two natural numbers are equal if their successors are equal.

(iv) Except 1, each natural number is a successor of natural number.

(v) Any set of natural numbers which contains 1 and the successor of every natural number
(k+1) whenever it contains k in the set N of natural numbers.

P Remarks
= Axiom (V) is commonly known as the axiom of induction or principle of finite induction.
= The above axioms completely define the set of natural numbers.

Definition: The numbers 1, 2, 3, ... are called natural numbers. We represent the set of
natural numbers by N.
ie., N=1{1,23,...}

The Peano’s axioms can be used to extend the set N of natural numbers to another large
system, known as the set of integers.

Definition: The numbers ... ,-3,-2,-1,0, 1, 2, 3... are called integers. We represent the set
of integers by Z.
ie., Z=1{..-3,-2,-1,0,1,23,.}

Integers can be used to define the rational numbers.

Definition: Any number of the form p/q, where p,qe Z, q #0 and p,q have no common
factor (except £ 1) is called a rational number.
The set of rational numbers is denoted by Q.
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Q {B; P,9eZ,q# 0}
q

P Remark
= The set of rational numbers consists of integers and fractions.

Definition: Any number which is not rational, is called an irrational number.

For example, /2, /3 etc. It should be noted that every rational number can be expressed
as a terminating or recurring decimal whereas every irrational number can be expressed as a
non-terminating infinite decimal.

IEI REAL NUMBER

A number which is either rational or irrational is called a real number. The set of real numbers
is denoted by R.

Im INTEGRAL POWERS OF A REAL NUMBER

Let a € R, and n be any positive integer then we can define a" =a.a.a...n times.
In particular a=a

a®=a.a
3 _ _ 2
a’=a.a.a=a“.a and so on.

Also, if n is any negative integer, then we have x ™" = (x™")™! = (x71)"
EPXE] PogITIVE AND NEGATIVE REAL NUMBERS

(i) A real number a is called positive, if a >0 and the set of all positive real numbers,
denoted by R, is given by R* = {x: x ¢ R, x > 0}

(i) A real number a is called negative if a<0 and the set of all negative real numbers,
denoted by R7, is given by R” = {x : x € R, x < 0}

EEY iNTERVAL

A subset S of R is called an interval if a, b € S, x € Rsuch that a < x < b implies x € S. There
are following four type of intervals.

1) ao ob = Ja,b[ ={x:a<x<b}

(i) ae ob = [a,b] ={x:a<x<b}

(iii) a©° *h = Ja,bl ={x:a<x< b}

@iv) ae ob = [a,b[={x:a < x<b}
OBSERVATIONS

me  The set Ja, b[ in which the end points are not included, is called an open interval.

m  The set [a, b] also contains both its end points, is called a closed interval.

we  The sets [a, b[ and ]a, b] are called half open (or half closed) intervals or semi-open (or semi-
closed) interval as they contain only one end point.

Apart from the four types of intervals listed above; there are a few more types: These are

(i) la, [ = {x:a < x} (open right ray)
(i) [a, o[ = {x:a<x} (closed right ray)
(iii) ]- oo, b[ = {x:x<b} (open left ray)
(iv) 1 o,b] = {x:x<b} (closed left ray)
(v) ]-, o [ = (open interval) Fig. (1)
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P Remarks
= If S is any interval and if ¢ and d are two elements of S, then all numbers lying between
c and d are also elements of S.
= The proper use of a bracket, for example, parenthesis’ for open and square brackets for
closed and end points, itself specifies the interval. As such, to emphasize the nature of
an interval, we shall drop the used ‘description’ and shall simply express the interval by
using the appropriate brackets.

ETERD LENGTH OF AN INTERVAL

The number b — a is called length of the intervals ]a, b[, [a, b, la, b] and [a, b]. If the length
of the interval is finite, the interval is said to be finite and if the length is infinite, then it is
known as infinite interval.

IEE ABSOLUTE VALUE OF A REAL NUMBER

The absolute value of a real number a denoted by |a| is the real number a, — a or 0 according
as a is positive, negative or zero, i.e., {

a if a=0
—a if a<0
From the above definition, it is clear that
(i) |a|=max{a,-a} (i) -|a| = min{a,-a} (ii) |a|=a=-|q]

lal=

EFEXE] SOME USEFUL RESULTS
@ [xy|=lx|.|y| (D [x+y| < |x[+]y]
i) fx-y|=]|x[ - |y (V) |x-y[< [x[+ |y]
) £=% (vi) If e >0, then |x-y|<eo y—e<x<y+e
yl 1y
BN cONCEPT OF SETS

The theory of sets is one of the most important tools of pure mathematics. Pure mathematics
is the study of sets equipped with assigned structures, known as mathematical systems. In this
section, we shall study some fundamental concept of set theory.

Definition: ‘A set is a well defined collection of distinct objects’.

The objects of a set are called the elements or members of that set and their membership is
defined by certain conditions.

The sets are usually denoted by the capital letters of English alphabets: Say A,B,C,..., X, Y, Z.

For example :

(i) The collection of the letters q, b, ¢, d,..
(i) The collection of all natural numbers denoted by N.
(iii) The students of M.Sc., Mathematics in C.C.S. University, Meerut.
(iv) The collection of vowels in English alphabet. This set containing only five elements,
namely q, e, 1, 0, U
(v) The collection of all states in Indian union.

If S is a set, an object a in the collection S is called an element of S. This fact is expressed in
symbol as a € S (read as a is in S or a belongs to S). If a is not in S, we write a ¢ S.

For example, 4 < R, the set of real numbers, but J-2¢ R.

Here, Greek letter € denotes ‘belongs to’. It is the abbreviation of the Greek word meaning

Gt
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P Remarks

= By the term ‘well defined’ we mean that we are given a collection of objects, with certain
definite property, so that we are able to determine whether a given object belongs to our
collection or not. Thus, every collection of objects is not a set.

= Set and aggregate both have the same meaning.

= The elements of a set must be distinguished from one another. The collection of sand
particles does not form a set.

= The collection of rich persons of a city is not a set. However the collection of those persons of
city whose wealth exceeds, a fixed amount, say rupees fifty thousands, is a set.

= The order is not preserved in case of a set, whereas order is necessarily preserved in case
of sequence. That is to say, each of the sets {1,2,3}, {3,2,1}, {1,3,2} denotes the same
sets.

= The repetition of an element does not change the nature of a set, i.e., each of the sets
{1,2,3}, {1,2,2,3}, {1,3,3,2} denotes the same sets.

[ET%] REPRESENTATION OF A SET

There are two ways of representing a set:
(i) Roster or tabulation method
(ii) Set-builder or rule method

Roster Method: In this method, the elements of the set are listed within brackets, and
separated by comma.

For example:
» A={1,2,3,4,5,6}
(i) The set of vowels of English alphabet may be represent as {a, e, i, o, u}.

(iii) The set of a natural numbers from 1 to 100 may be written as N= {1,2,3, ..., 100}. We
use three dots in the middle to include the missing elements.
(iv) The set of positive integers, which is a non-ending set may be written as Al ={1,2,3,4,5, ...}.
The three dots in the end means that the elements continue in the same manner.
(v) The set of prime number is written as P = {2,3,5,7,11,13,17,19....}
Set-Builder Method: In this method, we first try to find a property which characterizes
the elements of a set, that is, a property B which all the elements of the set possess and which
no other objects possess. Then, we describe the set as {x : x has property P}.

This is to be read as “the set of all x such that x has property P ”.
For example:
(i) The set of all integers can be written as Z= {x : x is an integer}
(ii)) ThesetA = {1, 2, 3,4, 5} can be written asA= {x € N : x < 5}.
(iii) The set of complex numbers can be written as C = {a+ib : a, b € R}

(iv) The set A = {1,8,27, ....} can be written as A ={x° : xe Z*}.

Solved Examples

EXAMPLEL. Use the Roster method to identify each set:
(a) The set of possible integers greater than 8 and less than 14.

(b) The set of numbers whose elements are the first five positive odd
integers.
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(c) The set of even positive integers.
(d) The set of even positive integers that are divisible by 10.
(e) The set of all vowels in English alphabets which precedes r.

SOLUTION.  (a) {9, 10, 11, 12, 13} () {1,3,5,7,9}
(© {2,4,6,8,10...} (d) {10,20,30,40,50 ...}
(e) {a,e i, 0}
EXAMPLE 2. Use the set-builder method to identify the following sets :
_ =111 1
@ A={13579.} @®B=hil LA |

_ - J1234
() C={0,1,2,3,...} (d)D = {2,3,4,5,...}

SOLUTION.  (a) The set of odd positive integers.
(b) Here, elements of the set B are the reciprocals of the squares of the natural
numbers. }

So, the set B= {i neN
n2

(¢) The set of whole numbers.

(d) Here, each element in the given set has the denominator one more than the
numerator. Hence,

D:{x:x: n :neN}
n+1

EXAMPLE3. Write the set {1 23 5 } in the set-builder form.

2°5’10" 26"
SOLUTION.  We observe that each element in the given set has the denominator one more than
the square of the numerator. Also, the numerator begins with 1. Hence, in the set
builder form, the given set can be written as

{x:x= 2n :neN}
n“+1

= EXERCISE 1.1
1. Which of the following collections are than 14}
sets? (ii) {x: x> < 36 and xe N}
(i) Al mathematics students in your (iii) {x : squares of all whole numbers less
college. than 8}
(i) All poor hockey players in the college. (iv) {x:xis a prime number, 10 < x < 20}
(iii) All odd numbers less than 20. (v) {x : x is a composite number less
(iv) The collection of good teachers in than 20}
your college. i) {x:x<x}
(v) All successful and rich people in your 3. Rewrite the following sets using set-
city. builder method.
(vi) The people in your immediate family (1) A=1{2,4,6,8, ...}
(father, mother, sister, brother). (ii) B= {1 111 }
2. Write the members of each of following 1273747
sets by the Roster method. (i) € =40, 3,6,9, 12, ...}
(i) {x : x is odd whole number less (iv) D ={0,4,6,8, 10, ...}
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4. List the elements of the following sets. in the blanks below:
(i) A=A{x: ¥ <16:x e Z} (i) 12 ... the set of all numbers dividing
(i) B={x:1<x< 5andx € N} 84.
(iii) C = {x: x € N and x is a factor of 15} (ii) K ... the set of all vowels of the English
(iv) D = {x: x is a month of year having 31 alphabets.
days} (iii) 1 .. the set of natural number.
V) E={x:xe Zand 3x-2 = 3} 2
(vi) E = {x : x is an integer lying between (iv) India ... the set of members of UNO.
-1/2 and 1/2} (v) 2 .... The set of rational number
5. Use the appropriate symbols € or ¢ to fill (vi) 15 ... the set of multiples of 3.

1. (@, (i), (vi)
2. (){1,3,5,7,9, 11, 13} (ii) {1, 2, 3, 4, 5} (i) {0, 1, 4, 9, 16, 25, 36, 49}
(iv) {11, 13, 17, 19} ) {1, 4,6,8,9,10, 12, 14, 15, 16, 18}  (vi) ¢

3. ()A={x:x=2n:neN} (i) {1/n:n € N}
(iii) {x : x = 3n, n is the whole number  (iv){x : x = 2n, n is the whole number}
4. (i) {-4,-3,-2,-1,0,1,2,3,4} @i {1, 2, 3,4, 5} (i) {3, 5}
(iv) {Jan, March, May, July, August, October, December}
5. (i) e (i) ¢ (iii) ¢ (iv) e W) ¢ (vi) e
B} Tvpes oF <ETS

IEI EMPTY SET

A set containing no elements is called empty set and is denoted by the symbol ¢.
For example:

(1) ¢ = {x:xis a negative integer whose square is -1}
(i) ¢ = {x: xis a natural number lying between 2 and 3}
(iii) ¢ = {the set of such persons, who never die}
(iv) ¢ = {x:xis a real number, ¥ < 0}
(v) ¢ = {x:xis an even prime number greater than five}
(vi) ¢ = {the set of real numbers which are solution of equation x2+1=0}

(vii) ¢ = {x: xis a straight ling passing through three distinct points on a circle}
P Remarks
= The empty set is also known as null set or void set.
= The Roster method, the empty set is denoted by {}.
= To describe the null set, we can use any property, which is not true for any element.

= [t is wrong to use the expression ‘an empty’ or ‘a null set’ as there is one and only one empty
set through, it may have many-many descriptions. We shall always call ‘The empty or the

null set.’
= A set consisting of at least one element is called a non-empty or non-void set.
= {¢ } is not a null set.
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IE SINGLETON SET

Set containing only one element is a singleton set. The set {a} is a singleton set.
P Remarks
= {0} is not a null set, since it contains O as its member. It is a singleton set.

= A room containing only one man is not same thing as a man. In a similar way, the
singleton set {a} is not the same thing as the element a.

IE’ FINITE SET

A set is said to be finite if it consists of only finite number of elements. Here, the process of
counting the different elements comes to an end.
For example:

(1) Set of natural numbers less than 50.
(i) Set of all persons in a city.
(iii) Set of English alphabets.
(iv) Set of all persons on the earth.

IEI INFINITE SET

A set which is not finite, i.e., it contains infinite number of elements. Here, process of
counting the different elements never comes to an end.
For example:
(i) Set of natural numbers N = {1,2,3, ...}
(i) Set of all points of plane.
(iii) Set of all even integers.
(iv) Set of rational numbers lying between two integers.

Im EQUAL SETS

Two sets are said to be equal if they contain exactly the same elements.
For example:
A= {x : xis a letter in the word ‘Area’}, i.e., A= {a, r, e}
And B= {y :yis a letter in the word ‘ear’}, i.e., B={a, 1, e}
Here A and B are equal sets.

Y] CARDINAL NUMBER OF A SET

The number of distinct elements contained in a finite set A is called cardinal number of A
and is denoted by n(A).

EQUIVALENT SETS

Two finite sets are said to be equivalent if they have the same cardinal number.
P Remarks
= Equivalent sets are not always equal but equal sets are always equivalent.
=» The number of distinct elements in a finite set is also called the order of the set. If the
order of a set is zero, the set is empty.
= If the order of a set is one, the set is singleton.
=» The order of an infinite set is never defined.
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B susget

Let A and B be two sets. The set A is said to be a subset of the set B if every element of A is also
an element of B. Symbolically, we write A ¢ B.

When A is subset of B, it means that ‘A is contained in B’ or ‘B contains A’. Here B is called
superset of A and is written as B D A.
W Remarks

= Every set is a subset of itself.

= Empty set is a subset of every set.

= If A is not a subset of B, we write A ¢ B.

= An element cannot be a subset of a set, only a set can be subset of a set.

I I!I PROPER SUBSET

We know that for A to be a subset of B all that is needed is that every element of A is in B. It
is possible that every element of B may or may not be in A. If it so happens that every element
of B is also in A, then we will have Bc A. Obviously, then A and B are the same set, so that we
have Ac Band BCcA < A=B.

If every element of A is in B, but every element of Bisnotin A, i.e., if AcBand B ¢ A, then
A is said to be a proper subset of B.

For example:

(i) {a, b} is a proper subset of {a, b, c}.
(i) Set of natural number N is a proper subset of set Z of integer.
P Remarks
= Here, it follows that every element of A is an element of B and B contains at least one
element which does not belong to A.
= If the subset is not proper, it is called improper subset. For example, Ac A and
0 C A are improper subsets.

IIE NUMBER OF SUBSETS OF A SET

If A is a set contains n distinct element. Let 0 <r <n . If we consider those subsets of A that
have r elements each, then we know that the number of ways in which r elements can be choose
out of n elements is "C,.. Therefore, the number of subsets of A having r elements each is "C, .

Hence, the total number of subsets of A is equal to
"Co+"Ci+"Cy+...+"Cy =1+ =2"
For example:
(i) If a set A has one element, then it has 2! =2 subsets.
(ii) If a set A has two elements, then it has 22 = 4 subsets.
P Remarks

= The number of proper subsets of a set with n elements is 21,

= The collection of all possible subsets of a given set A is called power set. It is denoted by
P (A). For example : If A = {1,2,3} then the power set P(A) = {¢, {1}, {2}, {3}, {1,2},
{1,3}, {2,3}, {1,2,3}}.

