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Introduction

X} INTRODUCTION

The calculus (differential and integral) briefly called ‘the Calculus and mathematical analysis’
emerged in 17% century as a powerful tool for bringing about a rapid development of modern
mathematical science. The basic notions of calculus are

(i) derivative, and
(i) integral
These notions can be properly understood without an adequate knowledge of the concept of
numbers, limits and functions. We shall therefore deal with the concept of numbers first, and shall
thereafter take up the concept of functions, sequence and countability in this chapter.

EF] CONCEPT OF SETS

The theory of sets is one of the most important tools of pure mathematics. Pure mathematics is
the study of sets equipped with assigned structures, knows as mathematical systems. In this section,
we shall study some fundamental concepts of set theory.

Definition. A set is a well defined collection of objects’.

The objects of a set are called the elements or members of that set and their membership is
defined by certain conditions.

The sets are usually denoted by the capital letters of English alphabets: Say A, B, C, ..., X, Y, Z.

For Example

(i) The collection of the letters a, b, ¢, d, . . .

(ii) The collection of all natural numbers denoted by N.
(iii) The students of M.Sc., Mathematics in C.C.S. University, Meerut.
(iv) The collection of vowels in English alphabets. This set containing only five elements, namely
a,e,i,o,U.
(v) The collection of all states in Indian union.

If S is a set, an object a in the collection S is called an element of S. This fact is expressed in
symbol as a € S (read as a is in S or a belongs to S). If a is not in S, we write a ¢ S. For example 4 €
R, the set of real numbers, but J-2¢R.

Here, Greek letter € denotes ‘belongs to’. It is the abbreviation of the Greek word meaning ‘is’.

@ ReMARKs

m By the term ‘well defined’ we mean that we are given a collection of objects, with certain

definite property, so that we are able to determine whether a given objects belongs to our

collection or not. Thus, every collection of objects is not a set.
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ms Set and aggregate both have the same meaning.

ms The elements of a set must be distinguished from one another. The collection of sand

particles does not form a set.

ms The collection of rich persons of a city is not a set. However the collection of those persons
of city whose wealth exceeds, a fixed amount, say rupees ten thousands, is a set.

ms The order is not preserved in case of a set, whereas order is necessarily preserved in case of
sequence. That is to say, each of the sets {1, 2, 3}, {3, 2, 1}, {1, 3, 2} denotes the same set.

m The repetition of an element does not change the nature of a set i.e. each of the sets {1,2,3},

{1, 2, 2, 3}, {1, 3, 3, 2} denotes the same sets.

EE ﬂl EMPTY SET

A set containing no elements is called empty set and is
denoted by the symbol ¢ .
For Example:
(@ ¢ = {x : x is a negative integer whose square is -1}
(i) ¢ = {x:xis a natural number lying between 2 and 3 }
(iii) ¢ = {the set of such persons, who never die}
@(iv) ¢ = {x : xis a real number, x% < 0}
(v) ¢ = {x: xis an even prime number greater than five}
(vi) ¢ = {the set of real numbers which are solution of
equation x*+1=0 }
(vii) ¢ = {x : x is a straight line passing through three
distinct points on a circle}
@ ReMaRks

w» The empty set is also known as null set or void set.

ms In Roster method, the empty set is denoted by { }.

s To describe the null set, we can use any property,
which is not true for any element.

m It is wrong to use the expression ‘an empty’ or ‘a null
set’ as there is one and only one empty set though,
it may have many descriptions. We shall always call
‘The empty or the null set’.

b A set consisting of at least one element is called a
non-empty or non-void set.

ms {¢ } is not a null set.

iﬁ SINGLETON SET

Set containing only one element is a Singleton set. The
set {a} is a singleton set.
@ Remarks
ms {0} is not a null set, since it contains 0 as its member.
It is a Singleton set.
w A room containing only one man is not same thing as
a man. In a similar way, the singleton set {a} is not
the same thing as the element a.

[ = Facrs : T0 THe PoinT IS

We have the following statements

about the real numbers:

» Ix| >0 and |x| =0 if and only if
x=0

P Ixl<ee-e<x<e

P Ixl<eo—e<x<e

» x=0if and only if either |x| <& for
each € >0 or else x| <e for each
e>0

> lx+yl <lxl+lyl

> lx—yl <llxl —lyll

> lxyl=lxl- Iyl

P If x, > y, for each i then

n n
Xx 23y
b R}

P If x;, > 0 for each i and ixl:o
i=1

e 55 565 = ceo =88, =0

P Following are equivalent:
x2y;x-y20,-y>-x0>y—x

» Ifx>yandz>0thenxz>yz

» x2=0ifand only if x=0

P If x>0 then x' >0 and if x <0 then
x1<0

P x>y>0yl>x1>0

» max{x, y} > 0 if and only if x > 0
ory>0

» max{x,y}>0<x>00ry>0

» min{x, y}>0<x>00ry>0

» minfx, y} >0 x>00ry >0

» x > 0 < there exists a positive

integer n such that n >x7!

>x>20o xz—l for all positive
n

integer n
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EEE FINITESET

A set is said to be finite if it consists of only finite number of elements.
Here, the process of counting the different elements comes to an end.

For Example:

(i) Set of natural numbers less than 50.
(ii) Set of all persons in a city.
(iii) Set of English alphabets.
(iv) Set of all persons on the earth.

EEI INFINITE SET

A set which is not finite i.e. it contains infinite number of elements. Here, process of counting the
different elements never comes to an end.

For Example :
(i) Set of natural number N = {1, 2, 3, ...}
(i) Set of all points of a plane.
(iii) Set of all even integers.
(iv) Set of rational numbers lying between two integers.

Em EQUAL SETS

Two sets are said to be equal if they contain exactly the same elements. For Example :
A = {x :xis a letter in the word Area’} i.e. A = {a, 1, e}

and B = {y :y is a letter in the word ‘ear’} ie. B = {a,r, e}

Here, A and B are equal sets.

ALY CARDINAL NUMBER OF A SET

The number of distinct elements contained in a finite set A is called cardinal number of A and is
denoted by n(A).

EQUIVALENT SETS
Two finite sets are said to be equivalent if they have the same cardinal number.
@ ReMaRks
ms Equivalent sets are not always equal but equal sets are always equivalent.
m The number of distinct elements in a finite set is also called the order of the set. If the order
of a set is zero, the set is empty.
ms If the order of a set is one, the set is singleton.
m The order of an infinite set is never defined.

EE] SET OF NUMBERS

The number system plays a key role in Mathematics. The real number system R is one of the
most important and beautiful mathematical system. There are different ways of introducing the real
number system, but the most common way is to start with Peano’s Axioms for the natural numbers.
The axioms for natural numbers, discovered by the Italian Mathematician Peano are

(i) 1 is a natural number.

(ii) Each natural number n has a successor (n + 1).

(iii) Two natural numbers are equal if their successors are equal.

(iv) Except 1, each natural number is a successor of a natural number.

(v) Any set of natural numbers which contains 1 and the successor of every natural number k
whenever it contain k is the set N of natural number.
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@ ReMARK
m Axiom (v) is commonly known as the axiom of induction or principle of finite induction.

The above axioms completely define the set of natural number.
[5)' NATURAL NUMBERS
The numbers 1, 2, 3,... are called natural numbers. We represent the set of natural numbers by
Nie N={1,23,...}
The Peano’ s axioms can be used to extend the set N of natural numbers to another large system,
known as the set of integers.

AEF] INTEGERS

The numbers ..., -3,-2,-1, 0, 1, 2, 3, ... are called integers. We represent the set of integers by
ZieZ={..-3,-2,-1,0,1,2,3,...}
Integers can be used to define the rational numbers.

HEEE] RATIONAL NUMBERS

Any number of the form p/q, where p, q € Z, q + 0 and p, q have no common factor (except +1)
is called a rational number.
The set of rational numbers is denoted by Q.

Q={§;p,qez,q¢0}

@ ReMKARK
m The set of rational numbers consist of integers and fractions.

i

Any number which is not rational, is called an Irrational number. For example, V2, V3, ete. It
should be noted that every rational number can be expressed as a terminating or recurring decimal
whereas every irrational number can be expressed as a non-terminating infinite decimal.

HIEI REAL NUMBERS

A number which is either rational or irrational is called a real number. The set of real numbers
is denoted by R.

X CARTESIAN PRODUCT OF SETS
Here, we shall study the cartesian product of sets, concept of relation and concept of function.
ORDERED PAIR

An ordered pair is a pair of entries, whose components occur in a specific order. It is written by
listing the two components in the specific order, separating them by a comma and enclosing the pair

in parenthesis.
Symbolically. If A and B are two non- empty sets, then by ordered pair of elements, we must
mean a pair(a,b) such that a € A,b e B in the order.

@ Remarks
ws It may be noted that (a, b) is not the same as {a, b}. The former denotes an ordered pair

where later denotes a set.

ws (a,b) # (b,a) unless a = b.

ws Ordered pair may have the same first and second components i.e., two elements of an
ordered pair need not be distinct.
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RIS CARTESIAN PRODUCT OF TWO SETS

The set of all ordered pair {(a,b):a e A,be B} is called the cartesian product of two sets A and
B . It is denoted by AxB.

Symbolically. AxB={(a,b):aeA,beB}.
For Example. If A={2,3} and B=1{4,5,6}.
Then AxB={(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)} .
@ ReMARks
m AXB=0oA=0 or B=¢.
we If A and B are finite sets, then n(A x B)=n(A). n(B).
w If either A or B is an infinite set, then A X B is an infinite set.