= P(¢) ={¢}

= The power set of any given set is always non-empty.
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UNIVERSAL SET

In any discussion , we are given particular set and we consider different subsets of the given
set. This given set is called Universal Set. It is denoted by U.
For Example:
(i) The universal set is of real numbers R, while considering the set of natural numbers,
whole numbers, integers and rational numbers.
(ii) The set of alphabets is the universal set from which the letters of any word may be
chosen to form a set.
(iii) In geometry, we discuss set of lines, triangles and circles, then the universal set is the
plane, in which the lines, triangles and circles lie.
W Remarks
= Universal set is a super set of each of the given sets.
= The universal set is not unique.

LA 8 COMPLEMENT OF A SET

Let U be the universal set and the set A < U. Complement of set A with respect to the
universal set U is the set of all those elements of U which are not the elements of A and is
denoted by A’ or A,

A'={x:x e Uand xe A}

For example:

i 1fu=41,2,3,4,5,6,7,8,9,11} and A= {1, 2, 3} then A’= {4,5,6,7, 8,9, 11}.
P Remarks

= Complement of the universal set is the null set and vice-versa.

» (A)Y=A

» [fA c B,then BBc A’.

» xcAoSxeA

= Qolved Examples

EXAMPLEL. Let A = {1,2,3}, then find P(A).
SOLUTION.  Since A = {1, 2, 3} then,
PA) = {9, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}
EXAMPLE2. Let A = {a,b,c,d}, B = {a,b,c} and C = {b,d}, find all sets X such that
() XcBandX c C (i) X cAand X ¢ B
SOLUTION. (i) Here, we have
P(B) = {¢ ,{a},{b},{c}.{q, b}, {a,c}, {b, c}, {a, b, c}}.
And P(C) = {¢,{b},{d}, {b,d}}, then X c B and Xc C implies
XeP(B) and Xe P(C)
Therefore, X=A{¢, {b}}
(ii) Here, we have, XA and X « B, which implies that
XeP(A) and X ¢ P(B)
Therefore X ={{d},{a,b,d},{b,c,d},{a,c,d},{a,d},{b,d},{c,d},{a,b,c,d}}
EXAMPLE 3. Write down all the subsets of the following sets.
(i) {a} (i) {a,b} (iii) {a,b,c} (iv) ¢
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SOLUTION. (i) Let A = {a}. Since A contains only one element, therefore, the total number
of subsets is 21 = 2, which are given by ¢ and {a}.
(ii) Here, total number of subsets, = 22 =4, which are given by ¢, {a},{b}, {a, b}
(iii) Here, total number of subsets =23 = 8, given by
¢,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}
(iv) since ¢ contains no element therefore the number of subsets = 20 =1. The

only subset is¢ .
EXAMPLE 4. Which of the following sets are empty. Also, give the reason.

(i) A= {x : x # x, is a real number}.
(ii) B={x:x+ 4 = 4}
(iii) C={x:x®-3=0 and x is rational number}
SOLUTION. (i) Here, A={x:x #x, xis a real number}. Since x #x is not true
= A= 0
(i) B={x:x+4=4}={x:x=0}={0}
= B has one element 0, therefore B# ¢ .
(iii) Since there is no rational number whose square is 3, so x> -3=0is not
satisfied for any rational numbers. Therefore, C is an empty set.
EXAMPLE 5. Which of the following sets are finite and which are infinite.
(i) The set of natural numbers divisible by 2.
(ii) The set of natural numbers less then 8.
(iii) The set of integers whose square is even.
(iv) The set of integers greater than -18.
(v) The set of lines passing through a point.
(vi) The set of points of a plane at a fixed distance from a given point
in the plane.
(vii) The set of points common to two given parallel lines.
(viii) The set of the roots of a polynomial of n'" degree.
SOLUTION. (i) Thegivensetis{2,4,6,8, ...}. It has an infinite number of elements, therefore
it is an infinite set.
(i) The given set is {1,2,3,4,5,6,7}. It has seven elements, i.e., finite number of
elements. Hence, it is a finite set.
(iii) The given setis {...,—8,-6,-4,-2,0, 2, 4, 6, 8,...}. It has infinite number
of elements, therefore it is an infinite set.
(iv) Here, the given set is {-17, =16, ..., 0, 1, 2 ...}. It has infinite number of
elements therefore, it is an infinite set.

(v) Since infinite number of lines can pass throught a fixed point, therefore the
given set is an infinite set.

(vi) Since the points in a plane at a fixed distance from a given point in the plane
lie on a circle with the given point as center and the number of points on a
circle is infinite. Therefore, the given set is an infinite set.

(vii) Since two parallel lines cannot meet anywhere, therefore, the set of points
common to two given parallel lines is empty, therefore the given set cannot
be infinite. Hence, it is a finite set.

(viii) Since, a polynomial of n'h degree always have atmost n roots.

Therefore, the given set is always a finite set.
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EXAMPLE 6. Which of the following sets are equivalent?
¢,{0} and {¢ }.

SOLUTION. Since ¢ has no element. Also, {0} and { ¢ }, each contains one element namely O
and ¢ respectively. Hence, {0} and { ¢ } are equivalent.
EXAMPLE7. Which of the following sets are equal ?
A ={1,2,3}, B = {2,3,4}, C = {3,2,1}, D ={2,3,5}
SOLUTION.  Since 1 A but 1¢ B, therefore A # B. A and C have exactly the same element,
therefore A = C.
Also, leC butlgD = C=#D
4eB but 4¢C = B=#C
4eB but 4¢C = B=#C
le A but 1¢D = A=%D
Hence, only A and C are equal sets.

&= EXERCISE 1.2
1. Fill in the blanks: (v) The set of prime numbers less than
® ?aﬁg(ti thlgl contains no element is (vi) The set of multiple of 8.
(i) IFA = {1,2,3} and B = {3,2,1} then 5. Which of the following statements are
they are said to be ... 7 true? Give the reason.
(iii) IfA = {a, b, ¢} and B = {c, d, e} then (i) For any two sets A and B either A c B
they are said to be ... o Bc A o o
(iv) If every element of a set B is also an (i) Every subset of a finite set is finite.
element of A, then B is said to be ... of (iii) A subset of an infinite set may be
A. finite.
(v) The empty setisa ... of every set. (iv) Every set has a proper subset.
(vi) Every setis a .... of itself. (v) A set containing n elements have 2"
(vii) The set Z of integers is a ... of set of subsets.
natural numbers N. (vi) IfA = {1,2,3,4,5,6} and B = {whole
2. Which of the followings sets are equal? __ humbers less than 6}, then A = B.
(i) A = {1,2,3} (vii) The empty set has no proper subset.
" . 6. Examine which of the following sets are
(i) B ={1,2,2,3} ?
empty?
(iii) C=(xeR:x3-6x2+11x-6=0) (i) The set of tigers in your class.
3. Which of the following sets are equivalent (i) The set of triangles having three equal
to the set {4,7,11,17,20}? __ sides. '
@ {5,1,2,3,4} (iii) The set of all numbers which, when

(i) {all odd numbers less then 10} ?ﬁig Ecrli;?nziro, yield sum greater than

(i_ﬁ) {the months'ofayear of 30 days} . (iv) The set of odd numbers which are
(iv) {all the prime numbers which lie divisible by 2.
between 10 and 25}.

4. Which of the following sets are finite and
which are infinite ?
(i) {xeN:x>10}
(ii) {xe N :x <100}
(iii)) {xeR:1<x<2}
(iv) Set of vowels in English alphabets.

(v) The set of men, who never die.
7. Which of the following statements are
true?
(i) If xeA and A c B, then xeB
(ii) fAcBandB c C,then A c C
(i) IfA ¢ BandB ¢ C,then A ¢ C
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(iv) Ifx € A and A « B, then x €B 9. Write down all possible subsets of each of
(v) IfA c Band x¢B, then x¢A the following sets.
8. Are the following sets, i.e., (A and B) are @ {at (i) {0,1} (i) {a,b, ¢}
equal. . () {L{1}} ™ o
DA = {x: ?]CJI"IFTEE’I}?tter of the word 10. Which of the following statements are
B = {x : x is a letter in the word true?
‘TITLE’} .
(i) A = {x : x is a letter in the word (@ {a, 0} ed{a,{a, 03}
FQLLO\IN} _— (ii) fAcBand BcC,thenAcC
B = {x: ?%V}S)L%v}etter in the word (iii) IfAeBand BcC, thenAeC
(i) A = {x : X & &}letter in the word (iv) IfAcBandBeC, thenAeC

B = {x : x is a letter In the word (v) IfAcBandBeC, thenAccC

ALLOY’}
Answes

1. (i) empty (ii) equal (iii) equivalent (iv) subset (v) subset (vi) subset (vii) super set.
2. A=B=C 3.(), (), (iv)
. (i), (iv), (v) are finite sets and (i), (iii), (vi) are infinite.
.()F )T @)T GF WT @i)F (vi))T
. (), (i), (v), (v) 7. (i), (i), (v)
. (i) Equal, (ii) Equal, (iii) Equal
. (@ ¢, {a}; (D ¢,{0},{1},{0,1}; (ii) ¢ ,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}
(iv) {13:{13,{{1}}{1,{1}}; 10. (i) , (iD), (i), (iv), (v)

(2

© 0 &

EF:} vENN DIAGRAMS

A set can be represented by closed figures like circles, triangles, u
rectangles, etc. The point in the interior of the figure represents the elements @
of the set. Such a representations is called a Venn diagram. In Venn diagram, A
the universal set is usually represented by a rectangular region and its subset B
by closed bounded regions inside the rectangular region. For example, if A
is a subset of B, i.e., A c B is shown in figure 2.

P Remarks

= The diagrams drawn to represent sets are called Venn diagram or Venn-Euler diagrams,
after the name of British mathematician Venn.

= If A and B are two sets, which are not equal, but have common elements, then to represent

A and B, we draw two intersecting circles.
= Two disjoint sets are represented by two-intersecting circles.
= Venn diagrams are to be used for clarity and are no substitute for precise proof.

EE] 0PERATIONS ON SETS

ETEXD uNION AND INTERSECTION OPERATIONS

(i) Union of two sets
Let A and B be two sets. Then Union of A and B, denoted by AU B is the set of all those
elements, which either belongs to A or B or to both A and B.
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It should be noted that the common elements are to be taken only once.
Symbolically: AUB = {x: xe A or x € B} It is shown in the adjoining figure 3.
For example: A B U
(i) LetA = {3,4,5,6,7} and B= {5,6,7,8,9}
Then AUB ={3,4,5,6,7,8,9}
(ii) Let A={x:x=2n,n=1,2,3,..}={2,4,6,8, ...} AUB = Shaded Area
Fig. (3)

and B={x:x=3n,n=1,2,3,...}={3,6,9,12,...}
Then AU B = {x:xis multiple of 2 or a multiple of 3}
=1{2,3,4,6,8,10, 12, ...}

(iii) Let A = set of even natural numbers = {2, 4, 6, 8,...}
and B = set of natural numbers = {1, 2, 3, 4, 5,...}
Then AuB={1,2,3,4,..}
P Remarks

» xc(AUB)& xeAorxeB.
» x¢(AuB)o xgAand x¢B
=» AUB=BUA, i.e., union of sets is commutative.

» AUA'=Uand AuU=U
» AUG=A

= If A,B,C,D, .., Z is a finite family of sets, then their union is denoted by AUBUCUD...U Z.
» (AUB)UC=AU(BUC),ie., aunion of sets is associative.

(ii) Intersection of two sets
Let A and B be two sets. Then intersection of A and B, denoted by A n B is the set of all
those elements, which belongs to both A and B.

Symbolically: AnB = {x: xe Aand x € B} It is shown in the adjoining figure 4.

For example: A B U
(i) LetA={2,4,6,8,10} and B={1, 2, 3,4, 5}. ThenAnB = {2, 4}
(i) If A={x:x=3n,neZ}
and B={x:x=4n,neZ} AnB = Shaded Area
Then AN B = {x : xis multiple of 3 and x is a multiple of 4} Fig. (4)

={x : x is multiple of 3 and 4 both) ={x:x=12n,ne Z}
V' Remarks

» xc(AnB)e xeAand xeB.

» x¢g(AnB)o x¢gAorxgB

=» A = ANA, ie., intersection of sets is idempotent.

» And=0

®» ANU=A, where U is a universal set.

» ANB=BnNA,ie., intersection of sets is commutative.

» (ANB)NC=An (Bn Ointersection of sets is associative.

= IfA,B,C,D, ...,Zis a finite family of sets, then their intersection is denoted by AnBNC...N Z.
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(iii) Distributive Property of Union and Intersection
HAUBNC)=(AUB)N(AU(0)
(()ANBUC)=(ANB)U(ANC)

A A A A A
& % % % X 1
B C B C B C B C B C
BNC AUBNC) AUB AUC (AUB)N(AUC)
A A A A A
BUC Am(BuC)C AnB ANC (AnB)U(ANC)

Fig. (5)

IEE DISJOINT SETS

When two sets have no common elements, they are called disjoint sets. Thus, if An B = ¢,
then A and B are disjoint. It is shown in the adjoining figure 6.
For example:

() If A={2,4,6 8 andB ={1,3,5,7, 9} 4 B U
Then,AnB = ¢
(i) If A = Boys in school
B = Girls in school Fig. (6)
Then, AnB = ¢
P Remarks

= If AnB=#¢,,then A and B are said to be intersecting or overlapping sets.
= A family of sets is said to be pairwise disjoint family of sets if and only if any two sets of
this family are disjoint. For example, classes of A,,A;,A; and A, defined as

A, =1{2,22,23,...};A;=1{3,3,3,..}; As ={5,5%,5°,...} and A, ={7,72,73,...} are pairwise
disjoint.
=» 0N A=¢,ie, nullsetis disjoint from every subset.

XX DIFFERENCE OF TWO SETS

If A and B are two sets, then the set of all elements which belong to
A but do not belong to B is called the difference of sets A and B and is
denoted by A ~ B. The set of all elements which belong to B but do not
belong to A is called the difference of sets B and A and is denoted by B~A. | 4 _p= (Shaded Area)

Therefore, Fig. (7)
A~B={x:xeAandx¢B} = AnB
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and B~A ={x:xeAandxeB} = BNA’

For example: A B U
(i) Let A={1,2,3, 4,5}
and B={-1,0,1, 2}
Then, A~ B = {3, 4, 5} B~A = (Shaded Area)
and B~A = {-1,0} Fig. (8)
P Remarks

» xc(A-B)oxeAand x¢B.

Difference of a set with the
universal set is known as
complementation.

» x¢(A-B)eox¢Aand xeB

» A~B#B~A,ie., difference of two sets is not
commutative.

» AcB then A~B=¢

= The sets A~ B, AnB and B ~ A are mutually disjoint.

= A ~ B is a subset of A and B ~ A is a subset of B.

B} sYMMETRIC DIFFERENGE OF TWO SETS

If A and B are two sets, then the symmetric difference of two sets A and B is denoted by AAB
is given by AAB=(A~ B)uU (B~ A)

Symbolically: AAB={x:(xeAand x¢B)or(xeBandx¢A)} 4 B U
For example:
@ 1If A =4{1,2,3,4,5,6,7,8% and B = {1,3,5,6,7,8,9}
Then A~B={24}andB~A = {9} BAA = (Shaded Area)
and AAB={2,4,9} Fig- (9)
B cQuIvALENT SETS

Two finite sets A and B are equivalent if their cardinal numbers are same , i.e., n(A) = n(B).
EEXE] LAW OF EXCLUDED MIDDLE AND LAW OF CONTRADICTION

Two special properties of set operations are known as the excluded middle axioms and law
of contradiction. The excluded middle axioms are very important because they are the only set
operations described here that are not valid for both classical sets and fuzzy sets. Let A be any
subset of universal set X. Then , we define.

(1) Axiom of the excluded middle: AUA’=U
(ii) Axiom of the contradiction: AN A" =¢

THEOREMIL. (i) Aud=A (ii) Ano=19¢ (GiDAUA=A
(iv) AnA=A (v) AuUB=BUA (vi) AnB=BnA
PROOF. (i) Let x be an arbitrary element of AN¢.

e, XxeAud

Then, by definition xe AUB< xeAor xeB

ie, xeAud —=xeAorxed

& xeA (- ¢ isanull set = x¢ ¢)
Therefore, Aup=A



TOPOLOGY)

(i)

(iii)

(iv)

W)

(vi)

Let x be an arbitrary element of An¢ .
xeAnd & xeA and xed (- ¢ is anull set)
Therefore, And=10
Let x be an arbitrary element of AUA ,
xXeAUA S xeAorxeA (Repeated statement)
S xeA
Therefore, AUA = A
Let x be an arbitrary element of ANA ,
xeAnNA & xeAandxeA (Repeated statement)
&S xeA
Therefore, AnNA=A
Let x be an arbitrary element of AUB ,
xeAuUB S xeAorxeA (Writing in reverse order)
o xeBorxeAe xeBUA
Therefore, AUB=BUA
Let x be an arbitrary element of AN B
xeANB &xeA and x e A (Writing in reverse order)
o xeBand xeAs xeBnA

Therefore, ANB=BNA

THEOREM 2. For any three sets A, B and C

PROOF.

@
(iii)
@

(i)

(dii)

(iv)

Au(BuC)=(AuB)uC (ii) An(BNC)=(AnB)nC
AUuBNC)=(AuB)N(AUC) (iv) An(BuC)=(AnB)U(ANC)
Let x be an arbitrary element of AU(BUC), then xe AU(BUC)

& xeA or xe(BuUC) & xeAor(xeBorxe()

& (xeAorxeB)orxeC (By associativity)

= xe(AuB)or xeC & xe Au(BuUC()
Therefore, AU(BUC)=(AUB)UC
Let x be an arbitrary element of AN (BN C), thenx e An (BN C)

= xeA and & xe(BNC) < xe€A and (xeB and xeC)
= (xeA and xeB)andxeC (By associativity)
& xe(AnB)and xeC & xe(AnB)NC

Therefore, AN(BNC)=(ANnB)NC

Let x be an arbitrary element of Au(BuU C), then xe AuB(n C)

= xeAorxe BNnC)< xeAor(xeBandxe ()

= (xeAorxeB)and(xeAorxe(C) < xe(AuB)andxe (AU Q)
= xeAuB)Nn(Au0)

Therefore, AUBNC) =(AuC)n(AuQ)

Let x be an arbitrary element of A (B U C), thenx e An(Bu Q)

= xeAandxe (Bu(C) < xeAand (xeBorxe Q)

= (xeAandxeB)or(xeAandxe(C) < xe (AnB)orxe (AnC)
Therefore, AN(BUC) =ANB)U ANC)
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THEOREM3. (i) (A) =A (ii) A U A’ = U, where U is the universal set.
(iii) AnA' = ¢ (iv) (AU B)' = A' n B’ (De’ Morgan’s Law)
(v) (AnB) =A'"uU B (De’ Morgan’s Law)
PROOF. (i) Let x be an arbitrary element of (A")’,
xe@) © xgA < xeA
Therefore, A=A
(i) Letx be an arbitrary element of (A U A"),
xe (AUA) o xeAorxeA & xeAorxeU-A
= xeAor(xeUxgA) © xeU
Therefore, AUA' =U
(iii) Let x be an arbitrary element of (A N A"),
xe (AnA) o xeAandx e A butif xe A thenx e A’

Therefore, ANA =¢
(iv) Let x be an arbitrary element of (A U B),
xe (AUB) < x¢ (AUB) = xgAandx ¢ B
S xeA andxeB < xe AAnB
Therefore, (AuB)Y =A"NnB
(v) Letx be an arbitrary element of (A " B)’,
xe (AnNnB) < x¢ (ANnB) & xgAorxe¢B
& xeA orxebB & xe AAUB
Therefore, (ANnB)Y =A"UB

Solved Examples

EXAMPLEL. Show that (i) Ac (AuB), (ii) (AN B) cA.
SOLUTION. (i) Letx € A be arbitrary then x € A certainly but may or may not belong to B.

= xeAUB
Therefore, xeA = xeAUBgivesAcAUB
(ii) Let xeANB where x is arbitrary
xeAnB = xeAandxeB
In particular, xeAnB = xeA
Therefore, ANnB)cA

P Remark
= Similarly we can show that (i) B< (Aw B) and (i) An B cB.

EXAMPLE 2. Let A and B be two sets, if AnX =BnX =¢and A U X = B U X for some
set X, prove that A= B.

SOLUTION. Giventhat AuX=BuX

= AnNnAuX)=AnBuX (taking intersection by A on both sides)
= A=AnBuX (“AnAu X) =A)

= A= AnBu@AnX (By distributive law)

= A= AnBuU = A= AnNB

= Ac (AnB) = AcCB ...(D)

Again conside, AU X =BuUX
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= BNnAUX)=BnNn BuUX) (taking intersection with B)

= BnNnAuUX) =B

= BNAUMBNX) =B (By distributive law)

= BNAU=B (Given BN X = ¢)

= (BnNA) =B (..ANnB=Bn A

= ANB=B = BcAnNnB = BcA ...(2)
Hence, (1) and (2) gives A < B and B c A.

= A=B

EXAMPLE 3. For any two sets A and B, show that
(i) P (A nB) = P(A) n P(B), (ii) P(A) WP(B) cP (AU B)
SOLUTION : (i) Let XeP(ANB) = XcAnNB
= XcA and xcB = XeP(A) andX e P (B)
= X e P(A) nP(B)

Therefore, P(ANB)c P(A) n PB) ..(D
Now, let X € PA) "P(B) = XeP(A)andX e P (B)

= XcA and XcB= XcAnNB

= XeP(AnB)

Therefore, PA) nP(B)c P(AnB) ..(2)

From (1) and (2), we conclude that
P (AN B) cP(A) nP(B) and P(A) n P(B) < P(A n B) which gives
P(ANnB) =P(A) nP(B)
(i) Let XePAUWPB) = XePA)orXeP (B

= XcA orxcB = XcAUB
= XeP(AuUB)
Therefore, P ) UPB) c P(AUB)

P Remark
= Converse of the result (ii) is not necessarily true. For example, let A
= {1,2} and B = {4,5,6}, then we find that x = {1,2,3,5} which is a
subset of A U B. Therefore, x € P(A U B). But x ¢ P (A), x ¢ P(B). So,
x ¢ P(A) uP(B) = P(AuUB) ¢ P(A) uP(B)

544 SOME MORE RESULTS

1. If A and B are any two sets, then
i A-B=AnNPB ({)A-B=A<AnB=9¢
(i) A-B)uB=AUB (ivVAcB< B cA
v) A-B)uB-A) =AuUB)-(ANnB)
2. If A and B are any two sets, then
i) A-BNnO=MA-BDu@A-0 ()A-BuUCO =A-BDnA-0
(i) AnB-OO=ANB-(An0

= EXERCISE 1.3
1. LetA = {a, b},B ={a, b, c}.IsA < B. Find C = {3,456} and universal set
AUBandA NB. U = {1,2,3,4,...9}. Verify that

2. If A ={1,2,34}, B = {2,468}, ANnBulO =AnNnBUANO.
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3. If A, B, C are subsets of a set X, then show

that AcBandBc C=AcC.
4. Find the union of the following sets:
(i) A = {x: xis an even integer},
B = {x: xis an odd integer}.
(i) A = {x : x is a multiple of 2},
B = {x : x is a multiple of 3}.
(iii) A = {x : x is a rational number },
B = {x : xis an irrational number}.
(iv) A = {x: x is a negative integer},
B = {x : x is a non- negative integer}
5. Find the intersection of the following sets.
(i) A = {x: xis an even integer},
B = {x: xis an odd integer}
(i) A = {x : x is a rational number },
B = {x :x1is an irrational number}.
(iii) A = {x : x is a multiple of 5},
B = {x : x is a multiple of 2}
(iv) A = {x : x is a rational number },
B = {x : xis a real number}
6. If A= {1,234}, B = {2,4,6,8} and
C = {3,4,5,6}, find
(i AuB)NC
@MAUBNO
7. Write T for true and F for false statement.

HDAe@AuB) (T/F)
(i) (AUB) €B (T/F)
(i) AnB) €A (T/F)
ivy AUA=AandAnA=A (T/F)
V) fANnB=¢,thenAnd¢=B (T/F)

(vi) If A and B are disjoint sets, then
intersection of their wunion and
intersection is the null set. (T/F)

(vii) If A is the proper subset of U, then the

union of A and A’ is U. (T/F)
Vii)U' = ¢ and ¢' = U (T/F)
(ix) AuB) =A"NnPB (T/F)
(x) AN A'is always empty
(T/F)
&) ANB) =A"UPB (T/F)

8. If A={1,2,3,4,56,7,8and B = {1,

3,5,6,7,8, 9}, then show that
AAB = {2, 4,9}

9. let A= {x:xe N},
B={x:x=2n:n e N},
C={x:x=2n-1:n¢eN}

and D = {x: x is a prime natural number}.
Find

i ANB AN C
(iii) AnD (ivyBNnC
(v) BNnD (vi)CnD

10. For any two sets A and B, prove that P(A)
= P(B) implies that A = B
11. For any two sets A and B, show that
HAUVANB)=A
(i) ANAUB)=A
(iii) AUB)Nn(ANnB) =A
(iv yAuB=U=ACcCB
V) AcB< B cA
(vi BcBcA=ANnB=B
12. LetA =11, 2,3,4},B = {2, 3,4, 5} and
C =44, 5, 6, 7}. Verify that
MHDAUBNO =CAUBNAUO
(MANBUO=ANBUANO
G)ANB-O)O=ANB-AN0O
MV VA-BuUO =QA-Bn@A-0
WMWA-BNnO)=A-BDuUu@@A-0
13. Show that

(i) if a sets has only even element, then it
has 2 subsets.

(i) if B < A and B has one element less
than that of A, show that A has twice
as many subset as B has.

(iii) a set with 2 element has 22 subsets,
a set with 3 elements has 2° subsets
and so on.

14.If X = {4 " -3n-1:n € N} and
Y={9(n-1) : n € N}, show that X c Y.

15. Show that A - B, A n B and B — A are
pairwise disjoint.

16. Show that A U B c A n B implies that A=
B.

1. (1) Yes. {a, b, c}, {a, b};
4. (i) AU B = {x : x is non-zero integer}

(i) A U B = {x : x is a multiple of 2 or 3}

(iii)) A U B = {x : x is a real number} (iv) A U B = {x : x is an integer}
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5 (1) ¢ (i) ¢ (iii) 10 (iv) {x : x is a rational number}
6. (1) {3,4,6}, (i) {1,2,3,4,6}
7. T (i) F (i) T Gv) T W) F (vi) T (vii) T
(viii) T (x) T x T (xi) T (xii) T (xiii) T (xiv) T
9. (i) B (i) C (iii) D Gv) ¢ )2 (vi) D — {2}
ERTJ soME RESULTS ON VENN DIAGRAMS
If A is a finite set, and n(A) = No. of element in the set A. 4B BAU
The following results may be remembered for direct application :
1. nAuUB) =n(A) + n(B) —-n(AnNnB) A B
2. n(A U B) = n(A) + n(B), provided A and B are disjoints, i.e., if ANB
nAnB) =0 Fig. (10)

3. nANnB) =nlA) -n(AnB)

4. nBNA) =nB)-n(AnNB)

5. nAUB) =n(AnB)+nBnNA) +nAnB)

6. n(AAB) =n(A) + n(B) -2n(A n B)

7. n(A’ UB) =n[AnB)'] =nU) -n(AnB)

8. nA’nB) =n[AuB)'] =n)-n(AuB)

9. nA-B) =n(A) —nAnB) =>n(A-B) + n(AnB) =nA)

0. nAUBUC) =nA) + nB) + n(C)-nANnB)-nBNnC)—-nAnC) +n(AnBnNnC0C)

= Qolved Examples

EXAMPLEl. Inagroup ofathleticteamsinaschool, 21 areinthe basketball, 26 in the
hockey team and 29 in the football team. If 14 play hockey and basket
ball, 12 play football and basket ball, 15 play hockey and football and
8 play all the three games. Find (i) how many players are there in all
(ii) how many play football only.

SOLUTION.  Let A, B and C denote the set of players, who play basket ball, hockey and football
respectively. Then, according to question, we have
n(A) = 21, n(B) = 26, n(C) = 29
nAnB) =14, nAnC) =12, nBNC) =15andn(AnBNC) =38
Therefore, nAuUBuUCQC) = [nA) +nB) + n(C) + nANBN QO]
—-[nNAnNB) + nAn O+ n(BNn QO]
=[21+4+26 +29 + 8] -[14 + 12 +15] = 43
Hence, the total number of players is 43. Now, the number of players playing
football only is [29 — (7+8+4)] = 10.

EXAMPLE 2. In a canteen, out of 123 students, 42 students buy ice-cream, 36 buy
burst and 10 buy cakes, 15 students buy ice-cream and 11 buy ice-
cream and buns but no cakes. Draw Venn diagram to illustrate the
above information and find (i) how many students buy nothing at
all (ii) how many students buy at least two items. (iii) how many
students buy all three items.
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SOLUTION:  Define the sets A, B and C such that
A = Set of students who buy cakes
B = Set of students who buy ice-cream

C = Set of students who buy buns
According to question, we have, A B U

n(A) = 10; n(B) = 42; n(C) =36; n(B N C) =15; w&g
n(AnB) =10; n[(AnC) -B] =4;

6"1\
C

nf[BNC)-A] =11 and n[A-Bu C] =10
Fig. (11)

Now we have n(B U C) = n(B) + n(C) —n(Bn C)
=42+ 36-15 =63
nBuClC) -n(B) =63-42 =21
and nBuCl) -n(C) =63-36=27
The above distribution of the students can be illustrated by Venn diagram (Figure 11).
Now, total number of students buying something.
= 10+6+21+4+4+11+17 =73

(i) Number of students who did not buy anything = 123 — 73 =50

(i) Number of students buying at least two items = 6+4+4+11 = 25
and (iii) Number of students buying all three items = 4

™ EXERCISE 1.4

1. Out of 80 students who secured first class How many attended (i) all three days (ii)

marks in Mathematics or in Physics, 50
obtained first class marks in Mathematics,
10 in both Physics and Mathematics. How
many students secured first class marks in
Physics only?

. The Mathematics club in a school held an
open house on three afternoons 115, 110
and 135 students attended both the first,
second and third afternoons respectively.
25 attended just the first, 30 attended both
the first and second days, 80 attended
both the first and third days, and 60
attended both the second and third days.

4.

just the second day (iii) just the third day?

. In a school of 250 pupils, 100 are girls,

and 200 pupils stay at school for lunch.
If 40 girls go home for lunch. Find the
number of boys who go home for lunch.
In a class of 150 students, the following
results were obtained in a certain
examination. 45 students failed in Maths;
50 students failed in Physics, 48 students
failed in Chemistry, 35 failed in both
Maths and Chemistry, 25 failed in the
three subject. Find the number of students
who have failed in at least one subject.

1. 30 2. 20, 30, 15

EREY ORDERED PAIR

Sometimes, there are situations in which order is very

Ordered pair may have the same
first and second components, i.e.,

important. Some results may be affected by order and
other are not.

Definition: An ordered pair is a pair of entries whose
components occur in a specific order. It is written by listing the two components in the specific order,
separating them by a comma and enclosing the pair in parentheses.

Symbolically: If A and B are two sets, then by ordered pair of elements, we must mean a
pair (a,b): a € A, b € B in that order.

two elements of an ordered pair
need not be distinct.
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P Remarks
= [t may be noted that (a, b) is not the same as {a, b}. The former denotes an ordered pair
whereas the latter denotes a set.
®» (a, b) # (b, a) unless a = b.
= Two ordered pairs are said to be equal when both the first components are equal and
their second components are also equal.

SRR CARTESIAN PRODUCT OF TWO SETS
The set of all ordered pairs of elements (a,b), a € A, be B is called the cartesian product of two
sets A and B. It is denoted by AXB.
Symbolically: A XB = {(a,b) :a € A, b € B}
For example :
IfA= {2, 3} and B = {4,5,6}, then
AXB =4(2,4),(2,5), (2,6), (3,4), (3,5), (3,6)}

V' Remarks
»>AXB=¢ A=¢orB=¢
» [f A and B are finite sets, then n(A X B) = n(A). n(B)
= If either A or B are infinite sets, then A X B is an infinite set.

EEEP ORDERED TRIPLET

If A, B, C are three sets, then by ordered triple product of elements, we mean a triplet (a,b,c)

:aeA,beB, ce Cinthat order.

This is also called ordered 3-tuple.