EE RELATION

Let us take two sets of natural numbers N; and N,. We define R as a relation between them
such that N, is a square of N; .Then
1R1, 2R4, 3R9, 4R16....
In terms of ordered pair, we can write
R={(1,1,(2,4),(3,9),(4,16)...}
={(x,y):x,yeN and y=x2}.
Then relation from set N; to N, is a subset of N; XN, such that (x,y)eR iff y=x?2.
Definition. Let A and B be two sets. Then a relation R from A to B is a subset of AxB.
Symbolically. R is a relation from A to B& Rc AxB.
@ RemaRks
ws If R is a relation from A to B, then A is called the domain and B the range of R.
ms If R is a relation from a non-empty set A to non-empty set B and if (a,b) € R. Then we write
a R b and read as ‘a is related to b by relation R’.
m Any subset A X A defines a relation in A, known as binary relation.

45 ILLUSTRATIONS

# If a,beN and R is defined as "a is a divisor of b", then R is a relation on N.
The subset N X N , which correspond to the relation R is R ={(n,nr):ne N,r e N}.
# If R is a relation from set A={1,2,3} to the set B={-1,-2} defined by x+y =0 then
R={(1,-1),(2,-2)}.
Hence, Domain of R is {1,2} and range ={-1,-2}.
# If A=(a,b,c,d,e} and B={f,g,h,i} and let
R={(a,g),(a,i),(d,h),(e,f)} be a relation from A to B.
Then domain of R ={a,d,e}
Range of R={g,i,h,f}.
# If a,beRandSis“

a— b| is a rational number”, then S is a relation on R.

XX} TOTAL NUMBER OF RELATIONS

Let A and B be two non-empty finite sets consisting of p and q elements respectively, then Ax B
consists of pq ordered pairs. Therefore, total number of subset of Ax B and hence number of relations

form A to Bis 2P¢.
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@ Remarks
w For a non-empty set A,§ c Ax A, therefore, it is a relation on A . This relation is called void
or empty relation on A.
ws The void relation ¢ and the universal relation A X B, are called trivial relation from A to B.
m The void and universal relation on set A are respectively the smallest and the largest relation
on A.

HIEF] IDENTITY RELATION

Let A be a set. The identity relation on A is the relation I, ={(x,x):x e A}.

For Example. If A={a,b,c}, then the relation I, ={(a,a),(,b),(c,c)} is the identity relation.
Here, R={(a,a),(b,b)} is not an identity relation on Aas c €A butas (c,c)¢R.

ﬁ EEi INVERSE OF A RELATION

Let A, B be two non-empty sets and R be a relation from a set A to B and let (x,y) be element
of the subset A of Ax B corresponding to the relation R from A to B.
To the relation R from the set Ato the set B, there corresponds a relation from the set B to the

set A called the inverse of the relation R, denoted by R! , such that the subset Bx A corresponding
to the relation R is equal to {(y,x):(x,y)e A} ie., YRIx & xRy .

425 |LLUSTRATIONS

# LetA = {a, b, c} and B = {1, 2, 3} be two sets and let R = {(a, 1), (a, 2), (b, 1), (b, 2)} be
arelation from Ato B, then R!={(1,a),(2,a),(1,b),(2,b)}.
# If A={1,2,3},B=15,6,7+ and let {(1,5),(2,5),(2,7)} be a relation from A to B, then

R ={(5,1),(5,2),(7,2)}, which is a relation from B to A.
# The inverse of the relation ‘is less than’ in R is ‘is greater than’.

@ ReMarks
m Sometimes, the inverse of a relation coincides with the relation itself. For example, the
inverse of the relation ‘perpendicular to’ in the set of straight lines coincides with itself.

XX CLASSIFICATION OF RELATIONS

(i) Reflexive relation. Let R be a relation on a set A, then “A relation R is said to be
reflexive if (x,x)eR, VxeA”ie., xRx, VxeA
For Example :
i. In the set Z of integers, a relation R is defined by xRy iff x -y is divisible by 4.
Then, R is a reflexive relation as xRx, Vx e Z as x—x =0, which is divisible by 4.
ii. The universal relation on a non-empty set A is reflexive.
iii. The relation ‘is less than’ (i.e.,<) in the set of natural number is not reflexive because
no number satisfies the relation ‘is less than’ to itself.
iv. The relation ‘is a factor of ’ in the set of rational number is reflexive, since every rational
number is a factor of itself.
v. The relation ‘is less than or equal to” (i.e., <) is in set of natural numbers is reflexive
because n<n VneN.
(ii) Symmetric relation. Arelation R on aset A is said to be symmetric if (y,x) € R whenever
(x,y)eR Vx,yeR.
For Example :
@) Let I,l, be two lines such that [; is perpendicularto [, ie., l, L} then l; L1, =1, L ].
Therefore, the relation A is symmetric.
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(ii) The identity and universal relation on a non-empty set are symmetric relation.
(iii) The relation ‘less than’ for natural number is not symmetric.
(iii) Transitive relation. Arelation R on a set Ais said to be transitive iff
(x,y)eRand (y,2)e R=(x,z)e RVx,y,zcA.
For Example:

(i) Let a,b,c be three number such that a is a factor of band bis a factor c , then obviously
a is a factor of c . Therefore, ‘is a factor of’ is a transitive relation.
(i) If L,l,,l; are three lines such that ; Al, and I, Al; then obviously [; is parallel to L.
Therefore, the relation  is not transitive.
(iv) Anti-symmetric relation. Arelation R on a non-empty set A is said to be anti-symmetric
iff (x,y)eRand (y,x)eRex=y Vx,y,eR.
@ Remarks
w The identity relation R on a set A is an anti-symmetric relation.
ms If (x,y)eR and (y,x) € R, then it may be thatx = y.
w The universal relation on a set A, containing at least two elements is not anti-symmetric.

(v) Equivalence relation. Arelation R on a set A is said to be an equivalence relation if it
is
(a) reflexive
(b) symmetric
(¢) transitive
For Example: In the set of integers, a relation R is defined by xRy if and only if x—y is
divisible by 4, then R is an equivalence relation, since
(a) For xRx, x—x =0 is divisible by 4. Therefore, it is reflexive.
(b) For xRy, let x—y=4m so y—x=4n, which is also divisible by 4, therefore yRx and
hence it is symmetric also.
(c) For xRy let x—y =4m; for yRz,let y —2=4n. By adding these two equation, we get
x—z=4(m+n), which is always divisible by . Therefore xRz and hence Ris
transitive.

ALK COMPOSITION OF RELATION

Let R; and R, be two relation from sets A to B and B to C respectively. Then we can define a
relation R; o R, from A to C, such that (x,2) € R; o R, if and only if there exists y € B such that
(x,y)eR, and (y,2) €R,.
This relation is called composition of R; and R,.

EXJ runcTION

Let A and B be two sets, then a rule or correspondence, which associates each element of A to a
unique element of B is called a function or mapping from set A to set B.

Symbolically. If f is a function from a set A to set B then we write f:A— B read as f isa
function from A to B orf maps A to B.

K] RANGE AND DOMAIN OF A FUNCTION

Let an element y € B be corresponded by an element x € A, then y is called the image of x and
is denoted by f(x). Hence, x is defined as the pre-image of y.

‘The set A is called the domain and the set B is called the co-domain of the function f’.

The set of all f<image of the element A is called image set or the range of f and is denoted by f(A)
or {f(x):xeA}.

Evidently, f(A)cB.
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Thus a mapping f:A — B is the set of ordered pairs {(a,b):ae A,beB}.
so that no two ordered pairs have the same first element i.e.,
f=A{(a,b):aeAbeB,b= f(x) VaeA}.
For Example. Let A={-2,-1,0,1,2} and B is the set of all integers, then for every x € A, f(x) € B
where f(x)=x2. Here, A is the domain and B is the co-domain.

Also, f(a) is the value of the function f(x), when x takes the value a. The element of the co-
domain which are equal to f(x) for x € A, form the range of f.

When x=-2, f)=f(-2)=(-2)*=4
When x=-1, f)=1
When x=0, f(x)=0
When x=1, fo)=1
When x=2, flx)=4

This can be illustrated in the following figures.

0
1
4
Range
A) (B)
Domain Co-domain
Fig. 1

@ RemaRks

wms If f:A— B, then a single element in A, can not have more than one image in B. However,
two or more element in A may have the same images in B.

ms Every element in A must have its images in B, but every element in B may not have its pre-
image in A.

ms To each element x in A, there exists a unique element y in B such that y = f(x).

w The range of f consists those element in B which appear as the image of at least one element
in A. In other words, we can say, range of a function is the image of its domain.

ms Range is a subset of co-domain.

\IE] TYPES OF FUNCTIONS

(a) One-one function. A function f from A to B ie. f:A— B is said to be one-one (or
injective) if and only if distinct elements of A have distinct images.

Symbolically. f is one-one if for x;,x, € A, we have
X1 # Xy = flx)) 2 f(xy) Vxp,x, €A

or flx)=flxy))=>x=xy Vx;,x5€A.