The set of all ordered triplets (a, b, ¢): a € A, b € B, ¢ € C is also called the cartesian triple
product of three sets A, B and C and is denoted by (AXBXC)

Symbolically: AXBXxC={(a b,c):acA beB,ceC}

V' Remark
= In general, the cartesian product on n sets A, Ao, ..., A, is a ordered n tuples (aq,

dg,....,4,), Where a;e Aq, ase A,, ..., a e A,. It is denoted by A1 X A, ... XA, or briefly

n
by IT4; where IT stands for the product.
i=1

= Solved Examples

EXAMPLEL. IfA= {1, 2} and B= {a, b, c}, find the value of AXB, BXA, AXA, BXB.
SOLUTION.  We have A = {1, 2} and B = {a, b, c}.
Therefore,
AXB={(1,a),1,b), (1,0, (2,a), (2,b), (2,0}
B XA ={(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2),}
AXA={1,1),(1,2),2 D, 2 2)}
B x B = {(a, a), (a, b), (a, ¢), (b, a) (b, b), (b, c), (c, @), (¢, b), (c, )}
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EXAMPLEZ2. IfA={1,2,3}, B={a, b, ¢, d} and C = {-1, -2}, find A X B, B X A and
Cx(B v Q).
SOLUTION.  Given that A ={1,2,3},B={a, b, ¢, d} and C = {-1, -2}.
Therefore,
AXB = {(1,a), (1,b), (1,0, (1, d), (2, ), (2, b), (2,¢), (2, d),
(3,a), 3, b), 3,0, B, dD}
BXxXA={(@1), b 1), 1),Ud 1), (a 2),®,2),(?2),d,?2), (a,?3),
®, 3), (, 3), @, 3)}

Also, BuC=Aab,cd-1,-2}
Therefore,
CxXBuUO ={-1,a, (-1,b), (-1,0), (-1, D, (-1, -1), (-1, -2), (-2, @),
(=2,b), (-2,0), (-2,d), (-2,-1), (-2,-2)}
EXAMPLE 3. Find the values of a and b if (4a-2, b+4) = (2a, 4).

SOLUTION. Since we know that two ordered pairs (a;, by) and (a,, by) are said to be equal
if a; = a5 and by = b,. Therefore, for the equality of two given ordered pairs, we
have

4a-2=2aand b+4=4
Therefore, 4a-2a =2 = a=1landb+4=4=b=0

EXAMPLE4. If A = {1, 2, 3, 4} and B = {4, 5}, represent A X B, B XA and B X B
pictorially and find their values.

SOLUTION.  Given A={1,2,3,4} and B = {4, 5}
AXB={(1,4),(1,5),(2,4),(2,5),3,4),(3,5), 4,4, (4,5}
BxA={4,1),(5,1),42),5,2),4,3),5,3), 4,4, 5,4}

And BxB={(4,4),4,5), (5,4, (55}

Pictorially, A X B, B X B and B X A can be represented as shown in figure 12.

Fig. (12)
EXAMPLES. Let A = {1, 2, 3, 4} and B = {5, 7, 9}. Determine (i) AXB, (ii) BXA. Also
represent AXB and BXA graphically.
SOLUTION. (i) Given A={1,2,3,4} and B = {5, 7, 9}. Then,
AxXxB ={(1,5),(1,7),1,9),(2,5), (2,7, (2,9 (3, 5), (38,7, (3,9),
(4,5),(4,7), (4,9}
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Fig. (13): AxB
Graphically, it can be represented as shown in Figure 13.
Now, BXA = {(5, 1), (5,2),(5,3) (5,4) (7, 1), (7,2), (7,3) (7,4) (9, 1),
(9,2),(93) 9,4}

. (5,4) (7,4) 9,4)

T (5,3) (7,3) 9,3)
< 3
p (5,2) (7,2) 9,2)
= 2
[}
& (5,1) 7,1 (CRY)
= 1

1 2 3 4 5 6 7 8 9

Elements of B —
Fig. (14): BxA

Graphically, it can be represented as shown in Figure 14.
THEOREMI. For any three subsets A, B and C, we have.
(i) AX(BNC)=(AXB) N (AXC) (ii)) A X (BuUC) = (AXB) U (A X C)

PROOF. ) IfGoy) eAX (BNO

= Then,x e Aandy € BN Q)
= xeAandyeBandyeC=>xecA yeBandxeA yeC
= (,y) eAXxB and (x, y) e A X C) = (xy) € (AXB) N (AXQC)
But (x, y) is arbitrary, therefore

AX (BN C) c (AXB) (AXC)

.. (D)
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Conversely ,

If ,y) e AXB)YNn(AXCQO

Then, (x,y) e A X Band (x,y) e AXC

= xeAyeBandxeA,yeC=> xeA,yeBandyeC

= xeAandy e BN Q) = (YY) eAX (BNO)
But (x, y) is arbitrary, therefore
AXB)NMAXCOcAX BNO ... (2

From (1) and (2), we conclude that
A X(BNC) =(AXB)n (AX0O)
() Gcy) eAxX (BuUO
Then,x e Aand y € (BuU Q)
= xeAandyeBoryeC
= (xeAandyeB)or(xeAandyeC)
= {0, y) € (AXB)} or {0 y) e AXO)}
= o y) e AXB)u (A X O)
Since (x, y) is arbitrary, therefore

AX (BUC) < (AXB) U (AXC) ... (D)
Conversely,
If ) e(AXB)U@A X0
Then, (6, ¥) € (AXB) or (x, ¥) € (AX(C)
= (xeAandyeB)or(xeAandy e C)
= xeAand (yeBoryeC) = (y) e AX BuO)
But (x, y) is arbitrary, therefore

(AXB) U (AXC) cAX (BU Q) ...(2)

From (1) and (2), we conclude that
AX (BuUC = (AxXB)u (AxQO).

THEOREM 2. For any sets A, B, C, D we have (AX B) n (CxD) = (AN C) X (B nD)

PROOF.

If (a, b) € (AXB) n (CxXD), then
= (a, b) € (AXB) and (a, b) € (CxD)
= (aeAandb eB)and (a e Candb € D)
= (aeAandaeC)and (b eBandb € D)
= aeAnQandbeBNn D)=(@b)e AnC) X (BND)
Since (a, b) is arbitrary, therefore

(AXB)n(CXD)c(AnC) X (BND) ... (1)
Now, let (a,b) e AN C) X (BN D)
= acAnCandbeBnND)=>(acAanda eC)and (b eBandb € D)
= (aeAandb eB)and (a e Cand b € D)

= (a,b) e AXB) n (C X D)
Since, (a, b) is arbitrary, therefore
(AnC) X (BND) c (AXB) n (CxD) ... (2)
From (1) and (2), we conclude that
(AXB) " (CxD) =(AnC) X (BND)
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P Remarks
» (AXB) " (BXA) = (AnB)X (BNA)
B»AX B UC)Y=AXBNC) =AXBnNAxXO
»AX BNC)Y=AXBuUul) =AXBU@AXO
THEOREM 3. If A and B are two non-empty sets having n elements in common, then
AXB and BXA have n? elements in common.
PROOF. We know that (AXB) N (CxXD) = (AN C) X (BN D)
(AXB) " (BXA) = (AN B) X(BNA)
(AXB) " (BXA) = (AnB) X(ANB)
Since (AXB) has n elements, therefore (A N B)X (B N A) has n? elements.
(AXB) n(BxA) = (AnB) X (BNA) has n? elements.
Hence, (AXB) and (B X A) have n’ elements in common.
P Remarks
= For any three sets, A,B,C, wehave Ax(B-C)=A XB)-(A X C)
= If A and B are any two non-empty sets, then A X B =B X Aiff A = B.
®» [fAcCB,thenA XA c(AXB) (B XA)
= [fA c B,thenA X Cc B X Cfor any set C.
» [fAcBandCcD,thenA X Cc B X D.
» AXB=AXC=B=C

= EXERCISE 1.5

1. If A= {a, b, ¢}, B = {d}, C = {2}, then (d, 2). If A : {a, b,c d}, find the remaining
verify elements of AXB such that n(AXB) is
(i) AX(BUC) = (AXB) U (AxQO) least.

(i) AX (BN C) = (AXB) N (AXC) 8. If A and B are two sets having 3 elements
(i) AX B-C)=AXB)-(Ax 0O in common. If n(A) = 5, n(B) =4, find
(iv) ANB)X C = (AXC) N (BXO) n(AxB) and n{(AXB) N (BxA)}.

2. IfA=1{2,3},B={1, 2,3} C=142, 3,4}, 9. The ordered pairs (1, 1), (2, 2) and (3, 3)
show that AXA = (B X B) n (C x C). are among the elements in the set AXB. If

3. IfA={1,2,3},B={4,5}and C = {1, 2, A and B have elements each, how many
3, 4, 5}, then show that (CxB) - (AXB) = elements in all does the set AXB have?
BXB. Also find the remaining elements.

4. The ordered pairs (2,7), (4, 8) and 10. If A and B are two sets such that n(A)=3
(5, 9) and among nine elements of the set and n(B) =2. If (x, 1), (v, 2), (2, 1) are
A XB. Determine the other six elements of in AXB , find A and B, where x, y, z are
A X B. distinct.

5. Let A = {2, 3,5, 7}, B = {1, 12, 13, 11. Write ‘T’ for true and ‘F’ for false statement:
15}. How many elements are there in (@IfA=(a b) and B = (b, a), then
AXxB?InBxA?ISAXB =BXA?Is A X B ={(a b) (b, a)} (T/F)
n(AxB)=n (B xA)? (b) {(a, x), (a,y), (b, x), (b, y)} is product

6. Let A and B be two sets. Show that the set. (T/F)

sets A XB and B XA have an element in © glgr(lAg TAXX%SdE('Xg,) =Y andAmg‘/qu;,
common if and (?nly if the sets A and B (d) IfA and B are non-empty sets, then AxB
have an element in common. is a non-empty set of ordered pairs (x, y)
7. Some elements of A X B are (a, x), (a, ), such that xeA and yeA. (T/F)
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12. (@ If A = {1, 2, 3}, B = {4, 5} and (b) IfA=1{1,2,3,4}and B = {5, 7, 9},
Cc =11, 2,3,4,5}. Find find (AXB) N (A "N B).
(i) AXB, (ii) CxB, (iii) BXB

4. (2,8),(2,9,4,7), 49, 5,7, (5,8) 5. 16, 16, No, yes
7. (a,y), (a, 2), (b, x), (b, y), (b, 2), (c, x), (¢, 2), (d,x), (dy) 8.20,9
9. 9,(1,2),(1,3),(2,1),(,3),(3,1), (3, 2)
10. WA={xy,2,B={1,2}, (@{@F BT (@T (dF
12. (a) ) AXB = (1,4), (1,5), (2,4, (2,5), (3,4, (3,5)
(i) CxB =4{(1,4), (1,5), (2,4),(2,5), (3,4), (3,5), (4,4), 4,5), (5,4, (5,5), }
(iii) BXB = {(4, 4), (4,5), (5, 5)} () ¢

ERP ReLaTION

Let us take two sets of natural numbers N; and N,. We define R as a relation between them
such that Nj is a square of N,. Then we can write 1R1, 2R4, 3R9, ...
In terms of ordered pair, we can write
R={(1,1,2,49,@3,9, 4,16), ...} ={(x,y:x,ye Nandy = xz}
The relation from set N to N is a subset of NXN such that y = X
Definition: Let A and B be two sets. Then a relation R from A to B is a subset of AXB.
Symbolically: R is a relation from A to B < R < AXB.
P Remarks
= [f R is a relation from A to B, then A is called the domain and B the range of R.
= If R is a relation from a non-empty set A to a non-empty set B and if (a, b) € R, then we
write aRb, read as “a is related to b by the relation R.” On the other hand, if (a, b) ¢ R,
we write aRb and say that ‘a is not related to b by the relation R’.
= In particular, any subset A X A defined a relation in A, known as Binary relation.

@ [LLUSTRATIONS
4 Ifa, b € N and R is defined as “a is divisor of b” then R is relation on N.

The subset NXN, which corresponds to the relation Ris S = {(n, r): n € N, r € N}

Here, it is clear that (1, 3), (2, 4), (3, 9) (4, 8), (4, 4), are in S, whereas (2, 3), (4, 5),
(5, 6) are notin S.

4 If R is a relation from set A = {1,2,3} to the set B = {-1, -2} defined by x + y = 0, then
Here, domain of R is {1, 2} and Range = {-1, -2}.

4 IfA={ab,c de}andB={fg h, i} andletR = {(q, 2, (a, 1), (d, h), (e, )} by a relation
from A to B then
Domain of R= {qa, d, e} and Range of R = {g, i, h, f }

4 If g, b € R, the set of real numbers and R is “|a — b| is a rational number” then R is a

relation on R. The subset S of R X R which corresponds to the relation is
S={(a,b+a):acR,beQ}

It is observed that (1,2%), (n,l—%) belongs to S, while 2, m++2) ¢ S.
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4+ IfA ={2,3,4}and B = {q, b, ¢}, then R = {(2, b), (3, c), (2, a), (4, a)} being a subset of
AXB, is a relation from AXB. Here (2, b), (3, ¢), (2, a), (4, a) € R, so we may write 2Rb,
3Rc, 2Ra, 4Ra. But (3, b) ¢ R therefore, 3R b.

4 If a, b € N and R is defined by “a — b is divisible by a number n € N”, then R is a relation
on N. The subset S of N X N corresponding to the relation by
S={n,n+rfm:neN,r e N}
Here, m=3,(02,8),(5,11) S [- 2 -8 = 6, which is divisible by 3]
While (3,8) € S [*- 3-8 =5, which is not divisible by 3]

ERFPX] T0TAL NUMBER OF RELATIONS

Let A and B be two non-empty finite sets consisting p and q elements respectively, then A X
B consists of p q ordered pairs. Therefore, total number of subset of A xB is 274,
P Remarks

= For a non-empty set A, ¢ € A XA, therefore it is a relation on A, called void or empty
relation on A.

= The void relation ¢ and the universal relation A X B are called trivial relation from A
to B.

= The void and universal relation on set A respectively the smallest and the largest relation
on A.

EEPX] IDENTITY RELATION

Let A be a set. The identity relation on A is the relation I, = {(x, x) : x € A} on A.
For example : If A = {q, b, ¢} then the relation I, = {(a, @), (b, b), (¢, ¢)}is the identity
relation. R={(a, a), (b, b)} is not an identity relation as (c, ¢) ¢ R.

EEPXE] INVERSE OF A RELATION

Let A, B be two non-empty sets and R be a relation from a set A to B and let (x,y), number of
the subset D of A X B corresponding to the relation R from A to B.

To the relation R from the set A to the set B, there corresponds a relation from the set B to the
set A called the inverse of the relation, denoted by R™! such that the subset B x A corresponding
to the relation R is = {(, ): (x, y) € D}.

ie., yR_lx < xRy

For example:

(i) Let A={a, b, c} and B = {1,2,3} be two sets and let R = {(a, 1), (a, 2), (b, 1), (b, 2)}

be a relation from A to B then R ! = {(1, o), (2,a), (1, b), (2,b)}

(i) IfA=1{1,2,3},B=4{5,6,7and letR = {(1, 5), (2, 5), (2, 7)} be a relation from A
to B.
Then R! = {(5, 1), (5, 2), (7, 2)} which is a relation from B to A.
Also, Domain (R) = {1, 2} = Range (R_l)
And, Range (R) = {5, 7} = Domain (R_l)

(iii) The inverse of the relation “is less than” in R “is greater than”.

V' Remark
= [t may be noted that sometimes, the inverse of a relation coincides with the relation

itself.
For example, the inverse of the relation “perpendicular to” in the set of straight lines
coincides with itself.
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ERE) CLASSIFICATION OF RELATIONS
ERER] REFLEXIVE RELATION

Let R be a relation on a set A.
“A relation R is said to be reflexive if (x,x) e RVx e A’i.e, xRxVxeA
For example :

(i) In a set of integers, a relation R defined by x R y iff x — y is divisible by 4, then R is a
reflexive relation because x — x = 0 which is a divisible by 4.

(i) The universal relation on a non-empty set A is reflexive.

(iii) The relation “is less than,” i.e., ‘<’ in the set of rational number is not reflexive, because
no member have the relation is less than to itself.

(iv) The relation “is a factor of” in the set of rational number is reflexive, since every
rational number is a factor of itself.

(v) The relation “is less than or equal to.” i.e., < is in the set of natural number is reflexive.

n<nvneN
IIEE SYMMETRIC RELATION

A relation R on a set A is said to be symmetric if
(¥, x) € Rwhenever (x,y) e RVXx,y € R
ie., XRy<yRxVx,yeR
For example:
(i) Letly, I, be two lines such that [; is perpendicular to [,
ie,l; Ll,. Thenly L I =[5 11 . Therefore the relation | is symmetric.
(i) The identity and the universal relation on a non-empty set are symmetric relations.

(iii) Consider the set N of natural numbers and the relation ‘is less than’. This relation is not
symmetric. Since if 2 < 3 then 3 4 2.

Let A = {1, 2, 3} and relations R; and R, defined by
Ry =4(1,2),(1,3), 3, D, (2, D}and Ry ={(1, 2), (2,3), 3, 1)}
Then R; is a symmetric relation, but R, is not symmetric.

EREX] TRANSITIVE RELATION

A relation R on a set A is said to be transitive iff (x, y) e Rand (y,2) € R = (x, 2) € R
Vx,y,zeA e, xRy,yRz—= xRz
For example:

(i) Let a, b, ¢ be three numbers such that a is a factor of b and b is a factor of ¢, then
obviously a is a factor of c. Therefore, ‘is a factor of’ is a transitive relation.

(i) If 14, L, I3 are three lines such that l; Ll and [, L I3 then it is obvious that [; is parallel
to l3. Therefore the relation “ L” is not transitive.
(iii) The identity and universal relation on a non-empty set are transitive.
(iv) Let [y, Ly, I3 be three straight lines, such that [; is parallel to [, and [, is parallel to I3
then it is clear that [4 is parallel to [5. Therefore, ‘is parallel to’ is a transitive relation.
EEEX] ANTI-SYMMETRIC RELATION

A relation R on a non-empty set A is said to be an anti- symmetric relation iff (x, y) € R and
(0, x) eR=x=yVx,yeR
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P Remarks
= The identity relation R on a set A is an anti — symmetric relation.
= If (x,y)e Rand (y, x) ¢ R, then it may be noted that x = y.
= The universal relation on a set A containing at least two elements is not anti — symmetric.

EREX] cQUIVALENCE RELATIONS
A relation R on a set E is said to be equivalence if it is
(i) Reflexive, (i) Symmetric and (iii) Tansitive

For example :
(i) In a set of integers, a relation R is defined by x R y if and only if x — y is divisible by 4.
Then R is an equivalence relation. Since
(a) For xR x, x—x = 0 is divisible by 4. Therefore, it is reflexive.
(b) ForxRy.Letx-y = 4msoy—-x = 4m, which is also divisible by 4. Therefore, it
is symmetric.
(c) ForxRy,letx-y = 4m; for yR z, lety — z = 4n. By adding these two equations,
we get x — 2 = —4(m + n),
which is divisible by 4. Therefore it is transitive.
(ii) Let R be a relation on the set of all lines in a plane L defined by ({1, [;) R if and only
if line [, is parallel to l,, then R is an equivalence relation because
(a) For each line leL, we have [ is parallel to .
= [Rl = R is reflexive.
(b) Letly,l, € Lsuch that (I, [;) € R, then
= (1, L) € R = [, is parallel to [, = [ is symmetric.
(c) Letly, Ly, I3 € Lsuch that (I, l5) and (I5, [3) € R, then obviously ({1, [3) € R because
if [ is parallel to [ and [, is parallel to I3, then I3 should be parallel to [;

EEEX] CONGRUENCE MODULO “w’

Let m be an arbitrary but fixed integer. If x — y is divisible by m, then two integers x and y are
said to be congruence modulo m of one another.

Symbolically: x= y (mod m) is x — y divisible by m.

For example: 32=2 (mol 3), as 32 - 2 = 30 which is divisible by 3.

LALE A4 COMPOSITION OF RELATIONS

Let R; and R, be two relations from sets A to B and B to C respectively, then we can define
a relation Ry o R, from A to C, such that (x, z) € R; o R, if and only if there exist y €Y such that
(¢, y)e Ry and (y, 2) € Ry.
This relation is called composition of R; and R5.
V' Remarks
= R10Ry # Ry0Rq
» (RzoRl)_1 = RyloR;!
For example : Let A, B, C be three sets such that
A= {_1; _2}7 B = {P, q, r} and C = {(L, B? Y}
Also, Ry = {(-1, p), (-1, 1), (-2, @)} is a relation from A and B and

Ry = {(p, ), (g, B), (r, y) yand is a relation from set B to C.
Then R,0R; is a relation from A to C given by

RZORl = {(_1: a); (_1: Y), (_ 2: B)}
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THEOREM 1.

PROOF.

P Remark

The intersection of two equivalence relations on a set is an equivalence
relation.
Let Ry, R, be two equivalence relation on a set A. To show (R; N R,) also an
equivalence relation.
(i) Leta € A and a is arbitrary.
Since Ry and R, both are reflexive on A.
. (@a,a)e Ryand (a,a) e Ry = (a,a)e RN Ry
Therefore, (R{NRy) is reflexive.
(ii) Leta, b € A such that (a, b)e RiN R,
(Cl, b)E Rl M R2 = (Cl, b) € Rl and (a, b) € R2
Also, Ry and R, both are symmetric on A.
Therefore, (b, a)e Ry and (b, a) € Ry = (b, a)e Rin Ry = (R{ N Ry) is
symmetric on A.
(iii) Leta, b, c € A such that (a,b) e Ry "Ry, (b,c) e Ry "Ry
Then, (a,b) e RynRyand (b,c) e Ry "Ry
= {(a,b} € Ry and (a, b) € Ryand {(b,c) € Ry and (b, ¢) € Ry}
= {(a,b) € Ry, (b,c) e Ry} and {(a, b) € Ry, (b, c) € Ry}
= (a,¢) € Ryand (a,¢) eRy [~ Ry and R, both are transitive]
= (a,c) e Ry "Ry
Therefore, (R; N R,) is transitive on A.
From (i), (i) and (iii), we have that Ry N R, is reflexive, symmetric and
transitive, and hence Ry N R, is an equivalence relation.

= The union of two equivalence relations on a set is not necessarily an equivalence relation.

THEOREM 2. If R is an equivalence relation, then R lis also an equivalence relation.

PROOF.

Let R be an equivalence relation on a set A. Then by definition of relation on a set, we
have
RcAxA = R cAxA
Therefore, R} is a relation on A.
Now, to show Rlisan equivalence relation.
(i) Letae A, then(a,a) e R ("~ Risan equivalence relation and hence reflexive)
= (@,a) eR"
Thus, (a,a) e RiVaeR = R isreflexive on A.
(i) Let  (a,b)eR, then (a,b)e R =, a)e R

= (a, b) eR (" R is symmetric)
= (b, @) € R!
Therefore R is symmetric .

(i) Let (a,b)e R *and (b, c)e R then (a,b)e R = (b, a) € R

and (b, 0)e Rl= (c,b)e R

Now, (c,b)e Rand (b, a)e R
(c,a)e R (" R is transitive)
(a,0)e R!

Therefore R is transitive.

From (i), (ii) and (iii), we conclude that R'isan equivalence relation.
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# Solved Examples

EXAMPLE 1.

SOLUTION :

EXAMPLE 2.

SOLUTION :

EXAMPLE 3.

SOLUTION.

EXAMPLE 4.

SOLUTION.

Let Z be the set of integers. Define a relation R on Z such that x Ry
holds if and only if x - y is divisible by 5, x < Z, y < Z. Show that it is
an equivalence relation.
(i) Foreachx e Z, x—xi.e., 0 is divisible by 5.
Therefore, for all x € Z, x R x = x is reflexive.
(i) Let xRy = x-Yy isdivisible by 5.
= y — x is divisible by 5.
Thus xRy = yRx
Therefore R is symmetric.
(iii) Let us suppose xRy and yRz, then (x —y) and (y — 2) are both divisible by 5.
Hence, 5 is also a divisor of (x—y) + (v — 2).
5 is a divisor of (x — ).
Therefore, xRy, YRz = xRz = R is transitive.
From (i), (ii) and (iii), we conclude that R is an equivalence relation.
Let NXN be the set of ordered pairs of natural numbers. Also, let R be
the relation in NXN, defined by (a, b) R (¢, d) if and only if a+d = b+c.
Show that R is an equivalence relation.
(i) For all (a, b) e NXN, we have a+b = b+a, i.e., (a, b) R (b, a).
Therefore, R is reflexive.
(i) Let (a, b) R (¢, d), then, by definition of R
(a+d) = (b+c¢) or (c+b) = (d+a)
(¢, ) R (a, b) = R is symmetric.
(iii) Let us suppose (a, b) R (¢, d) and (c, d) R (e, f), then
a +d =b+cand c+f = d+e
= a@a+d+(c+H=b+c)+(d+e) = a+f=b+e
= (a, b)R(e, f)
Therefore, R is transitive.
Hence, from (i), (ii) and (iii), we conclude that R is an equivalence relation.
If R is the relation for natural number defined by x + 4y = 20. Find the
domain and range of the relation R.
_20-x
YT
Forx =4,y = 4 and forx = 8,y =3.
Forx =16,y = 1and forx = 12,y = 2
Therefore, Domain = {4, 8, 12, 16} and range = {4, 3, 2, 1}
A relation R defined on the set of integers Z, as follows
(x, ¥)eR o+ yz =25
Express R and R! as the sets of ordered pairs and hence find their
respective domains.
Since (x,y)e R & x? +y2 =25 = y=J_r\/25—x2

Letx+ 4 =20 =




(INTRODUCTION

EXAMPLE 5.

SOLUTION.

EXAMPLE 6.

SOLUTION.

EXAMPLE 7.

If x=0 = y=5.
Therefore, (0,5) e Rand (0,-5) € R
Now,x =3 = y=+25-9=14
(3,4)eR,(-3,4)eR, (3, 4)ecRand (-3, 4)eR
x=+x4 = y==3
Therefore, (4, 3)e R, (-4, 3)eR, (4,-3)e Rand (-4, -3)e R
x=15 = y=+/25-25=0 .. (5,0)eRand (-5, 0) R
Here, it is clear that for any other integral value of x, y is not an integer. Therefore,
R=A(0, 5), (0,-5), (3,4), (-3,4), (3,-4), (-3,-4), (4, 3), (-4, 3), (4,-3),
(-4,-3), (5,0), (-5,0)}
and R = {(5,0), (-5, 0), (4, 3), (4,-3), (- 4, 3), (- 4,-3), (3, 4), (3, —4),
(3,4, (-3,-4), (0, 5), (0, -5)}
Also, Domain (R) = {(0, 3, -3, 4, -4, 5, -5} = domain of (R_l).
Consider the set A = {a, b, c}. Give an example of a relation R on A which is
(i) reflexive and symmetric but not transitive.
(ii) symmetric and transitive, but not reflexive.
(iii) reflexive and transitive, but not symmetric.
(i) GivenA = {a, b, c}
Let R =A{(a,a), (a, b), (b, a), (b, c), (c, b), (b, b), (c, c)} onA.
Clearly, R is reflexive and symmetric but not transitive.
(ii)) Let R ={(a,a), (a,b), (b,a), (b,b)} onA.
Here, R is symmetric and transitive but not reflexive.
(iii) Let R = {(a,a), (b, b), (c, ), (a, b)} on A.
Here, R is reflexive, transitive but not symmetric.
If R is a relation in NxN, show that the relation R defined by (a, b) R
(¢, d) if and only if ad = bc is an equivalence relation.
(i) Sinceab = ba V a,beN.
Therefore, (a, b) R (a, b)V a, b € N = R is reflexive.
(i) Wehave (a,b)R (¢c,d) iffad = bcV a,b,c,d e N
Now, (¢, d) R (a, b) iff cb = da V a, b, ¢, d € N = R is symmetric.
(iii) We have (a, b) R (¢, d) iffad = bcV a,b,c,d e N
Therefore, (a, b) R (¢, d), (c,d) R (e,f) = (a,b)R (e, /) Va,b,c,d e N
Using (a, d), (¢, f) = (b, 0)(d, e)
= (a,f) = (b, e) = R is transitive
Hence, from (i), (ii) and (iii), we conclude that R is an equivalence relation.
Let R, and R, be two relations on a set A, where A = {1, 2, 3, 5} such
that
R, ={(1, 1), (1, 2), (1, 5), (2, 1), (2, 5)}
and Ry ={(3, 3), (3, 2), (2, 3), (1, 2), (2, 1)}
Then, which of the following statement is false :
(@) R,V R, is symmetric (ii) R N R, is transitive
(iii) Ry N R, is symmetric (iv) Ry U R, is transitive.
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SOLUTION. (i) As (1, 2)eRy, also (2, 1) eR;, therefore, it is symmetric and as (1, 2) eR,, also
(2, 1)eRy = R, is symmetric.
Now, R; URy = {(1, 1), (1, 2), (1,5), (2, 1), (2,5), (3, 3), (3,2), (2,3)}
In R{ URy, as (1, 2)eR; UR,, also (2, 1)eR; U Ry = Ry U Ry is symmetric
Therefore, (i) is true.

(i) We have Ry "Ry, = {(1, 2), (2, 1)}
= (1, 1) should also belong to Ry N R,.
But in this case (1, 1) R; N Ry is not transitive.
Therefore, (ii) is false.

(iii) We have, Ry "R, = {(1, 2), (2,1)}

(1,2)eR; "Ry and also (2, 1)eRy N R,.

Therefore, (iii) is true.

(iv) InR{UR,, (1,2)eR; URy
and (2, 5)e R{ UR,, also (1, 5)eR{ UR,y
= Ry UR, is transitive
Therefore, (iv) is true.

EXAMPLEE. If A be the set of all triangles in a plane and R = {(a, b) : Aa = Ab}, i.e.,

aRb < Area of triangle a = Area of triangle b, then show that R is an
equivalence relation.

SOLUTION. (i) Since, for all a € A we have Aa = Aa

Therefore, aRa = R is reflexive.

(ii) Foranya,b € A, we have (a,b) e R = Aa = Ab
= Ab=Aa = (b,a) eR
Therefore, (b, a) € R, i.e., bRa = R is symmetric.

(iii) Foralla, b, c € A, we have (a,b) e R, (b,c) eR

Aa=Aband Ab=Ac = Aa=Ac = (a,¢) eR

Therefore, R is transitive.
Hence, from (i), (ii) and (iii), we conclude that R is an equivalence relation.

EXAMPLEQ. If Z be a set of non-zero integers and a relation R defined by xRy <
x’=y* V x, yc Z, then show that R is not an equivalence relation on Z.
SOLUTION. (i) Letx e Z, thenx=x',VxeZ
= XRx,VxeZ
Therefore, R is reflexive.
(i) Letx,y e Z, such that xRy, i.e., ¥’ = y*
= =y =y=x
Therefore, xRy = yRx, Vx,y € Z
= R is symmetric.
(iii) Letx,y, z € Z such that xRy and yRz
ie, x =y“andy® = 2 which does not give x* = 2*
= R is not transitive.
Hence, we conclude that R is not an equivalence relation.
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EXAMPLE10. Let A = R X R (R is the set of real numbers) and define the following
relation on A : (a, b) R (c, d) iff aZ + b% =% + d>
(i) verify that (A, R) is an equivalence relation.

(ii) describe geometrically what the equivalence classes are for this

SOLUTION. )

(i)

reason.
We have (a, b)R(c, d) = @ +b?> =+ d°
= 2+d=+b%> = (c, DR b) (D

= R is symmetric.
Now, (a, b)R(c, d) and (c, d)R(x, y) = @ +b%=c%+d?
and c2+d2=x2+y2

= a+b=x+ y2 = (a, b)R(x,y) .2
= R is transitive.
Again (a, b)R(a, b) & a® + b% = a® + b> ..(3)

= R is reflexive.

Hence, from (1), (2) and (3), we conclude that R is an equivalence relation.
For any point (a, b), the sum a®+b? is the square of the distance from the
origin. The equivalence classes are, therefore, the set of points in the place
which have the same distance from the origin. Hence, the equivalence classes

are concentric circles centered on the origin.

EXAMPLEIl. Let R be the binary relation defined as R = {(a, b) < R®:a-b< 3}.
Determine whether R is reflexive, symmetric, anti symmetric and
transitive.

SOLUTION.  We have (a, b)eR?:a—-b <3.

=

(a,a) € R>:a-a<3 i.e., 0 < 3, which is true. So, R is reflexive.

In a similar way, we can easily show that R is neither symmetric, anti symmetric
nor transitive.

EEEX:] RELATIONS OTHER THAN EQUIVALENCE

Let R be a given relation on the set X. Then R is
(i) non-reflexive if 3x, such that (x, x) ¢ R.