It is also called injective function.
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aua A W N -

One-one function
Fig. 2
Graphically, a function is one-one if and only if no line parallel to x-axis meets the graph of
the function in more than one point.
(b) Many-one function. A function f:A — B is called many-one, if at least one element of
co-domain B has two or more than two pre-image in domain A.
Symbolically. f is many one, if for some x;,x, € A, we can have x; # x, = f(x;) = f(x,).
This can be illustrated in the following figure.

i

Many-one function
Fig. 3
Graphically, a function is many-one if and only if a line parallel to x-axis meets the graph of
the function is more than one point.
@ Remark
m One-many function does not exist.

(c) Onto function. A function f:A — B is called an onto function, if there is no element of B,
which is not an image of some element ofA, i.e., every element of B appears as the image of
at least one element of A.

Onto function

Fig. 4
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@ RemaRks
ms For an onto function
Range = co-domain.
mOnto function is also called surjective function.

(d) Into function. A function f:A — B is called an into function if there is at least one element
of the set B, which has no pre-image in the set A. See functions of Fig. 2 and 3.
@ Remark
m In an into function : Range c co-domain.

(e) One-one into function. A function f:A — B is a one-one into function if it is both one-
one and into function, i.e., different element in A are joined to different element in B and
there are some elements in B, which are not joined to any element in A.
Symbolically. One-one into function is defined as
(i) Range cco-domain
() fle)# flxg) = x1 #x3
(f) One-one onto function. If a function f: A — B is both one-one and onto i.e., the different
points in A are joined to different points in B and no point in B is left vacant.
@ Remarks
ms One-one onto function is also known as bijective function.
m» For a one-one onto function, Range=co-domain and x; # x, = f(x;) = f(x,).
b (1) = flxg) = x7 =x5.
(g) Many-one into function. A function f:A — B, which is both many one and into function
is called a many one into function, i.e., two or more points in A are joined to some points in
B and there are some points in B which are not joined to any point in A.
@ Remark
ms For many-one into function, we have
(i) Range < Co-domain
(i) xp %Xy = fx1) = flxz).
(h) Many-one onto function. If a function f:A — B is both many one and onto function,
then it is many-one and onto function, i.e., in B, one point is joined to at least one point in A
and two or more points in A are joined to the same points in B.
@ Remark
m For many-one onto function, we have
(i) Range c Co-domain
(i) x; #xy = f) = f(x2).

X4 BOUNDEDNESS OF A SUBSET OF REAL NUMBERS R
%A1 upPER BOUND OF A SUBSET OF R

Asubset S of Ris said to be bounded above if there exists a real number u such that s<u, VseS.
(MEERUT 1990)

The real number u is said to be upper bound of S.

If there exists no such upper bounds, then the set is said to be unbounded above.

For example:

(i) The set of natural number N =(1, 2, 3,...) is not bounded above or unbounded above.

(ii) The set of positive integers Z* is not bounded above.
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(iii) The set S=[1,2,3,4] is bounded above by 4.
(iv) The set {% :neN } is bounded above by 1.

(v) The set of negative integers is bounded above by 0.

LOWER BOUND OF A SUBSET OF R

Asubset S of R is said to be bounded below if there exists a real number [ such that s<1, VseS.

(MEERUT 2000, 2001)

The real number ! is said to be the lower bound of S, if there exists no such lower bound, then

the set is said to be unbounded below.
For example :
(i) The set of natural number N is bounded below by 1.

(ii) The set [% ‘ne N] is bounded below by 0.

(iii) The set S=I1,2, 3, 4] is bounded below by 1.
(iv) The set of positive real numbers is bounded below.

W] BOUNDED SET

A subset S of R is said to be bounded set if it is bounded
below as well as bounded above, i.e., if there exist two real
numbers | and u such that I<Ss<u, VseS.

Equivalently, if there exists an interval I (=[l,u]) such
that ScI.

For example:

(i) Every finite set is bounded.

(ii) The set [% ‘ne N] is bounded.

S157Y UNBOUNDED SET

A subset S of R which is not bounded is called an
unbounded set.

For example:
(i) The sets N,Z,Q,R are unbounded sets.
(ii) Set of all prime numbers is an unbounded set.

EEE LEAST UPPER BOUND (OR SUPREMUM)

A real number u is said to be a least upper bound of a set
S if
(i) u is an upper bound of S
(ii) if u' is another upper bound of S, then u<u',ie.,
no real number less than u can be an upper bound of
S.

SEE GREATEST LOWER BOUND (OR INFIMUM)

A real number [ is called a greatest lower bound of a set
S if
(i) 1 is a lower bound of S
(i) if I' is another lower bound of S, then I'<!, i.e., no

= FACTS : TO THE POINT

» If a set is bounded above, then it
has infinitely many upper bounds
in as much as every number
greater than an upper bound is
also an upper bound.

» If a set is bounded below, then it
has infinitely many lower bounds
in as much as every number
smaller than a lower bound is also
a lower bound.

P It is not necessary that lower
bounds and upper bounds of a set
S are the members of S.

» The null set ¢ is bounded but it
neither possesses lower bound nor
upper bound.

» Supremum is defined only for the
bounded above sets and infimum
for the subset, which are bounded
below.

» The supremum and infimum of a
set may or may not belong to the
set. If supremum of a set belongs
to the set, then supremum is the
largest element of the set.

» If infimum of a set belongs to the
set, then infimum is the smallest
element of the set.

» Supremum and infimum of a
bounded subset of R, are unique.
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real number greater than [ can be a lower bound of S.

For example : If S= {l:n eN} , then Lu.b. = 1 and g.Lb. is 0.
n

@ Remarks
m If a real number u is the supremum of a subset S of real numbers then, for every €>0,
there exists a real number x €S such that u—e<x<u.
me If a real number [ is the infimum of a subset S of real numbers then, for every € >0, there
exists a real number x € S such that I<x<I+e€.
w In case of singleton set S=[al,a e R, supremum and infimum coincide.
m If u and ! are the supremum and infimum of a non-empty subset S of R, then I<u.

THEOREM1.  The supremum of a set S c R, if exists, is unique. (MEERUT 1990P, 98)
PROOF. Let S be a non-empty subset of R.

Let if possible, s; and s, be two supremum of S.

To show s, =s,.

Since we assume that s; and s, are the supremums of S.

= s and s, are the upper bounds of S.

Let, first suppose s; is a supremum and s, is an upper bound of S, then

515, ...(1)
Now, if s, is the supremum and s; is the upper bound of S, then
i3 LR ...(2)
From (1) and (2)
5 = Sy.

Hence, supremum of a set, if exists is unique.
THEOREM2. The infimum of a set, if exists, is unique.
PROOF. Proof is similar as theorem 1 and left to the reader.
THEOREM 3.  If S be a non-empty subset of R, then a real number s is the supremum

of S if and only if

(i) x<s Vxe8§
and (ii) for each positive real number ¢, there exists a real number xcS
such that x>s-¢.

PROOF. (i) Necessary Condition (only if part)

Let us first suppose the given condition is necessary for s to be the supremum of
the set S.

Let s be the supremum of S= s is an upper bound of S.
By definition x<s VxeS.
Let €>0 be any real number. Then obviously s—e<s.
= (s—¢) is not an upper bound of S. (s isLu.b.of S)
Hence, there must exist some x € S such that x>s—¢.
(ii) Sufficient part (If part)
Let us suppose (i) and (ii) holds.
Then, to show s=supS§S.
By condition (i), we have that s is an upper bound of S. To show s is the

supremum of S, for this, it is enough to show that no real number less than s
can be an upper bound of S.
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Let s; be any real number less than s

= s—5>0.

Let us take e=5—-5; = €>0,

Then by condition (ii), there exists x € S such that x>s—¢.
= x>s—(s—5) = x>s, X€S.

= s; is not an upper bound of S.

Hence, we can say that s is an upper bound of S and no real number less than
s is an upper bound of S.

=3 s is the supremum of S.

THEOREM4. Let S be a non-empty subset of R, then a real number t is the infimum
of S if and only if
(i) x>t Vxe8

and (ii) for each real number ¢ >0, there exists a real number xcS such
that x>t+¢c.

PROOF. Proof is similar as theorem 3.

# SOLVED EXAMPLES

EXAMPLE 1. (i) The set R* of positive real numbers, is bounded below and unbounded

above.
(ii) The set R~ of negative real numbers, is bounded above and unbounded
below.
SOLUTION. (i) Since every member of R~ U[0] is a lower bound of R", therefore R" is

bounded below.
To prove R" is unbounded above.

Let if possible, suppose u is an upper bound of Rt we have u>1 for 1eR*.
Since 2eR*, 2>0 and so u21,2>0 gives u+2>1+0, ie., u+1>0. Thus
(u+1eR* and (u+1)>u which is a contradiction, that u is an upper bound of
R".
Hence, R* is unbounded above.
(ii) Proof follows in a similar manner.
EXAMPLEZ2.  The set R is an unbounded set.
SOLUTION. From example 1, we conclude that the set R* is unbounded above and R™ is always
unbounded below.
Also, R=R™ U[0]JUR"
= R is not bounded.
EXAMPLE3. The null set ¢ is neither bounded below or above, nor unbounded.
SOLUTION. Since, there is no member in ¢ , we can not check whether a given real number can be
a bound for ¢ or not. Thus, bounds for ¢ do not exist. On the other hand, we can as
well say that every real number is a lower or upper bound for there is no member in
¢ which does not satisfy the required property of bounds.
EXAMPLE4. Show that every non-empty finite subset of R is bounded.
SOLUTION. Let S be a non-empty finite subset of R.
= S contains a finite number of elements. Then by the properties of the ordered

relation in R, out of these elements one element a € S shall be the smallest element of
S and another element b e S shall be the greatest element of S .
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EXAMPLE 5.
SOLUTION.