(ii) anti-reflexive or reflexive if [, W R = ¢ (where I, is the identity relation on X or
vneX:(x,x)eR
(iii) non-symmetrical if for some (x, y) €R, we have (y, x) ¢ R

(iv) asymmetric if R N R_1 =1Iie, (x,y)eRand (y,x)eR = x=y
(v) anti-symmetric if R N R = o,ile, 0, ¥Y)eR = (y,X)¢R

(vi) non-transitive if R e R¢R

(vii) anti-transitive if (R°R) "R = ¢

(viii) A reflexive and symmetric, but not transitive relation is called a tolerance relation.
(ix) A non-symmetric transitive relation is called an ordered relation.
(x) A reflexive, anti-symmetric and transitive relation is called partial-ordered relation.
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= EXERCISE 1.6

. If R is the relation ‘is less than’ from
A=1{1,2,3,4,5} to B = {1, 4,5}, find
the set of ordered pairs corresponding to
R. Also find R™%.

. Arelation R defined from a set A = {2, 3, 4,
5} toasetB = {3, 6,7, 10} as follows :
(x, ¥)e R = x divides y. Write R as a set of
ordered pairs and determine the domain
and range of R. Also find rRL

. Find the domain and range of A = {1, 2,
3, 4, 5, 6} when the relation are defined
as
(i) xRyyifand only ifx-y > 0
(ii) xR,y if and only if x + y <O

. Two sets A and B are given by A = {1, 2,
8,9} and B = {2, 3, 4, 6, 7} and if R is the
relation form A to B given by {(1,2), (1,3),
(2,4), (2,6)}, then which of the following
statement is true?

(i) Domain (R) # Range (R") and
Range (R) = Domain (R_l)
(ii) Domain (R) = Domain (R™}) and
Range (R) = Range (R_l)
(iii) Domain (R) = Range (R™}) and
Range (R) = Domain (R_l)
(iv) Domain (R) = Range (R)

. If R is a relation on a set A, then which of
the following statement is not true?

(i) IfR is reflexive then R is reflexive.
(ii) IfRissymmetric then R_1 is symmetric.
(iii) If R is transitive, then R is transitive.
(iv) None of these

. Find the domain and range of the
following relations:

1) R}= {x+1,x+5)}r:xe{0,1,2,3,4,
5

(i) R = {(x, x?’) : X is a prime number, less
than 10}

(iii)) R={(a,b):aeN,a<5,b=4}

Giv) R={(a,b):b = |a-1|,a e Z, and
la| <3}

7. Let Ry be the relation defined on the set of

reals R such as (a, b) € R; if and only if

1+ab>0 forall a, b € R. Show that Ry is

reflexive, symmetric but not transitive.

10.

11.

12.

13.

14.

15.

16.

. Show

. Let R be relation on N X N, defined

by (a,b)R(c,d) if and only if and

(b+c) = bc(a+d). Show that R is an

equivalence relation.

that the relation ‘congruence

modulo m’ on the set of integers is an

equivalence relation.

Let Ry be a relation on the set of reals

defined by R;={(a, b) € RXR : @ +

b =1}

Show that R; is not an equivalence

relation on R.

In a set L of all straight lines in a plane,

discuss which of the following two

relations are equivalence relations L.

(1) Ry = {0 )): x, yeL and x is parallel to y}

(i) Ry = {(x, y): x, yeL and x is
perpendicular to y}.

Show that the relation

R = {(a, b): a-b = even integr V a,

beZ},ie., aRb < a-b = even integer, is

an equivalence relation.

Show that the relation R in N, the set

of natural numbers, defined by xRy if

x* - 4xy +3y2 = 0, (x, y € N) is reflexive,

not symmetric and not transitive.

For the given relation R on a set S,
determine  which are equivalence
relations:

(1) S is the set of all rational numbers,
aRbif and only ifa = b

(ii) S is the set of all real numbers iff
(@) |a|] = |b| (b) a=b
(iii) S is the set of all triangles in a plane,
aRb iff a is congruent to b.
(iv) S is the set of all triangles in a plane,
aRb iff a and b have equal perimeters.
An integer m is said to be related to
another integer n if m is a multiple of n.
Show that this relation is reflexive and
transitive but not symmetric.
Let R be a relation defined on the set of
natural number N asR = {(x, y): x, ye N,
2x +y = 41}. Find the domain and range
of R.
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17. Let O be the origin. Define a relation and reflexive.
between two points P and Q in a plane 19. Let N denote the set of all natural numbers
if PO = OQ. Show that the relation is an and R be the relation on N X N defined by
equivalence relation. (a,b)R(c,d) < ad (b + ¢) = bc(a + d).
18. Given the relation R = {(1, 2), (2, 3)} Show that R is an equivalence relation.
on the set of natural number N, add a 20. Show that the relation, which is symmetric
minimum of ordered pairs so that the and transitive, is not necessarily reflexive.

enlarged relation is symmetric, transitive

1. aRb=4{(1,4),(1,5),(2,4), (3,4),(2,5),(3,5), (4, 51, R_1={(4, 1),(5,1),(4,2),(5,2),04,3),
(5,3),(5,9}

2. Domain (R)={2, 3, 5}, Range (R)={3, 6, 10}, Rl= {(6, 2), (10, 2), (3, 3), (6, 3), (10, 5)}

3. ()12, 3, 4,5, 6}, {1, 2, 3,4, 5}, (i) ¢, ¢ 4. (iii)) 5. (iv) 6. (i) Domain (R) = {1, 2, 3,
4,5, 6}, Range (R) = {5, 6, 7, 8, 9, 10} (ii) Domain (R) = {2, 3, 5, 7}, Range (R) =
{8, 27, 125, 243} (iii) Domain (R) = {1,2,3,4}, Range (R) = {4} (iv) Domain (R) =
{0,-1,-2,-3,1,2,3}, Range (R) = {1, 2, 3, 4, 0, 1, 2} 11. R; = Equivalence relation, R,
= Not equivalence 14. (i), (ii) 16. Domain (R) = {1, 2, ..., 19, 20}, Range (R) = {39, 37,
35,...,5,3,1}18.{(1, 2), (2,1), (2, 3), (3, 2), (1,3), (3,1), (1,1), (2,2), (3,3), 4,4, ...}

ERT FuncTions

Definition: Let A and B be two sets, then the rule or corresponding, which associates each
element of A to a unique element to B, is called a function from set A to set B.

If a general element of set A is denoted by x, and of set B is denoted by y, then we say that y
is a function of x if, for every x € A, one and only one value of y € B can be determined.

Symbolically: If f is a function from a set A to a set B, then we write f : A — B, read as f is
a function from A to B or f maps A to B.

EISZEN RANGE AND DOMAIN OF A FUNCTION

Let an element y € B be corresponded by an element x € A, then y is called the image of x
and is denoted by f(x). Here, x is defined as the pre-image of y.

The set A is called the domain and the set B is called the co-domain of the function f.

The set of all f-images of the element of A, is called image set or the range of f and is denoted by

flA) or {f(x):xeA}

Evidently, f(A) < B.

Thus, a mapping f : A — B is the set of ordered pairs {(a, b) : a € A, b € B}, so that no two
ordered pairs have the same finite element.

f={(@b):aceA beB, b=f(x)VaeA}

For example: Let A = {-2,-1, 0, 1, 2} and B is the set of
natural numbers for every xeA, f(x) eB and f(x) = X2,

Here, A is the domain and B is the co-domain.

f(a) is the value of the function f(x), when x takes the
value a, i.e., when x is replaced by a.

The elements of the co-domain which is equal to f(x) form
the range.

When x = -2, f(-2) = (_2)2 =4 Domain Co-Domain Range

Fig. (15)
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Whenx = -1, f(-1) =1

Whenx =0, f(0) =0

Whenx =1,f(1) =1

When x = 2, f(2) = 4.

Which can be illustrated in the figure (15).

P Remarks

= If f: A — B then a single element in A cannot have more than one image in B. However,
two or more elements in A may have the same images in B.

= Every element in A must have its image in B, but every element in B may not have it pre-
image in A.

= To each element x in A, there exists a unique element y in B such that y = f(x).

= The unique element y of B is called the value of f at x (the image of f under x), and written
asy = f(x).

= The range of f consist of those elements in B which appear as the image of at least one
element in A.

= Range of a function is the image of its domain.

= Range is a subset of co-domain.

ERE] TvPES OF FUNCTIONS

EEER] ONE-ONE FUNCTION

A function f from A to B, i.e., f : A — B is said to be one-one (or injective) iff distinct elements
of A have distinct images.

=

Fig. (16) Fig. (17)
Symbolically: f is one-one if for x1, x5 € A, we have
X1 # Xo = flxq) #fxg) Vx1,Xx9 € A
or f(x1) =f(xy) = X1 =X3VXx,X9€A
It is also called Univalent function.
Graphically, a function is one-one if and only if no line parallel to x-axis meets the graph
of the function in more than one point.

Il m MANY-ONE FUNCTION

A function f : A — B is called many-one, if at least one element of co-domain B has two or
more than two pre-images in domain A.

Symbolically: f is many-one if for x;, x5 € A, we have x1 # x5 = f(x7) = f(x5)

This can be illustrated in the 18 and 19 figure.
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Fig. (18) Fig. (19)
Graphically, a function is many-one if and only if a line parallel to x-axis meets the graph
of the function in more than one point.

P Remark
= One-many function does not exist.

Il EI ONTO FUNCTION

A function f : A — B is called an onto function, if there is no element of B which is not an
image of some element of A, i.e., every element of B appears as the image of at least one element
of A. This is illustrated in Figure 20.

7

Fig. (20): Onto Function
P Remarks

= In an onto function, Range = Co-domain
= Onto function is also called surjective.

II EI INTO FUNCTION

A function f : A — B is called an into function, i.e., if there is at least one element of set B
which has no pre-image in the set A. This is illustrated in Figure 21.

>
W(o & TR

Fig. (21): Into Function

P Remark
= In an into function, Range < Co-domain.

ERTX] ONE-ONE INTO FUNCTION

A function f : A — B is called a one-one into function, if it is both one-one and into, i.e., the
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different points in A are joined to different points in B and there are some points in B which are
not joined to any point in A. This is illustrated in Figure 22.

Symbolically : One-one into function is defined as 4
(}ir) Range go-domain. =
(i) fOep) # fOy) = X1 # %y, —
[EREEX:] ONE-ONE ONTO FUNCTION —
A function f : A — B is both one-one and onto, i.e., the different A B

points in A are joined to different points in B and no point in B is left
vacant. This is illustrated in Figure 23.

Fig. (22): One-One Into Function

A B
Fig. (23): One-one Onto Function

V' Remarks
= One-one onto mapping is also known as bijective or one-to-one.
= For a one-one onto function, Range = Co-domain, and x; # x9 =  f(x7) # f(xs)
or f(Xl) zf(Xz) = X1 = Xy

U EY A MANY-ONE INTO FUNCTION

A function f : A — B which is both many-one and into function is called a many-one into
function, i.e., two or more points in A are joined to some points in B and there are some point in
B which are not joined to any point in A. Therefore, for many-one into function.

Fig. (24): Many-One Into Function
(i) Range c Co-domain.
(11) X1 # X9y = f(x]_) =f(X2)
EREX:] MANY-ONE ONTO FUNCTION . .

If function f : A — B is both many-one and onto function is
called a many one onto function, i.e., in B one point is joined to at

least one point in A and two or more points in A are joined to some ° °
points in B. Therefore, for many-one onto function. A B
() Range = Co-domain. Fig. (25): Many-One Onto Function

(i) xp #xo = flxy) = flxg)
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=== WORKING PROCEDURE

1. For checking the Injectivity (One-One) of the function
Let x and y be two arbitrary elements in the domain of f
step 1. Take f(x) = f(y)
step 2. If we get x =y, after solving f(x) = f(y). Then, f: A — B is one-one.
2. For checking the surjectivity (Onto) of a function
step 1. Take an arbitrary element y in the co-domain.
step 2. Put f(x) = f(y)
Step 3. Solve f(x) = y for x and obtain x in terms of y.
step 4. Get the equation of the form x = g(y)
step 5. If x = g(y) belongs to domain £, for all values of y, then f is onto.

= Solved Examples
EXAMPLEL. Let f: R — R be a function defined by
3x-1 when x>3
f(x)={x2-1 when -2<x<3
2x+3 when x<-2

Find (i) f(2), (@) f(4), (i) f(-1), (iv) f(-3)
SOLUTION. (i) f(2) = (2)>-1=4-1=3
() fW=34-1=12-1=11
(i) f(-1) = (-1)>-1=1-1=0
(iv) f(-3) =2(-3) +3=-6+3=-3
EXAMPLE 2. For y = +J/x, say whether it is a function or not. If it is a function, find
its domain and range.
SOLUTION.  Here we have y = +x ..(D
Since y is real if x > 0 and is unique and finite for each x > 0.
Therefore, (1) is a function with domain [0, oo[.
Again from (1),y >0V x>0
Hence, range = [0, o [

3_ .2
EXAMPLE 3. Find the domain of f(x)= X —X *4x*2
3x+11
SOLUTION.  Since f is defined for all real values of x except when 3x+11 = 0

i.e., when, x = —%

Hence, domain of f=R- {— %}

EXAMPLE4. Let f: N - {1} — N be defined by f(n) = the highest prime factor of n.
Show that f is neither one-one nor onto. Also, find the range f.
SOLUTION.  Since we have
f(6) = the highest prime factor of 6 = 3
f(9) = the highest prime factor of 9 = 3



TOPOLOGY)

EXAMPLE 5.

SOLUTION.

EXAMPLE 6.

SOLUTION.

EXAMPLE 7.
SOLUTION.

f(12) = the highest prime factor of 12 = 3
Therefore, f is a many-one function.
Clearly, image of any n € N — {1} is the largest prime number that divides n. So the
range of f consists of prime number only. Consequently, range of f # N (Co-domain)
= fis not onto function.
Hence, f is neither one-one nor onto. The range of f is the set of all prime numbers.
Let A = {1, 2}. Find all one-to-one function from A to A.
Letf: A — A be a one-one function.
Then, for f(1), there are two choices, i.e., 1 or 2.
Let us first suppose f(1) = 1.
Asf:A — Aisone-one, f(2) = 2
Therefore, we have f(1) = 1, f(2) = 2
Now, let f(1) =2
Since, f: A - A is one-one, therefore f(2) = 1.
Therefore, we have f(1) = 2 and f(2) = 1.
Hence, we have two one-one function say f and g form A and A given by f(1) =1,
f(2) =2and f(2) = 1 and f(1) = 2.
Let {xcR:-1<x<1}=B. Show that f: A — B given by f(x) = x |x| is
one-one and onto.
Let x, y be any two elements in A, then
xzy =>x|x| 2y|y| = f0) ().
Therefore, f is one-one.

Since, range of f = f(A) = B so f: A — B is onto mapping. Hence f is one-one and
onto.

Find the domain and range of the function f(x)=-J-5-6x-x2.

Given that, f(x)=-v-5-6x—-x2

Forftobereal,—5—6x—x220 X+ 6x+5<0

=

= x*+6x<-5 = X +6x+9<-5+9
= (x+3)7°<4 = |x+3|2S4

= |x+3]<2 = -2<x+3<2

= -2-3<x<£2-3 = -5<x<-1
Therefore, domain of f(x) = [-5, 1]

To find the range of f(x), puty = f(x)

Therefore, f(x)=-V-5-6x-x%,y<0

= yz=—5—6x—x2 = x* + 6x + (yz+5):0
For real x, discriminant > 0, ie., (6)2 —4X1x( y2 +5)>0
- 36-42-20>0 - —4y*>-16
= V<4 = ly|><4
= ly] <2 ie., -2<y<2

But y < 0 therefore, -2 <y < 0.
Hence, Range of f = [-2, 0]
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EXAMPLE g.

SOLUTION.

P Remark

For a finite set A, if f : A — A is a one-one function, show that f is onto.
LetA = {a, ay, ..., a,} be a finite set.
Since f : A — A is one-one function, therefore f(a;), f(ay), ..., f(a,) are distinct
elements of the set A, but A has only n elements. Therefore,
A = {f(ay), flag), ..., flay))}
= Co-domain = Range
Hence, every element in A (co-domain) has its pre-image in the domain A.
= f:A—>Aisonto.

= For a finite set A, if f : A — A is onto function, then f is one-one.

EXAMPLE 4.

SOLUTION.

EXAMPLE 10.

SOLUTION.

If f: R > R be a function defined by f(x) = 4x>
function f is bijective.