EXAMPLE 6.

SOLUTION.

= a<x<b VxeS
Hence, S is always bounded.
Find the supremum and infimum of the set S={xcZ:x2<25}. (MEERUT 2001)
Since S={xe Z:x*<25}
={-5,-4,-3,-2,-1,0,1,2,3,4,5}
Since S is a finite subset of R, the smallest member of S is -5, which is a lower bound
of S, and hence infimum of S is —5. Similarly 5 is the supremum of S.
Find the supremum and infimum, if they exist, of the following sets

(i) {1 tne N} (MEERUT 1994, 95, 97, 2000, 2001)
n
(i) {x €eQ:x= ﬁ, ne N} (MEERUT 1994)
_1\n
(iii) {1 + ( rll—) tne N} (MEERUT 19908)
(iv) {11: + %, T+ %, T+ %, } (MEERUT 1993, 93S)

(i) Here, we have

S = {l:neN} = {1,1,1,...}
n 2°3

The set is bounded above by 1, also any member less than 1 is not an upper
bound of S, therefore sup S=1

Also, 0 is a lower bound of S, because x>0, VxeS. Let | be any arbitrary

.. . 1 .
positive small number, then there exists ne N such that I <1, which shows that
F

[ is not an upper bound of S . Thus 0 is a lower bound of S and no other positive
real number is a lower bound of S. Therefore, infimum of S=0¢ S.

(i) Let S= {—5- ‘ne N} = {l, 23 }
n+1l 2°3 4
Then, the set is bounded below by % and any number greater than % can not be

a lower bound of S. Therefore infimum of S = % .
Also, (%) <1, VneN, therefore 1 is an upper bound of S, and any number
n

less than 1 not be an upper bound of S . Therefore, supremum of S=1,

. n
i) Let S = {H(_zz-:neN} _ {o,é,z,i,i,z,é,...}
n 2°'3'4°5°6°7

_j02468 2n-2( [3
1°3°5°7°9° " 2n-1"" 2’

Therefore, infimum of S=0 and supremum of S = % .
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(iv) Let S = n+l, n+l,n+l,,_,
2 4 8

Here, we have x < n+i Vxes

2
= T +% is an upper bound for S.
Since, n+%e S, therefore no real number less than n+% can be an upper
bound for S. Thus, n+% is the least upper bound. Therefore, supremum of
S=n+%.
Similarly, we can show that =© is the infimum of S.

K] SEQUENCES
Let N be the set of natural numbers and S be any set of real numbers. A function, whose domain
is the set of natural number s and range is a subset of S, is called a sequence in S.

Symbolically. If we define a function f:N — S, then f is a sequence. We shall denote a

sequence in a number of ways:

(i) Usually, a sequence is denoted by its images. For a sequence f, the image corresponding to
neN is denoted by f, or <f(n)> and is called the n™ term of the given sequence. For
example <1,4,9,...> is the sequence whose n™ term is n2.

(ii) Using in order, the first few element of a sequence, the rule for writing down different
elements becomes clear. For example, <1, 2, 3, ...> is the sequence whose n™ term is n.

(iii) Defining a sequence by a recurrence formula i.e., by a rule which express the n® term by
(n-1D™ term. For example, let a; =1,a,,; = 2a, Vn21.
These above relations define a sequence whose nt! term is 271,
@ Remarks

m» A sequence is represented as <s, > or {s,}, when s, is the n term of the sequence.

m The set of all distinct terms of a sequence is called the range set of that sequence.

w A sequence, whose range is a subset of R is called a real sequence or a sequence of real
numbers.

Constant sequence. A sequence <s,> defined by s,=a, Vne N, is called a constant
sequence.
Equality on sequence. Two sequence <s, > and <t, > aresaid to beequal, if s, =t, Vne N.

\U£X0 OPERATION ON SEQUENCES

Since, the sequence are real valued functions, therefore, the sum, difference, product etc. of two
sequence are defined as follows:
() If <s,> and <t,> be any two sequence, then the sequence, whose n™ terms are

S, +t,, s,—t,and s,.t, are respectively known as the sum, difference and product of the
sequence <s,> and <t,> and are denoted by <s,+t,><s,-t,> and <s..t,>
respectively.

.. .1, .
(ii) If s, #0 Vne N, then the sequence, whose n™ term is o is called reciprocal of the sequence
n

. 1
< s, >and is denoted by < . >.
n
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(iii) The sequence , whose n'h term s, /t,(t,#0 VneN) is known as the quotient of the

. 1
sequence < s, > by the sequence <t, > and is denoted by <—>.

Sn

(iv) The sequence, whose n term is ks, , where ke R is known as the scalar multiple of the

sequence <s, > by k and is denoted by <ks, >.

AL BOUNDED SEQUENCE

(i) Bounded below sequence. A sequence <s, > is said to be bounded below is there exists

a real number [ such that s, 21 VneN..

The number [ is known as the lower bound of the sequence <s, >.
(ii) Bounded above sequence. A sequence < s, > is said to be bounded above if there exists

areal number u such that s, <u VneN.

The number u is said to be upper bound of the sequence <s, >.
(iii) Bounded sequence. A sequence < s, > is said to be bounded if it is bounded above as well

as bounded below.

(iv) Unbounded sequence. A sequence < s, > is said to be unbounded if it is not bounded.

(v) Least upper bound. If a sequence < s, > is bounded “igimiimm

(vi)

above, then there exists a number u; such that
VneN. ...(D
This number u; is called an upper bound of the
sequence <s,>. If u; <u,. Then from (1), we find
that

S, Sy

s,<uy VneN

which implies, u,is also an upper bound of the

sequence < s, > . Hence, we can say that any number
greater than u; is an upper bound of <s, >.
Hence, a sequence has an infinite number of upper
bounds, if it is bounded above. Let u be the least of all
the upper bound of the sequence <s,>. Then u is
defined as the least upper bound (l.u.b) or supremum of
the sequence <s, > .
Greatest lower bound. If a sequence <s,>is
bounded below, then there exists a number [ € R
such that

L<s, VneN ...(2)
This number [, is known as the lower bound of <s, >.
Ifl, <, then from (2)

I,<s, VneN
which implies, L, is also a lower bound of the sequence
<s, >. Hence, we can say any number less than [, is
a lower bound of <s, >.

Hence, a sequence has infinite number of lower
bounds, if it is bounded below. Let [ be the greatest of

» If c > 0 then <@ > converges to a if
and only if for each £ >0 there exists
a positive integer m, depending on &
suchthat la—a | <ceVnzm

P If <z >is a convergent sequence in

R such that lima, >7 thena >r
N—>o0

V sufficiently large n, r € R.

P Letr e Rand <a > be a convergent
sequence in R such that a, > r for
all sufficiently large n. Then

lima, >7.
n—yoo

» If r>1thenr" > c0asn —> oo,

P Ifa>1thenlogn —>ccasn —» co.

P An increasing sequencing of non-
negative real numbers diverges
to infinitely if and only if it is not
bounded above.

» The intersection of a nested
sequence of closed intervals in R is
non-empty.

P> Let <s,> be a sequence of real
numbers then atleast one of the
following hold:

(@) <s,> has a
subsequence
(ii) <s,> has a strictly increasing
subsequence
(iii) <s,>has a strictly decreasing
subsequence

convergent
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all the lower bounds of the sequence < s, >. Then [ is known as greatest lower bound (g.1.b.)
or infimum of the sequence <s, >.

425 |LLUSTRATIONS
# The sequence <n®> is bounded below by 1 but not bounded above.

# The sequence <—_> is bounded as 13L<1 VneN.
n+1 2 n+l

<1 VneN.

1 . .
# The sequence < —> is bounded since
n

# The sequence <2" > is bounded below and has smallest term as 2. Every member of
]-oo, 2] is a lower bound of the sequence and the sequence is not bounded above.

HICE] LIMIT POINT OF THE SEQUENCE

A real number [ is called a limit point of a sequence <s, > if every nbd of [ contains infinite
number of terms of the sequence.
Thus, [ e Ris a limit point of the sequence <s, > if for given €>0,s, € 11—¢,l+¢€] for infinitely
many points.
Here it must be noted that
(i) Limit point of a sequence need not be a member of the sequence.
(ii) A limit point of a sequence may or may not be a limit point of the range of the sequence but
the limit point of the range of a sequence is always a limit point of the sequence.
(iii) In case of real number, limit points of a sequence may also be called accumulation, cluster or
condensation points.

45 ILLUSTRATIONS

1 .. B
# The sequence < - > has one limit point, i.e., 0.

# The sequence <(-1)" > has two limit points 1 and -1.
# The sequence <n > has no limit point.

n

# The sequence <1+ ( > has one limit point, i.e., 1.

Sufficient Conditions for number [ to be or not be a limit point of the sequence
<S>
(i) Ifforevery €>0, 3me N suchthat s, € Jl-g,l+€[ Vn>m orequivalently |s, —l|<e Vn2=m,
then [ is the limit point of the sequence <s, >.
(ii) If for any €=0,s, e]l-¢,l+¢[ for only a finite number of values of n, then [ is not a limit
point of the sequence <s, > . Such a condition is also necessary for a number [ not to be limit

point of the sequence <s, > .

XX BOLZANO-WEIERSTRASS THEOREM FOR SEQUENCE (KANPUR 2000)
STATEMENT. Every bounded sequence has at least one limit point.
PROOF. Let S={s,:neN} be the range set of the bounded sequence<s, >.

Then, S is a bounded set. Now, there may be two cases :
(i) Let S be a finite set. Then s, =p for infinitely many indices n. Here peR.

Obviously p is a limit point of <s, >.
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(ii) Let S be an infinite set. Since, S is bounded, then by Bolzano-Weirstrass theorem
for set of real numbers S has a limit point say p. Therefore, every nbd of p
contains infinity many distinct points of S, i.e., infinitely many terms of <s, >
and hence p is a limit point of the sequence <s, >.

I LIMIT SUPERIOR AND LIMIT INFERIOR

The greatest limit point of a bounded sequence is called the upper limit or limit superior and is
denoted by lim s, and the smallest limit point of a bounded sequence is called the lower limit or limit
inferior and is denoted by lim s,

# By definition, it is obvious that lim s, <lims, .
# A bounded sequence <s, > for which the upper limit and lower limit coincide with real
number [ is said to converge to L.

Limit of a sequence. A sequence < s, > issaid to have a limit [ if for a given €>03 a positive
integer m such that |s, -I|< e Vn2m.
LYY CONVERGENT SEQUENCE

A sequence <s, > is said to converge to a number [, if for a given €> 0 there exists a positive
integer m such that |s, -l|<e Vn2m.
@ ReMark

A sequence < s, > is said to be convergent iff it is bounded and has one and only one limit
point.

AWICH] DIVERGENT SEQUENCE

A sequence, which is not convergent, is known as divergent sequence.

() OSCILLATORY SEQUENCE

A sequence <s, > is said to be an oscillatory sequence if it is neither convergent nor divergent.
An oscillatory sequence is said to be oscillate finitely or infinitely according as it is bounded or
unbounded.
In other words, we can say
(i) A bounded sequence, which is not convergent is said to be oscillate finitely.
(i) An unbounded sequence, which does not diverge, is said to be oscillate infinitely.
(iii) A bounded sequence, which does not converge and has at least two limit points is said to be
oscillate finitely.

45 ILLUSTRATIONS

# The sequence <1 +(—1)"> oscillate finitely.

# The sequence <(—1)"> oscillate finitely.
# The sequence <(-1)" (1 + %) > oscillate finitely.

# The sequence <n(-1)" > oscillate infinitely.

EE] COUNTABLE SET

A set which can be put in one to one correspondence with the set of all natural numbers or with
its subset is said to be a countable set. (MEERUT 2003,04; KANPUR-2000)
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For example: If A={2,4,6,8,..}, then 3 an one to one mapping f:A—>N s.t. f(x)=x/2.
Then A is a countable set.

Further if B={2,4,6,8,10}, then this set can be put in one to one correspondence with the set
A={1,2,3,4,5}, which is a subset of N.

Obviously a countable set can be finite or infinite both.

An infinite countable set is also called as countable infinite or enumerable set or denumerable

set.

(MEERUT 2001)

Thus enumerable set always means an infinite countable set.

Further note thatifaset 'A’' is countable then its elements can be put in one to one correspondence
with set N={1,2,3,...}. If we denote the elements of A corresponding to the natural numbers
1,2,3,..., by ay,a,,as,...etc., then the set A can be written as A ={a;,a;,ds,...} .

Thus a set is countable iff its elements can be written in the form of a sequence.

@ REMARK

s A set which is not countable, is said to be uncountable.

THEOREM 1.

PROOF.

THEOREM 2.

PROOF.

Every subset of a countable set is countable.
(MEERUT 1987,88,94,2003(BP); KANPUR 2000)
Let A be a countable set, then A can be written as a sequence. Let A ={a;,a,,as,...}.

If A is finite then its every subset will also be finite and so will be countable. Now
consider that A is enumerable. Let B be any subset of A.

If B is finite or empty then the result is trivial, so let B#¢ and let k; be the least
positive integer st. q; € B . Again, let k, be the least positive integer with ky > k; s.t.
a, € B.. Dealing with the elements of B in this way, we reach to the conclusion that B
can be written as {ay ,ay,,-..} which is a sequence and hence B is a countable set.
The union of enumerable collection of enumerable sets is also enumerable.
(MEERUT 1972,84; GARHWAL 1991,95; KANPUR 2000)

Let A={A;,A,,...} be an enumerable collection of enumerable sets where
A; ={a; ,a;,,a; ,...}, Vie N denote enumerable sets. For the proof of the theorem, we

shall construct a progression in which all the elements of A appear. Such a list is as
follows :

U A; = 111013501301 4---

ieN
;zl‘/az/ 23 Q24---

31/3/233 azq...

4/3142 Qu3 Qyq...
Choose the path as shown above; then every element of A lies somewhere on the path
(ie., each element occupies some particular position say r' position r € N) and hence
a one-one correspondence between UA; and N is implied showing thereby that A is
enumerable. Thus we can write UA; ={a;1,0;2,051,d371,d95...} as a sequence.
= set UA; is enumerable.
Besides the above argument, note that the mapping f: _UN A; »> N given by

1€
_(p+q-2(p+q-1)

f(apq)— 5 +p (=say neN)

shows the enumeration of
UA; ={ay1,021,012,013,022,431,014,023,032,0415-+-} -
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COR.1.

coR.2.

THEOREM 3.

PROOF.

THEOREM 4.

PROOF.

THEOREM 5.

PROOF.

i.e., this mapping assigns a unique place to each element of the set UA; in the above

sequence showing that UA; is countable.

The union of countable collection of countable sets is also countable.

(MEERUT 1986,87,91,94,2001; AMRAVATI 1997; GARHWAL 2001; KANPUR 2001,02)

n

If A; is countable infinite set, then prove that U A; is also countable
i=1

infinite. (GARHWAL 1995)

The set N x N is enumerable. (MEERUT 1983,98, GARHWAL 2003)

Here note that N xN ={(u,Vv):u,ve N}; then clearly N x N can be arranged as shown
below :

NxN={(1,1,01,2),1,3),(1,4)...
(2,1),(2,2),02,3),(2,4)...
(3,1),(3,2),(3,3),(3,4)...
~3=U4;,
where A; ={(i,n):neN}
Now obviously each A;(i=1,2,3,...) is enumerable which shows that the set Nx N,
union of enumerable collection of enumerable sets is also enumerable by Theorem 2.
The set Q of all rational numbers is enumerable.
(MEERUT 1984,90,95,97,2001(BP), KANPUR 1996)

Recall that a rational number is writtenas p/q:p,qe Z and q#0.

Let A;={p/q:p,qeZ}. Then obviously 4, is equivalent to Z and we know that Z is

enumerable and so A, is enumerable. Also the collection Q= U A is enumerable
qeZ,

where Z, is a subset of Z, because Q is expressed as enumerable union of enumerable

sets.

(a) Thesetofall real numbers in the open interval (0,1) is not enumerable.
(MEERUT 1989,96; HIMACHAL 2000; KANPUR 2004)

(b) Prove that the set of all real numbers in the closed interval [0,1] is
not enumerable. (MEERUT 1998,2004; GARHWAL 1995,97,2003; HIMACHAL 2002)

(a) Suppose contradiction, i.e., let the given interval be enumerable. Then the
elements of the interval can be written as a sequence {x,X5,X3,...} . Now using
the decimal expansion of these x,,'s , we can get as follows :

X = .411y0; 3.0y e
Xy = .y1099053..dop -
X3 = .031039033.. A3y, .
Xp =y Apolna.. Oym-e
where g;;'s may be any integer from 0 to 9. Now let
X, =bybybs...
where by,b,,... are the digits from 0 to 9 s.t. by #ay;, by # agy, bs # as3 etc.
In general b, #a,,,,Vme N .
Hence, X # X1,X # Xg,.0; X # Xppseee .
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Obviously, x€(0,1) and x ¢ {x;,x,,...} ; thus we set that besides countable set
{x1,X,,...} there exists element belonging to interval (0,1) , showing that the set

of all real numbers lying in the interval (0,1) is not enumerable.
(b) Open interval (0, 1) is a subset of [0, 1]. Since (0, 1) is not denumerable, the
interval [0, 1] is also not denumerable.
THEOREM 6. The set of all real numbers is not enumerable, i.e., R is not enumerable.
(MEERUT 1991,97; GARHWAL 1996; KANPUR 1996,2000,02)
PROOF. Suppose contradiction, i.e., let R be enumerable. Then its every subset must be
enumerable (Theorem 1). Consider the set of all real numbers lying in the interval
(0, 1) which is not enumerable by preceding theorem 5; which is again a contradiction
since it is the subset of R. Hence the theorem.
THEOREM 7.  The set of all irrational numbers is not enumerable.
PROOF. Let the contrary be true. Also by theorem 4, the set of all rational numbers is
enumerable. Thus union of rational and irrational numbers would also be enumerable.
But we know that R is the union of rational and irrational numbers and hence R would
be enumerable which is a contradiction according to Theorem 6. Hence the set of all
irrational numbers is not enumerable.