Given that f(x) = 4 - 7;x e R

fis one-one : Letx;,x, € R

Now, f(X1) :f(Xz)

- 7, show that the

= 4x3-7=4x3-7 = 4x3 = 4x3
= Xf=x§’ = x13—x§’=0

= (g —x2)(x12 + X1X9 + x%) =0

2 2
&) RS
4

= (x —xz){(xl + 5

Therefore, f is one-one.
fisonto : Letc € R

foo) =c

3
1/3 1/3 1/3
Now, (#) € R and f{(#) }:4[(%) ] —-7=c+7-7=c

1/3
Which implies that c is the image of (%)

S4c-7=c

Therefore, f is onto. Hence, f is bijective function.

Let A and B be two sets. Prove that f: A X B — BXA difined by f(a,b)=(b,a)
is one-one and onto.

fis one-one : Let (a1, by) and (a,, by) € AXB such that

flay, by) = flay, by)

= (b, ay) = (by, ay)

= b; =bjanda; = ay

Therefore, (aq, b1) = (ay, by)

Thus, flay, by) = flay, by)

= (ay, b1) = (ag, by) V (ay, bq), (as, by) € AXB

= fis one-one.
fis onto : Let (b, a) e BXA such thatb € B and a € A.
= (a,b) € AXB
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Therefore, for all (b, a) € BXA, there exist (a, b) € AXB such that f(a, b) = (b, a)
= fis onto. Hence f is one-one and onto.

= EXERCISE 1.7

1. letA=4{2,-1,0,1,2Yand f: A > Z
given by f(x) = x? - 2x - 3. Find :
(i) the range of f,
(ii) pre-image of 6, -3 and 5.
2. Find the domain and range of the
following function
fO)={(x-DE-x)
3. Find the range of the following function

1
fO = o D

4. Find the domain and range of the
following functions :

2_
M f=20 @)y =-|x|
i) feo=E2 G y=vi-3
5. If A={-1,0,2,5,6,11},

B ={-2,-1,0, 18, 25, 108}
and f(x) = X —x— 2, find f(A).

6. Let A be the set of two positive integers. Let
f:A—Z" setof positive integers be defined
by f(n) = p, where p is the highest prime
factor of n. If range of f = {3}, find A.

7. Find the domain for which the function
fx) = 2x* ~1 and g(x) = 1-3x are equal.

8. letf; : R—»> R and f, : C - C be two
functions defined as fi(x) = x> and
fox) = x°. Show that they are not equal.

9. Let A ={p, q, 1r,s} and B = {1, 2, 3}.
Which of the following relations from A to
B not a funcion?

D Ry ={, 1), (@2, 1), 2)}

(i) Ry = {(p, 1), (g, 1), (r, 1), (s, 1)}
(iii) R3 = {(p, 1, (g, 2), (1, 2), (5, 3)}
(iv) Ry ={(, 2), (¢, 3), (r, 2), (5, 2)}

10. Write the following relations as sets of
ordered pairs and find which of them are
functions :

@) {0, y) 1y =3x,xe(1, 2, 3),
ye(3,6,9,12)}
() {G,y):y>x+1,x=1,2and
y=2,4,6}
({ii) {G,y) :x+y=3
x, ye(0, 1, 2, 3)}

11. Express the following functions as sets of
ordered pairs, and find their range :
@D f1:A>R:f1(0) =x*+1

where A = {-1, 0, 2, 4}
(i) fo: A> N : fr(x) = 2x
where A = {x: x e N, x <10}
12. Let f : R — R be a function such that
f(x) = 2. Determine :
(i) range of f
(i) {x:f(x) =1}
(iii) whether f(x + y) = f(x)- f(y) holds

13. Letf: R* — R, be a function such that f(x)

= log x. Determine :
(i) the image set of domain of f
(i) {x:f0) = -2}
(iii) whether f(xy) = f(x) + f(y) holds

14. Give an example of a map which is :
(i) one-to-one but not onto
(ii) not one to one, but onto

(iii) neither one-to-one nor onto

8

1. () f(A) = {-4,-3, 0, 5}, (iD) ¢, {1, 2}, -2 2. Domain = [1, 3], Range = [-1, 1] 3. ]—oo ;—5:|U[0,°°[

4. () R—{1}, R- {2}, (i) R: R-R", (iii) R - {1}, {-1, 1}, (V) [3, [, [0, =]
5. f(A) = {1, -2, 18, 28, 108} 6. A = {3, 6} or (3, 9) or [3, 12] etc. 7. (-2, 1/2) 9. (iii)
10. (i) {(1, 3), (2, 6), (3, 9)}, function, (ii) {(1, 4), (1, 6), (3, 4), (3, 6)}, not function

(iii) {(0, 3), (1, 2), (2, 1), (3, 0)}, function

11. () f1 = {x, f(x) : x € A} = {(-1, 2), (0, 1), (2,5), (4, 17)}
(i) fo = {(x, g)) : x € A}= {(1,2),(2,4), (3, 6), ..., (10, 20)}
12. (i) Range of f = R+, the set of positive real numbers, (ii) (x : f(x) = 1) = {0},
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(iii) fOc+y) = f(x). f(y) holds for allx, y € R
14.()n>n’>: N> N (@) n— |n| : Z—>NuU{0} (i) n > |n|?: Z—>Nu {0}

ERT 80UNDEDNESS OF A SUBSET OF REAL NUMBERS
ERTEN uPPeR BOUND OF A SUBSET OF R

A subset S of R is said to be bounded above, if there exists a real number u such thats < u
VseS. The real number u is said to be upper bound of S.

If there exists no such upper bound, then the set is said to be unbounded above.
@@~ |LLUSTRTIONS

4 The set of natural number N = {1, 2, 3,...} is not bounded above or unbounded above.

4 The set of positive integers Z" is not bounded above.
4 Theset S = {1, 2, 3, 4} is bounded above by 4.

n
4 The set of negative integers is bounded above by 0.

Il IE LOWER BOUND OF A SUBSET OF R

A subset S of R is said to be bounded below if there exists a real number [ such that s = [
V s € S. The real number [ is said to be the lower bound of S and if there exists no such lower
bound, then the set is said to be unbounded below.
@ |LLUSTRATIONS

4 The set of natural numbers, N is bounded below by 1.

4 The set {l : neN} is bounded above by 1.

4 The set {1 : neN} is bounded below by 0.
n

4 Theset S = {1, 2, 3, 4} is bounded below by 1.

4 The set of positive real numbers is bounded below.

Il IEI BOUNDED SET

A subset S of R is said to be a bounded if it is bounded below as well as bounded above i.e.,
if there exist two real numbers [ and u such that

[<s<u,VseS.
Equivalently, if there exists an interval I (= [[, u]) such that S <1
@ [LLUSTRATIONS
4 Every finite set is bounded.

4 The set {1 : neN} is bounded.
n

II I!I UNBOUNDED SET

A subset S of R, which is not bounded is called an unbounded set.
@ [LLUSTRATIONS
4 The sets N, Z, Q, R are unbounded sets.

4 Set of all prime numbers is an unbounded set.
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V' Remarks

= If a set is bounded above, then it has infinitely many upper bounds in as much as every
number greater than an upper bound is also an upper bound.

= If a set is bounded below, then it has infinitely many lower bounds in as much as every
number smaller than a lower bound is also a lower bound.

= It is not necessary that lower bounds and upper bounds of a set S are the members of S.
= The null set ¢ is bounded but it is neither possesses lower bound nor upper bound.

SUPREMUM AND INFIMUM OF A SET
TREZN LEAST UPPER BOUND (OR SUPREMUM)

A real number u is said to be a least upper bound of a set S if
(i) u is an upper bound of S

and (ii) if u " is an another upper bound of S then u < u'.

i.e., no real number less than u can be an upper bound of S.

GREATEST LOWER BOUND (OR INFIMUM)
A real number [ is called a greatest lower bound of a set S if
(1) lis a lower bound of S
and (ii) ifl” is another lower bound of S, then I' <
i.e., no real number greater then [ can be a lower bound of S.
For Example :

IfS = {l 'n EN} then Lu.b. = 1 and g.1.b. is 0.
n

P Remarks
= If a real number u is the supremum of a subset S of real numbers then, for every ¢ > 0, there exists
a real number x € S such thatu —& < x < u.
®» [f a real number is the infimum of a subset S of real numbers then, for every >0, there exists a
real number x € S such that [ <x< [ + &.
®» Supremum is defined only for the bounded above sets and infimum for the subset, which are
bounded below.

®» The supremum and infimum of a set may or may not belong to the set.

= If supremum of a set belongs to the set, then supremun is the largest element of the set.
= If infimum of a set belongs to the set, then infimum is the smallest element of the set.
®» Supremum and infinium of a bounded subset of R, are unique.

®» In case of singleton set S = [a], a € R, supremum and infimum coincide.

®» If u and [ are the supremum and infimum of a non-empty subset S of R, then [ < u.

THEOREM1. The supremum of a set S — R, if exists, is unique.
PROOF. Let S be a non-empty subset of R.
Let if possible, s and s, be two supremum of S.
To show 51 =S59.
Since we assume that s; and s, are the supremums of S.
= 57 and s, are the upper bounds of S.

Let us first suppose s; is a supremum and s, is an upper bound of S, then
S1 < $9. (1)
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Now, if s, is the supremum and s; is the upper bound of S, then
Sy <8q. ...(2)
From (1) and (2), $1=59.
Hence, supremum of a set, if exists is unique.
THEOREM 2. The infimum of a set S C R, if exists, is unique.
PROOF. Proof is similar as theorem 1 and left to the reader.
THEOREM 3. IfSis a non-empty subset of R, then a real number s is the supremum
of S if and only if
(i) x<s Vxe 8§
and (ii) for each positive real number ¢, there exists a real number
x € S such that x > s - «.
PROOF. Necessary Condition (only if part).
Let us first suppose s be the supremum of the set S.
Let s be the supremum of S = s is an upper bound of S.
By definition x<s V x € S.
Let € > 0 be any real number. Then obviously s —& < s
= (s -¢) is not an upper bound of S. (*- sislu.b. of S.)
Hence, there must exist some x € S such thatx > s —¢.
Sufficient part (If part)
Let us suppose condition (i) and (ii) holds.
Then, to show s=supS
By condition (i), we have s is an upper bound of S. To show s is the supremum of
S, for this, it is enough to show that no real number less than s can be an upper
bound of S.
Let s; be any real number less than s
=5 -517>0.

Let us take E=5-51 = e > 0.
Then by condition (ii), these exists x € S such that x >s-¢
= x> s—(s=s") = x>s’,xeS

= s’ is not an upper bound of S.
Hence, we can say that s is an upper bound of S and no real number less than s is
an upper bound of S.
= s is the supremum of S.
THEOREM 4. Let S be a non-empty subset of R, then a real number t is the infimum
of S if and only if
(i) x>tforallx e S and
(ii) For each real number ¢ > 0, there exists a real number x € S such
thatx <t + ¢.

PROOF. Proof is similar as theorem 3.

Solved Examples

EXAMPLEl. Show that

(i) The set R of positive real numbers, is bounded below and
unbounded above.
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SOLUTION.

EXAMPLE 2.

SOLUTION.

EXAMPLE 3.

SOLUTION.

EXAMPLE 4.

SOLUTION.

EXAMPLE 5.

SOLUTION.

EXAMPLE 6.

SOLUTION.

(ii) The set R of negative real numbers, is bounded above and
unbounded below.

(i) Since every member of R~ U {0} is lower bound of R+, therefore R" is
bounded below.
To prove R" is unbounded above.
Let if possible, suppose u is an upper bound of R* we haveu>1for1 € R™.
Since2e R ,2>0andsou>1,2>0givesu +2 > 1+01i.e.,u + 1>0. Thus
w+1)e R" and (u + 1)> u which is a contradiction, that u is an upper
bound of R
Hence, R is unbounded above.

(ii) Proof follows in a similar manner.

Show that the set of real numbers, R is an unbounded set.

From example 1, we conclude that the set R* is unbounded above and R is
always unbounded below.

Also R=R U{0}UR"

= R s not bounded.

Show that the null set ¢ is neither bounded below nor above, nor
unbounded.
Since, there is no member in ¢, we cannot check whether a given real number can
be a bound for ¢ or not. Thus, bounds for ¢ do not exists. On the other hand we
can as well say that every real number is a lower or upper bound for there is no
member in ¢ which does not satisfy the required property of bounds.
Show that every non-empty finite subset of R is bounded.
Let S be a non-empty finite subset of R.
= S contains a finite number of elements. Then by the properties of the ordered
relation in R, out of these elements, one element s € S, shall be the smallest
element of S and another element b € S, shall be the greatest element of S
= a<x<bVxeS.
Hence, S is always bounded.
Find the supremum and infimum of the set S = {x c Z : x? < 25}
Since S={er:x2S25}

={-5-4-3,-2,-1,0,1,2, 3,4, 5}.
Since S is a finite subset of R, the smallest member of S is — 5, which is a lower
bound of S, and hence infimum of S is — 5. Similarly 5 is the supremum of S.

Find the supremum and infimum, if they exist, of the following sets

) {l:neN} (ii) {er:x:L,neN}
n n+1

D" . 11 1

(iii) {1+ - .neN} (@iv) {n+2,n+4,n+8,...}

(i) Here we have



(INTRODUCTION m

The set S is bounded above by 1, also any member less than 1 is not an upper

bound of S, therefore sup S = 1.
Also, 0 is a lower bound of S, because x > 0, V x € S. Let [ be any arbitrary

.. . 1 .
positive small number, then there exists n € N such that — < [, which
n

shows that [ is not an upper bound of S. Thus 0 is a lower bound of S and no
other positive real number is a lower bound of S. Therefore, infimum of
S=0¢S.

(i) Let s=1-" neny=41 23
n+1 2°3 4
Then, the set S is bounded below by % and any number greater than % can

not be a lower bound of S, therefore infimum of S = % .

Also, ( n 1) < 1,V n € N, therefore 1 is an upper bound of S, and any

n+
number less than 1 not be a upper bound of S.

Therefore supremum of S = 1.

n
(i) Let s= {1+ nenl = 03,2247 6
n 234567
_[02468 -2 [3579 2+
1’3’577°9 " 72n-1f " |2°4°6°8"7" 2n |’
0246
Here, the proper fractio 1°3°5 7" . are increasing and tending to 1, and
the improper fractions begin with g are decreasing and tending to 1.
Therefore, infimum of S = 0 and supremum of S = 3 .
(iv) Let S = n+1,n+l,n+l,... .
2 4 8

Here, we have x < n+% VxeS
1.
= T+ 5 is an upper bound for S.

Since, = +% €S, therefore no real number less than = +% can be upper
bound for S. Thus, & +% is the least upper bound. Therefore, supremum of
S=mn+ 1.

2

Similarly, we can show that = is the infimum of S.

ERT scauences

Let N be the set of natural numbers and S be any set of real numbers. A function, whose
domain is the set of natural numbers and range is a subset of S, is called a sequence in S.
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Symbolically. If we define a function f: N — S, then f is a sequence. We shall denote a
sequence in a number of ways as follows :
(i) Usually, a sequence is denoted by its images. For a sequence f, the image corresponding
ton e N is denoted by f,, or <f(n)> and f(n) is called the n'M term of the given sequence.
For example <1, 4, 9, ...> is the sequence whose n'™ term is n?.
(i) Using in order, the first few element of a sequence, here the rule for writing down
different elements becomes clear. For example, <1, 2, 3, ...> is the sequence whose
n'" term is n.
(iii) Defining a sequence by a recurrence formula, i.e., by a rule which express the n' term
by (n - 1™ term. For example, let a; =1,a,,,; =2a, Vnz=1.
These above relations define a sequence whose n'™ term is 27~ L.
P Remarks
= A sequence is represented as <s,> or {s,}, when s, is the n'™ term of the sequence.
The set of all distinct terms of a sequence is called the range set of that sequence.
= A sequence, whose range is a subset of real numbers R is called a real sequence or a
sequence of real numbers.

ERTEN cONSTANT SEQUENCES

A sequence < s, > defined by s, =a, Vne N , is called a constant sequence.
ERF¥ cQUALITY OF SEQUENCES

Two sequence < s, > and < t, > are said to be equal, ifs, =t, VneN.
EETX] 0PERATION ON SEQUENCES

Since, the sequence are real valued functions, therefore, the sum, difference, product etc. of
two sequence are defined as follows :

(i) If<s,>and<t, >be any two sequences, then the sequence, whose nth terms are
s, +t,, s, —t, ands,.t, are respectively known as the sum, difference and product of

the sequence<s, > and <t, > and are denoted by<s, +t, >,<s, —t, >and <s,.t,, >
respectively.