EEIJ ALGEBRAIC NUMBERS
Let
P(x) = 00, X™ + 01 X" .4 0y x + g (0, # 0)
be a polynomial with o;'s as integral numbers, then we define the algebraic number as a root
of the polynomial equation P,(x) =0 of the above form.
THEOREM 1.  The set of all algebraic numbers is enumerable.
(MEERUT 1996; GARHWAL 1993; KANPUR 1972)

1.+, ofdegreenwith oy # 0. Now

PROOF. Consider the algebraic equation, ogx" + oy x™™
we define the rank of this equation :
loto| + ot | +[etg| +...+]ot, | = m -
Clearly, rank is a positive number. Also o;'s are integers; so rank is an integer >1.

Obviously for a given rank the roots of the equation will be finite and therefore will be
enumerable.

Again we can put a one-one correspondence in the set of natural numbers with the
algebraic equation arranged with respect to rank and hence the set of all algebraic
equations is enumerable. Now each algebraic equation has enumerable number of

roots and so the set of all algebraic numbers is the enumerable collection of enumerable
sets and hence enumerable by Theorem 2.

OLVED EXAMPLES|

EXAMPLE 1. Show that the set P of all polynomials

n-1

Po(x) = 0y x™ + 0ty X" + e+ 03 X + 0, (0 # 0)

with integral (rational) coefficients is denumerable. (GARHWAL 2001)
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SOLUTION.  If |ot,|+|ot,_y|+...+|0g| = m, then for each pair of natural numbers (m,n), set P, of
all the polynomials of the form
Py(3) = 04y X™ + 01 X" 4+ 04X + 0l
is finite and hence countable.
Also the sets Ry, ;)= Pg, K=(m,n)e NxN themselves are countable.

Therefore theset P= |J B, , is also countable.
(m,n)eNxN '

KRRl CARDINALLY EQUIVALENT SETS

A set P is said to be cardinally equivalent to a set Q, if there exists at least one one-to-one map
from P to Q and is denoted by P ~ Q.

THEOREM1.  Prove that the relation P ~ Q in the family of sets is an equivalence relation.
PROOF. Recall that a relation R in a set is an equivalence relation in P, iff

(i) R isreflexive, i.e., aRa, Va e P
(ii) R is symmetric, i.e.,aRb= bRa, Va,beP,
(iii) R is transitive, i.e., aRb,bRc = aRc Va,b,ceP.
Here we observe that the given relation is
(i) Reflexive. Since the identity map Ip:P — P given by I,(a)=a,Vae P is one-
one onto, i.e., P ~ P for every set P.

(ii) Symmetric. P~Q =3 a one-one map f:P—"""—Q
f1:Q—2° P isalso one-one =Q~P.
(iii) Transitive.
P~Q =13 aone-onemap f:P—"°—=Q

Q ~R=>3a one-one map g:Q—° R

onto

=gof:P
=P~R
Thus the given relation is an equivalence relation. It is to be noted that an equivalence
relation decomposes the set P into equivalence classes, any two of which are either
equal or mutually disjoint. The set of these mutually disjoint equivalence classes is said
to be the quotient set of the set for the given equivalence relation. The equivalence
relation is also known as equipollent relation.

OLVED EXAMPLES

EXAMPLE I.  If A and B are the sets of all the real numbers of the intervals [a,,a,] and
[b,,b,]1 respectively, then show that A~ B.
SOLUTION. Consider a mapping f:A— B s.t.

*R is also one-one

If xe A, then
f(x)=b2_b1x—a1b2_b1+b1
-0 ay—q
_(ba-bi ),
_(az—alJ(x “+h -

Mapping f is one-one. For if f(x)= f(y);x,y €A, then
B ath = 2T a)

(ag—aq)
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= (bz_blj(x—al)z(bz_bl
a a;

Q-q
=  f is one-one.
Mapping f inonto.Let ze B=b; <z<b,.

by = (z-b)(ey—a)

If z=[—2—)(x—a1)+b1,then x= By —b)

](y—a1)=>x=y

Py +a.
Obviously a; < x<a, and hence xeA.
Thus for any ze B, 3xe A st. f(x)=z and hence fis onto.
=  f is one-one onto and hence A~ B.

@ REMARK
e If A:(al,az), B=(b1,b2) then A~B.

KR CARDINAL NUMBER OF A SET

As we have already seen that the relation of equivalence decomposes any collection of sets into
equivalence classes containing the equivalent sets. Each equivalent class has a cardinal number which
we shall use to represent the property the equivalent sets have in common. It will be in some sense a
measure of the points in sets. It is denoted by the card X, i.e., cardinal number of X. The basic
property of cardinal number is that card X =card Y iff X ~Y .

Definition. Any set which is equivalent to the set {1, 2, 3, ..., n} is said to have the cardinal
number n.

In this way we have defined the cardinal number of the finite sets. The null set is said to have the
cardinal number zero. Obviously for finite sets, cardinal number is just the number of element in the
sets. (MEERUT 2003,04; GARHWAL 2002)

The cardinal number of N (set of natural numbers) is denoted by a and hence all enumerable
sets will have the cardinal number a.

The cardinal number of the set of real numbers is denoted by ¢ and all the sets equivalent to the
set R are said to have the cardinal number ¢. The set of all real numbers in the interval [0, 1] also
has the cardinal number c. Since we have proved that all intervals (open or closed) are equivalent
to [0,1], hence every interval also has cardinal number ¢. The cardinal number of the set of all real-
valued functions defined in the interval [0, 1] is denoted by f.

The cardinal number of an infinite set is called a transfinite cardinal number a is considered to
be the first (smallest) transfinite cardinal.

Since every finite set has an enumerable subset which is equivalent to be the set of natural
number N and so every infinite set has a subset with cardinal number a.

Note that the set of cardinal number {0,1,2,3,...,a,c, f} is a superset of set of all natural numbers.

) SUM OF CARDINAL NUMBERS
Let A and B be any two disjoint sets; then
card A+card B =card AUB,

In general X cardA, =card( U A,

oeA aeA

where A, NAg =9, Vao,B,eA (index set) such that a#p.

AEFE] PRODUCT OF CARDINAL NUMBERS

We define the product of two cardinal numbers as card P x card Q =card(Px Q) where P,Q are
any sets.

In general, card P, x card P,...=card [Cartesian product of sets B =1,2,3,...)]
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] COMPARISON OF CARDINAL NUMBERS

Let P and Q be any two sets, then

(i) card P<card Q,if 3 aset RcQst.P~R andif P~Q thencard P=card Q.
(i) card P<and Q, if 3 aset RcQ s.t. P~R, ie., there exists a one-one map

f:p—° 4RCQ.
(iii) Evidently, card (PuQ) 2card P or card Q.
(iv) a is the smallest infinite cardinal number.
THEOREMI.  Prove that card(P x Q) = cardQ + cardQ +...card P terms.
PROOF. Wehave PxQ={(x,y):xeP,yeQ}={ Up(x,y):yeQ} .
XE.

card(PxQ)=card({ U (x,¥): y€Q}). ...(D
xeP

Let x € Pbe arbitrary but fixed, Consider the map
f:Q-{(x,y):yeQ}

defined by f(y)=(x,y) VyeQ.

This show that f is one-one. Therefore

cardQ = card((x,y): y €Q))
Observing (1) we get the required result.

EXAMPLE 1. Show that ao<cardP<oa = card P=aqa
SOLUTION. a<cardP = 3 aset Q such that card Q <card P where card Q=«a

= Q is equivalent to a subset of P ...(D
Again cardP<o = cardP<Q
= Pis equivalent to a subset of Q ...(2)
Combining (1) and (2), we get
card P =cardQ or cardP = o (rcardQ=a)

THEOREM2. Let P and Q be any two sets; then show that
(i) card P+card Qis unique,
(ii) card P.card Q is unique.

PROOF. Let P~P,Q~Q;,A,NQ; =0 . Now
(i P~P =3Jaoneonemap f:P—2 4p
Q~Q; =3 aoneone g:Q—22 Q.
Define a function y:PUQ—> P UQ; sit.
\y(x)={f(x) , VxeP,
g(x) , VxeQ.
Evidently y is one-one onto since f and g are one-one onto. Hence
PUQ~PUQ = card (PUQ)=card (P,UQ,)
This shows that card P+ card Q is unique.
(i) xeP,yeQ = (x,y)ePxQ
= (f(x),g(y)) e P xQ.
Define a function y:PxQ — P, xQ; sit.,
y(x.y)=(f(x),8(y)) V(x,y)ePxQ.
Again f and g one-one onto, therefore y is one-one onto.
= PxQ~PxQ = card(PxQ)=card(PxQ;).

This shows that card P. card Q is unique.
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EXAMPLEZ2. Show that (P x Q) ~ (Q x P) i.e., (P x Q) is cardinally equivalent to (Q x P).

SOLUTION. ~ We have (PxQ)={p,q):peP,qeQ}
Define a map f:(PxQ)— (QxP) by the formula f(p,q)=(q,p).
fiS one-one. Let f((pl,ql)) = f((Pz,Qz))
= (q,P1)=(q2;p2) = ¢1=9 and p; =p,
= (P,@) =(p2,92).
Obviously f is onto.
Hence, (PxQ)~(QxP).
THEOREM3. Let card P=p,card Q=q,card R =r, then show that :
i) p+q=q+p,
i.e., addition of cardinal numbers is commutative.

(ii) p.9q=q.p

i.e., multiplication of cardinal numbers is commutative.

(iii) p.(q+r)=p.q+p.r,
i.e., multiplication is distributive over addition.
Giv) p.(q.r)=(p.q).r
i.e., associative law for multiplication holds.
w) p+(@+r)=(p+qQ)+r
i.e., associative law for addition holds.