.. 1 .
(i) Ifs, # 0 Vne N, then the sequence, whose nth term is —, is called reciprocal of the
s
. 1 "
sequence < s, > and is denoted by < — > .
STl
(iii) The sequence, whose nth terms, /t,(t, #0 Vn e N)is known as the quotient of the
sequence < s,, > by the sequence < t,, > and is denoted by < n
n
(iv) The sequence, whose nth term is ksn, where k € R is known as the scalar multiple of
the sequence < s, > by k and is denoted by < ks, > .

ERT-X BOUNDED SEQUENCE

(i) Bounded below sequence. A sequence< s, > is said to be bounded below if there

exists a real number [ such thats, 2! VneN.

The number [ is known as the lower bound of the sequence< s, > .
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(ii) Bounded above sequence. A sequence< s, > is said to be bounded above if there

exists a real number u such that s, <u VneN .

The number u is called upper bound of the sequence<s, > .

(iii) Bounded sequence. A sequence< s, > is said to be bounded if it is bounded above
as well as bounded below.

(iv) Unbounded sequence. A sequence<s, >is said to be unbounded if it is not
bounded.

(v) Least upper bound. If a sequence<s, >is bounded above, then there exists a

number u; such that
s, Su; VneN. ..(D)

This number v is called an upper bound of the sequence <s, > . Ifu; <u, . Then from

(1), we find that
s, <uy VneN

which implies, u, is also an upper bound of the sequence < s, > . Hence, we can say that
any number greater thanu, is an upper bound of< s, > .

Hence, a sequence has an infinite number of upper bounds, if it is bounded above. Let
u be the least of all the upper bound of the sequence<s, > . Then u is defined as the
least upper bound (l.u.b) or supremum of the sequence<s, > .

(vi) Greatest lower bound. If a sequence < s,, > is bounded below, then there exists a
number [; € R such that

L<s, VneN ..(2)
This number [ is known as the lower bound of < s, > . If, <[;, then from (2)

l,<s, VneN
which implies, [, is also a lower bound of the sequence < s,, > . Hence, we can say that
any number less than1, is a lower bound of <5, > .

Hence, a sequence has infinite number of lower bounds, if it is bounded below. Let [ be
the greatest of all the lower bounds of the sequence < s, > . Then [ is known as greatest
lower bound (g.Lb) or infimum of the sequence<s, > .

@ [LLUSTRATIONS
4 The sequence <n?> is bounded below by 1 but not bounded above.
4 The sequence < %> is bounded as%s n T < 1 VneN.
n

n+

4 The sequence < 1. is bounded since|{<1 Vnen.
n

n

4+ The sequence <2"> is bounded below and has smallest term as 2. Every member of
1- 2] is a lower bound of the sequence and the sequence is not bounded above.

EETXE] LiMIT POINT OF THE SEQUENCE

A real number [ is called a limit point of a sequence < s,, > if every nbd of [ contains infinite
number of terms of the sequence.
Thus,le Ris a limit point of the sequence<s, >if for givene>0,s, € ]l—¢g,l+¢]for
infinitely many points.
Here it must be noted that
(i) limit point of a sequence need not be a member of the sequence.
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(i) A limit point of a sequence may or may not be a limit point of the range of the sequence
but the limit point of the range of a sequence is always a limit point of the sequence.

(iii) In case of real numbers, limit points of a sequence may also be called accumulation,
cluster or condensation points.

@ |LLUSTRATIONS

4 The sequence < 1. has one limit point, i.e., 0.
n

4 The sequence <(-1)™> has two limit points 1 and -1.

4 The sequence <n> has no limit point.

D"

4 The sequence <1+ > has one limit point, i.e., 1.

n
ERFX) SUFFICIENT CONDITIONS FOR NUMBER / TO BE OR NOT BE A LIMIT POINT OF THE SEQUENCE <s,>
(i) If for every €>0,dmeN such that s, e ]Jl-¢,l+€[ Vn=m or equivalently
|s, —1|<e Vn=m, then [ is the limit point of the sequence<s, > .

(i) If for anye =0,s, € ]l —¢,l+¢[ for only a finite number of values of n, then [ is not a
limit point of the sequence< s, > . Such a condition is also necessary for a number [
not to be limit point of the sequence < s, > .

L k4 BOLZANO-WEIRSTRASS THEOREM FOR SEQUENCE [KANPUR-2000]
STATEMENT. Every bounded sequence has at least one limit point.

PROOF. Let S = {s,, : n € N} be the range set of the bounded sequence<s, > .
Then, S is a bounded set. Now, there may be two cases :
(i) Let S be a finite set. Then s,, = p for infinitely many indices n. Here p € R . Obviously p
is a limit point of < s, > .

(i) Let S be an infinite set. Since, S is bounded, then by Bolzano-Weirstrass theorem for set
of real numbers, S has a limit point say p. Therefore, every nbd of p contains infinity
many distinct points of S, i.e., infinitely many term of < s, > and hence p is a limit point
of the sequence<s, > .

B K:X:] LIMIT SUPERIOR AND LIMIT INFERIOR

The greatest limit point of a bounded sequence is called the upper limit or limit superior and
is denoted by lim s, and the smallest limit point of a bounded sequence is called the lower limit
or limit inferior and is denoted by lim s,

e By definition, it is obvious that lim s, < lim s,, .
e A bounded sequence < s, > for which the upper limit and lower limit coincide with real
number [ is said to converge to [.

EREXE] LiMIT OF A SEQUENCE

A sequence < s, > is said to have a limit [ if for a given e> 0 3 a positive integer m such that

|s,—l|<e Vnzm
EREETY cONVERGENT SEQUENCE

A sequence < s, > is said to converge to a number [, if for a given € > 0 there exists a positive
integer m such that

|s,—l|<e Vnzm
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P Remark
=» A sequence <s,> is said to be convergent iff it is bounded and has exactly one limit
point.

EEEREN DIVERGENT SEQUENCE

A sequence, which is not convergent, is known as divergent sequence.

I l I:! E OSCILLATORY SEQUENCE

Assequence < s, > is said to be an oscillatory sequence if it is neither convergent nor divergent.

An oscillatory sequence is said to be oscillate finitely or infinitely according as it is bounded
or unbounded.

In other words, we can say
(i) a bounded sequence, which is not convergent is said to be oscillate finitely.
(i) an unbounded sequence, which does not diverge, is said to be oscillate infinitely.
(iii) a bounded sequence, which does not converge and has at least two limit points is said
to be oscillate finitely.

@ |LLUSTRATIONS

4 The sequence <1+(—1)”> oscillate finitely.
4 The sequence <(—1)”> oscillate finitely.

4 The sequence < (-1)" (1+1) > oscillate finitely.
n

4 The sequence <n(-1)"> oscillate infinitely.

" EXERCISE 1.8
1. Find the supremum and infimum, if exist =~ 2. Find the supremum and infimum of the
of the following sets. { on+1 }
. 1 set S= :neN
1) {—:nez,n;to} n+3
on 1 3. Prove that every subset of a bounded
(i) {X 1x= 1+E :neN } above (below or both) set is bounded

(iii) {xe R:x=2":ne N}
@Giv) {3, 8, 14, 20}

) {—l:neN}
n

(vi) {m+l:m,neN}
n

(vii) {er:x:(_rll)n :neN}

(viii) S = {(1—1) sin™™ne N}
n 2

(ix) {x:(—l)"(l—i) : neN}
4 n

above (below or both).

. If A and B are subsets of R, then prove

thatthesetA + B={x+y:x€ A ye B}

is also bounded and
inf (A + B) = inf (A) + inf (B).

. If A # ¢ is bounded below and — A denotes

the set of all — x for which x € A, then
prove that -A # ¢, that — A is bounded
above and that — sup(-A) = inf (A).

.IfA#¢,Bxdpandx<yVxe AandyE€ B,

then show that
(i) supA <y V yeB(ii) sup (A) <inf (B).

. If A ¢ B and B is bounded, then show that

sup B> sup A > inf A > inf B.
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9.

10.

11.

12.
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If A and B are two bounded subset of
R, then A U B and A N B (# ¢) are also
bounded and
(i) sup (A U B) = max (sup A, sup B)
(ii) inf (A U B) = min (inf A, inf B)
(iii) sup (A N B) = min(sup A, sup B)
(iv) inf (A N B) = max (inf A, inf B).
Give an example of a set in which
supremum is equal to infimum.
Show that the set [x : x € Q, x>0 and
x*< 3] does not have any supremum in Q.
For a real number A and a subset A of R,
let AA be the set defined by MA={)x:xeA}.
Prove that if A is bounded, then A is also
bounded and
. Ainf(A)if A>0
inf(2A4) = {k sup(A) if A<0.
Give an example of a set which is
(i) bounded above but not below.

(i) bounded below but not above.

(iii) neither bounded above nor bounded
below.

(iv) both bounded above and below.

13. Find the supremum and infinium of the

sets
() S={xe Z:x*<16}

(if) S:{2+l:neN}

n

14. Check the boundedness of the following

sets:

@) {-1,-2,-3,..}

(i) {1,2,3,4,5, ..}

Gi) {2,2% 2%, ..., 2% ...}

@ (3 () ()
W) {x: X = (—1)"%: n EN}
i) {x:x=(-2)":ne N}

1. (D) inf = —% , sup = % (i) sup = 2, inf =1 (iii) inf = 2, sup, does not exist

2. sup = %,inf= =

(iv) inf = 3, sup =20 (v) sup =0, inf = -1
(vii) inf = -1, sup = 1/2 (viii) inf = -1, sup = 1

3
5

(vi) inf = 1, sup, does not exist
(ix) sup = 15/4, inf = -7/4

9. Singlton set 12. (i)[-1, -2, -3, ...] (ii) N (iii) Z, Q or R (iv) Any finite set.

14.

(i) Bounded above but not below
(iii) Bounded below but not above

(v) Bounded below and above both

(ii) Bounded below but not above
(iv) Bounded below and above, both

(vi) Neither bounded below nor above.

# REVIEW QUESTIONS AND ARCHIVE

. Define union, intersection, difference and

symmetric difference of two sets.
Define the power set of a set

. How many element does the power set of

a set S with n elements have?

Define what it mean for a function from
the set of positive integers to the set of
positive integer to be one to one.

Define the inverse of a function.

. Define he floor and ceiling functions

from the set of real numbers to the set of

integers.

7. Let f(n) be the function from the set of

integers to the set of integers such that

fn) = n® + 1. What are the domain, co-
domain and range of this function.

. Give an example of a function from the set

of positive integers to the set of positive
integers that is :

(a) both one-one and onto.

(b) one-one but not onto.
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(¢) neither one-one nor onto.

(d) not one-one but is onto.

. When the empty set the power set of a

set?

. (a) Define what is means for two sets to be
equal.

(b) Describe the ways to show that two sets
are equal.

11.

12.

Let A and B be sets in a finite universal set U.

List the following in order of increasing size:

(a) |A], |AUBJ, |[AnB|, U], |¢]

(b) |A-B|, |A®B|, |A|+|B|, |AUB|,
|0]

Research where the concept of a function
first arose and describe how this concept
was first used.

LR AT TS (CHOOSE THE MOST APPROPRIATE ONE)

. Let Ry and R, be two equivalence relation
on a set. Consider the following assertion

(i) Ry UR, is an equivalence relation.
(ii) Ry N R,is an equivalence relation.
Which of the following is correct?

(a) Both assertions are true.

(b) Assertion (i) is true but assertion (ii) is
not true.

(c) Assertion (ii) is true but assertion (i) is
not true.

(d) Neither (i) or (ii) is true.

. The ‘subset’ relation on a set of set is :

(a) a partial ordering

(b) an equivalence relation

(c) transitive and symmetric only

(d) transitive and anti-symmetric only

. Let R be a symmetric and transitive
relation on a set A, then :

(a) Risreflexive and hence an equivalence
relation.

(b) Ris reflexive and hence a partial order.

(¢) R is not reflexive and hence is not an
equivalence relation .

(d) None of the above

. The number of equivalence relations of
the set {1, 2, 3, 4} is :

(@ 4 (b) 15

(o) 16 (d) 24

. Suppose A is a finite set with n elements.
The number of elements in the large
equivalence relation of A is :

(@1 (b) n

@n+1 (d) n?

. The binary relation S = ¢ on the set

10.

11.

12.

A={1,2,3}is:

(a) neither reflexive nor symmetric
(b) symmetric and reflexive

(¢) transitive and reflexive

(d) transitive and symmetric

. Letf(x) = x*+ x and g(x) = x + 1 then fog

is :
(a)x2+3x+2 (b)x2+x+1
(© O+ 1)2 + (x+1)(d) None of these

. Let A and B be sets with cardinalities m

and n respectively. The number of one-to-
one mapping from A to B where m<n is :
(a) m" (b) "Pp,
(© "C, (@ "Cp

. The number of functions from m element

set to n element set is :
@m+n (b)) m"
(© n™ (d m=n

is an unordered collection of
elements where an element can occur as a
member more than once :
(a) Multiset (b) Ordered set
(c) Set (d) None of these
The number of substrings of all lengths
that can be formed from a character string
of length n =
(a) LI (b) nz( ,

nn-— n(n+

© - @ —
In a room containing 28 females, there are
18 females who speak English, 15 females
speak French and 22 speak German. 9
females speak both English and French,
11 Females speak both French and
German whereas 13 speak both German
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14.
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and English. How many females speak all
the three langulages?

@ 9 (b) 8

© 7 d 6

Consider the following statements :

S;: There exist infinite set A, B and C such
that An(BNC) is finite.

S, : There exist two irrational numbers x
and y such that (x + y) is rational.

Which of the following is True about Sy
and Sy?

(a) Only Sy is correct.

(b) only S, is correct.

(c) Both Sy and S, are correct.

(d) None of the S; and S5 is correct.

The power set 25 of the set S = {3,{1,4},5}
is:

(@ {5,3,1,4,{1, 3,5},{1, 4, 5},{3,4}, ¢}
() {5, 3,11, 4}, 5}

(© {5, {3}, {3,{1,4}}, {3, 5}, ¢}

15.

16.

17.

18.

Let A be a finite set of size n, the number

of elements in the power set of AXA is :

(a) 2" (b) 2™

(©) (2”)2 (d) None of these

Let S be an infinite set and Sy, So, Ss, ...

S, be the sets such that S;US,US3U...US,

= S. Then :

(a) at least one of the set S; is a finite set.

(b) not more than one of the set S; can be
finite.

(c) at least one of the sets S; is an infinite
set.

(d) None of the above

The Number of elements in the power set

P(S) of the set S = {{¢}, 1, {2, 3}}is:

(@ 2 (b) 4

(© 8 (d) None of these

Let A and B be sets and A’ and B’ denote

the complements of the sets A and B. The

set (A-B)uU (B-A)U(ANB) is equal to :

(d) None of the above (@ AUB (b) AAUB
(0)ANnB (d) A'nB
1. (o) 2. (a) 3. (d 4. (o) 5. (d) 6. (d) 7. (a) 8. (b) 9. (0)
0. (a 11. (d 12.(d 13. (0 14. (d) 15. (b) 16. (¢) 17. (0 18. (a)

1

i : 3 Iy .
?D“ﬂi > A Glimpse of Extra Facts

e A X B is an infinite set if either A or B or both
are infinite sets.

e Every relation has an inverse relation.

® An equivalence relation ~ over a set induces a
partition of the set. Conversly, a partition of a
set defines an equivalence relation.

e A partition of a set into mutually exclusive
disjoint subsets defines an equivalence
relation.

e The relation in N defined by ‘x < y’ is a partial
order and is called natural order or usual order
in N.

e Iff:X—Yandg:A — Y be two maps where
A < X such that g(x) = f(x) V x € A. Then g is
called restriction of f to A and is denoted by f|A

or fu. Also, f is called extension of g.

A linearly ordered set (S, <) is said to be well
ordered if every subset of A has a first element.
Ordinal numbers corresponding to finite
ordered sets are called finite ordinals.

Ordinal numbers corresponding to infinite well
ordered sets are called transfinite ordinals.
Cartesian product of a non-empty set of family
of non-empty sets is non-empty.

Let B = {A, : n € A} be a family of pairwise
disjoint non-empty sets. Then there exists a set
A such that A, contains exactly one element
for each n € A.

A family F is said to be of finite character if A €
F < B e FV Bc A such that B is finite.

00000
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