(GARHWAL 2002)

PROOF. (i) Let PNQ=¢. The elements of an arbitrary set may be in any order, therefore

PUQ=QUP = card(PUQ)=card(QUP)
= card P+card Q=card Q+card P .
(i) We know that PxQ ~Qx P (See Ex. 2 above)
= card (PxQ)=card (Q x P)
= p.q=q.p.
(iii) Let Q,R be disjoint sets. Then
p.(@+r)=card[Px(QUR)]=card [(PxQ)U(PxR)]
=card PxQ)+card PXR)=p.q+p.r.

(iv)  Px(QxR)~(PxQ)xR under the map f(x,(y,2))=((x,y),2),

Hence card [Px(QxR)]=card [(PxQ)xR]
or p-(g.r)=(p.g.r.

(v) Suppose that P,Q,R are pairwise disjoint sets. Also we know that

(PUQ)UR=PU(QUR)
= card [((PUQ)UR]=card [PU(QUR)]

= (p+@)+r=p+(g+r)
n
THEOREM 4. (i) If A; is enumerable set for i=1,2,3,....,n then U A; is enumerable
i=1
and hence deduce that n.a=a. (GURUKUL KANGRI 2001; GARHWAL 1995)

n
(i) If A; is enumerable set for i=1,2,3,...,n, then | A; is enumerable

i=1

and hence deduce that a+a+a+..to a terms = a
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PROOF.

DEDUCTION.

DEDUCTION.

THEOREM 5.

PROOF.
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n
(i) Let A= U A;. We know that countable union of enumerable set is enumerable,
i=1

hence A is enumerable.
Let A;NAj=¢ for i# j; then by the definition of sum of cardinal numbers,

n
card Ay +card Ay +...+card A, =card A (since UA = AJ ...(1)
i=1

Weknowthat cardinalnumber of an enumerable setisa and sinceeach A;(i=1,2,3,...,n)
is enumerable, so we have

card Ay =card Ay =..card A, = a
Also A is enumerable so card A=a. So from (1), n.a=a

(i) Let A= U A; ; then A is enumerable being enumerable union of enumerable
i=1

sets and hence card A=a
Let A;NA;=0¢for i# j; thencard A=a gives
Ycard Ai=a
i=1
= a+a+a+a+.. to a terms=a.

L]
(i) If A; is non-enumerable set for 1<i<n, then U A; is non-
i=1

enumerable and hence deduce that
c+c+c+...to n terms = c.

(ii) If A; is non-enumerable, Vie N, then U A; is non-enumerable and
i=1

hence deduce that
c+c+c+... to a terms = c. (GARHWAL 1991)
(i) Each A; is non-enumerable for 1<i<n, therefore card A; =c for 1<i<n,
This imply A; ~[a;,a;,,) where a;,a;,; €R for i=1,2,3,...,n.
Let q; <a;,, for i=1,2,3,...,n. Thus, we have
A1 ~ {al,az},
Ay ~{ay,as},

Ay ~lay,a,4)-
n
At first suppose that A; N A;=¢ for i # j; then .Ul A; is equivalent to some subset
i=

of [a;,a,,1) .

card(.Lrj AiJSc. ..(D

i=1

Now evidently

n
Ac CJAI- = card A; <card (UAiJ
i=1

i=1
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= cScard(Lrin). ...(2)

i=1
Combining (1) and (2), we have

cScard(CJAiJSC, ie., card(CJ Ai)zc.

i=1 i=1
n
U 4; is non-enumerable.
i=1
Now suppose that A;NA;=¢ for i# j, then

n n
U A; ~[a;,a,,1) = card( U Ai) = cardla;,a,,1)
i=1 i=1

= card(LnJAi)=c.

i=1
DEDUCTION.  If we assume that A; (1 Aj=¢ for i# j, then as proved above, we have

i=1 1 1

n
icard(Ai)zc ( card U Al-=§, card A; when A;NAj=¢ for i¢j]
i i= i=
ie, c+c+c+...ton terms = c.

(ii) Let A=U A;, where card A;=c¢, VieN.Now
i=1

1 1
card Ai=c=>Ai~[1_F,1_§)_

Thus, we have

1 13 37 1.1
A ~[02 |4y~ 2.2 ] A~ 205 e 1= -
! [ 2) 2 [2 4) ® [4 8) . [ 2t 21)

Now assume that A;(A;=¢ for i=j.

Then obviously D A; ~[0,1).
i=1
card( D Ai] =card [0,1) orcard A=c.
i=1

Next suppose that A;VAj#¢ for i=j, then U 4; is cardinally equivalent to
i=1
some subset of [0,1).

So, card(D AiJSC. .(3)

i=1

oo n
Again A,cUA = card A< card( U Ai)
i=1

i=1

= cScard(DAi) ...(4)

i=1

Combining (3) and (4) we get card [CI Ai) =c.
i=1

Hence U 4; is non-enumerable.
i=1
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DEDUCTION.  Suppose that A;(1A; =¢ for i# j, we have

card(GAi)=c = E card A; =c
i=1 i=1

or c+c+c+...toaterms = c.
THEOREM 6. Prove a+ o = a,0 being any transfinite cardinal number:
(GURUKUL KANGRI 2001)
PROOF. If an enumerable set is added to an infinite set. Since A is an infinite set and therefore
3 a subset B of A s.t. B is enumerable.
card B=a.
Now we can write A=(A-B)UB.
AUN=(A-B)UBUN =(A-B)U(BUN).
Band N are enumerable sets = BUN is enumerable
= BUN-~N.
Now BUN~N,N~B=BUN ~ B,
(A-B)UBUN)~(A-B)UB ie., AUN~A
or card(AUN)=cardA ie, o+a=a.

THEOREM7. Show that c.c=c. (BANARAS 1977)
PROOF. Let A={x:0<x<1}.Thencard A=c.
Now, let B={(0,x):x e A}
Then obviously Bc Ax A s.cardB < card(Ax A)
Again A ~ Bunder the map f st.
f(x)=(00,x), VxeA, ..cardA<cardB .
card A<card (Ax A) . ...(D

Let x, y be any two real numbers in the closed interval [0, 1]. Then x and y can
uniquely be expanded in the form of infinite decimals which contain non-zero digits.

Now define a map g:(AxA) —> A by writing
8(x,y)=0. X1¥1X3¥2X3Y3... .
Obviously g is one-one. So by definition
card (AxA)<card A. ...(2)
From (1) and (2), we get
card A<card(AxA)<card A; card (Ax A)=card A
or c.c=c

EBE] TRANSCENDENTAL NUMBER

Definition. A real number which is not an algebraic number is called Transcendental number.
Thus the numbers e and © which are real but not algebraic numbers, are transcendental numbers.

(MEERUT 2003)
All rational numbers are algebraic number hence every rational number is not transcendental,
implying that every transcendently number must be irrational, for
R = (rational numbers) U (irrational numbers).
It must be noted by the readers that there are so many irrational numbers which are algebraic
e.g., (mY" . Therefore every irrational number is not transcendental number.

THEOREM 1.  Prove that every monotonic function in a closed interval is discontinuous
at a countable number of points of that interval.
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PROOF.

THEOREM 2.

PROOF.

DEDUCTION.

Let f(x) be a monotonic function in the closed interval [a, b]. Also let it be a

monotonically increasing function and be discontinuous at an arbitrary point x. Then
3(x) = f(x+0)- f(x—-0)>0 ..(D)

where fl@)= f(a-0),f(b)= f(b+0).

Let £;,8,,....6m_1 benumbersintheintervals x; < &; < x;..; where a < x; <Xy <..x,, <b

, where §g=a and &, =b.

FCr) = f(€r_1) 2 flxp +0) = fx; —0) = 8(x) [by (1)] .2
Therefore f(B)-f@)= 3 [f50-fG)]2 3 8x0).

Let 8(xk)>%, Vk .
Then by last inequality, we have
f®) - f@> or [f(B)-f@n>m.

This shows that m which is the number of points of discontinuity x with &(x) > s

bounded above, i.e., the number of points of discontinuity x with 3(x) > - are finite in
the closed interval [q, b]. Since n € N , we see that the number of points of discontinuity
x with 8(x) > - are finite in the closed interval [a, b]. Since every finite set is countable

and for every x 3ne N therefore the number of points of discontinuity in the closed

interval [a, b] will be an enumerable union of countable sets and hence countable.

Hence the theorem.

(Cantor’s Theorem). Prove that card A <card P(A), P(A) being power set

of the set A. (MEERUT 1983,91; GURUKUL KANGRI 2001)
Or

Show that for every cardinal number n,2" >n,
Let B ={{x}:xe A}; then obviously B cP(A). Now define a map
f:A> B" st. f(x) ={x} . Obviously A~ B" . Hence
card A< card P(A) .

Thus we are only to show that card A # card P(A),
ie., A< P(A) (D
Suppose contradiction, i.e., A~ P(A).So 3 aone-one map f:A—22 4 P(A).
Let B={xeA:x¢ f(x)}.
Clearly, Bc A = BeP(A).
Since the mapping f is onto, there must exist x € A s.t. f(x)=B. Now if x € B then by
definition of B,x € f(x) which is not possible.
Consider the second possibility that x ¢ B, then x € f(x) = B which is again impossible.
It means that our assumption is wrong. Hence (1) is true.

(i) From the last theorem, it following that n<2" where card A=n and

cardP(A) = 269744 = o (MEERUT 1988)

(ii) Also 2*>a.
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THEOREM 3.

PROOF.

THEOREM 4.

PROOF.

THEOREM 5.

PROOF.
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(Equivalence Theorem). If Ay c Bc A and A ~ A,, then A~ B,
Or
If AycBc A and card A = card A,, then card A=card B.
A~A; = 3 aoneonemap f:A—"3A4,.
As Bc A so fg is a one-one onto where fg is the restriction of f to B. This means that
B~ B, c A,. Similarly, A; ~A, cB,.
Continuing in this way we get equivalent sets
A,A;,A,,... and B,B;,B,,...
s.t. ADB>5A; DB DAy DBy DA3DB3D...
Let S=ANBNA NB NA,NByN...
Then we can write
A=(A-B)UB-ADU(4A -B))U...US,
B=(B-A)U(A; -B)U(B;, -A)U...US
Define a map y:A— B st.
y(A-B)= A - B,
V(A -B)=A; - B,,
W(Ay —By) = A3 - B3,
y(B-A)=B-A4,
Y(B;—Ay)=B; - Ay,
y(S)=S.
Above definition of ¥y makes the mapping ¥ one-one and showing that A~ B,
(Schorder-Bernstein Theorem). If card A<card B and card B<card A,
then card A=card B. (MEERUT 1989)
Or
If each of the sets Aand B is equivalent to a subset of other; then A~ B.

Let f and g be one-to-one mapping from A onto B and from B into A respectively. Let
f(A)=B;cB and g(B)=A, and g(B;)=Aj;, then we have AD A, D A3. Further
g(B;)) = Az, f(A) =B; implies g(f(A))= Az, giving gof is a one-to-one mapping from
A to A; = card A=card A;. Hence by the above theorem, card A=card A,. Also
existence of g s.t. g(B) = A, shows that card B =card A, . Hence card B=card A .
Show that 2% =c.

We know that card [0,1] = ¢. On the other hand each x €[0,1] can be written in the
form of binary expansion as x € 0.x;X5x3..., where each x; =0 or 1.

But selecting each x; in two ways (either 0 or 1) we can form at most 2 numbers.

So the card [0,1]=2% implying that 2% =c.
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THEOREM 6.  Every superset of an uncountable set is uncountable.

PROOF. Suppose contradiction, i.e., if B is the superset of an uncountable set A, then B is
countable. But we know that every subset of a countable set is countable and so A must
be countable which is a contradiction and so B is uncountable. That is to say that every
superset of an uncountable set is uncountable.

THEOREM7.  Union of two enumerable sets is also enumerable.

PROOF. Let A and B be the two enumerable sets.

CASEI. When ANB=¢ .
Let A={a;,a,,..},B={b;,b,,...} . Now establish correspondence

f:AUB—>N
st. fla,) > 2n-1 (odd positive integer),
fb,) = 2n (even positive integer).

Evidently this mapping is one-one from AUBonto N.

CASENl. When ANB#¢ , then we can write AUB=AU(B-A). Taking B =B-A we
have AN B; =¢. As already proved AUB, is countable where B; is countable
where B; iscountable being the subset of countable set Band hence AUB=AUB,;
is countable when B; is countable infinite but if B, is finite say

B; ={e;,eq,....ep .
Then AUB=AUB, ={e;,es,€3,...,6,,,01,d9,d3,...} .
Now set a correspondence

fIN>AUB
s.t. f=¢;, 1<i<m,
fm+d=aq;, Vi
= AU B is enumerable.

We can generalize the result that union of two countable sets is countable
(whether each is countably infinite or finite).
THEOREME. Every infinite set is equivalent to its proper subset.
PROOF. CASEl. When A is countably infinite, then A can be written as a sequence. Let
A={a;,a,5,a;...}. Then the function f(a,)=a,,; establishes a one to one
correspondence between the set A and A—{a;} which is a proper subset of A.
CASE Il. When A is uncountably infinite, then it has an enumerable subset say B where
B={a;,a,a3...} . We shall show that A ~(A-{q;}).
Write C=A-B; then A=BUC and BNNC=¢. Also A—{q;}=B—-{q;})UC. Let
e(x) be the identity mapping which associates each x € A onto itself. Let f be the
function: f(a,)=a,,;- Now define a function h:
e(x):xeC,
Rl {f(x) :xeB.

Then the range of h is (B—-{a;}) UC which is a proper subset of BUC = A. Thus
the result follows.
THEOREMA. If o and B are cardinal numbers such that o <p and B<a , then o=j.
PROOF. Letcard A=a,card B=j
<P = card A<card B
= A~B or A~to asubset of B ...(D)
B<o = B~Aor B~toasubsetof A, ...(2)
(1) and (2) give the required result.
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THEOREM 10.

PROOF.

THEOREM 11.

PROOF.

EXAMPLE 1.

SOLUTION.

@ REMARK
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If an enumerable set is subtracted from an enumerable set, the remaining
set will be enumerable.

Suppose contradiction, i.e., A—B is non-enumerable where A and B are enumerable
sets. We can write A=(A-B)U B.Now A-B isnon-enumerable gives A to be non-
enumerable which is a contradiction. Hence the result follows.

If we subtract an enumerable set from a non-enumerable set, then the
remaining set is non-enumerable.

Suppose contradiction, i.e., A—B is enumerable where A is non-enumerable and B is
an enumerable set. We can write A=(A-B)UB. Since both A-B and B are
enumerable sets, it implies A is enumerable which a contradiction as A is non-
enumerable. Hence the result.

OLVED EXAMPLES|

Prove that the set Z of all integers is countable.
(MEERUT 1993,98,2004; KANPUR 2001)

Write
Z"={1,2,3,.},
Z ={-1,-2,-3,...}.
Then, we have Z* ~ N under the mapping n—n.

Now Z* ~ N under the mapping n—n,

Z" ~ N under the mapping (-n) > n.

Also singleton set {0} isfinite, so countable. Thus Z is the countable union of countable
sets and hence countable.
Alternatively, define the mapping f:N — Z

SEF(0) = (—1)¥ [i] ,
2
where [g] represents the integral value of %, i.e., represents the largest integer less

than or equal to g .

Establish that this mapping gives a one-to one correspondence between N and Z
implying that Z is countable.

Alternatively the f:N — Z s.t.

fm)= 5; if nisodd e N

n.. .
=—§1f nis even € N.

This is also a one-to one correspondence = Z ~ N .

It shows that an infinite set can be equivalent to its proper subset, e.g.,Z ~ N .
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EXAMPLE 2.

SOLUTION.

EXAMPLE 3.
SOLUTION.

EXAMPLE 4.

SOLUTION.

EXAMPLE 5.
SOLUTION.

Find the power of an aggregate of numbers given by 2% »M and m being

positive and integral. (GARHWAL 1994,98)

(Power of a set means the cardinal number of that set).
Let us suppose that

B={M:M, meN}.
2”’[
Write By ={M :meN}.

2m

Then we have,

11 1
By =dgaits VO
! {21 227" on }
2 2 2
B,={= % .= .
2 {21 22777 gn }
3 3
I R
3 {21 2277 gn }
n n n
Bn = {2_1,2_2) ,2_11""}

Evidently,
(i) B, is enumerable Vie N under the mapping ZL" —n,
(ii) B;'s are pairwise disjoint.
(iii) B= U B;.
i=1
Thus B is enumerable being the enumerable union of enumerable sets. Hence
card B = q, i.e., the power of the given set is a.
Prove that a<c.
Since NcR = card N<card R
= ac<ec.

Prove that cardP(A) = 2°"™ for any finite set A. (MEERUT 1988)
Let card A=«

Then card (P(A)) =1+ %¢; + %cy +.o#+ %c, = (1+1)% = 2% = 2% = gcard4
Prove that o < a for any cardinal number o.
Letcard P=a.

Define an identity map f:P — P written by
fx)=x,YxeP.
Obviously, f is one-one. Hence by definition,
card P<card P ie., oa<ao.
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EXAMPLE 6.

SOLUTION.

EXAMPLE 7.
SOLUTION.
EXAMPLE 8.

SOLUTION.

EXAMPLE q.
SOLUTION.

EXAMPLE 10.

SOLUTION.

If each a;(i=1,2,..,n)is a rational number, then the point
a=(a;,a,,...,a,) € R" is called a rational point.
Show that the set of all rational points in R" is denumerable.

We know that set of rational numbers is countable. So varying a;,a,,...,a,, we can
form a™ rational points.

But we know that a.a=a and hence a" =a.

= set of all rational points has the same cardinal number as that of N.

= set of rational points is countable.

Prove that c€ = 2°,

We have =29 =2%=2°,

Let X be any non-empty set and let C be the family of functions f : x — {0,1}.
Then show that the family of subset of X i.e., the power set of X is equivalent
to C.

Let AeP(X) where P(X) denotes the power set of X. Also let ¢, denote the
characteristic function of A relative to X .

Now define a map f:P(X) —» C by the formula f(A)=¢,.

Obviously f as defined above is one-one onto. Hence, P(X) ~C.

Prove that 10,1] ~10,1[.

Denote the points of ]0, 1] by x and of ]0, 1[ by y. Now define a correspondence

3 1 1
==—-x for —<x<1;then —=<y<1
y=5—x for S<x<1;then o<y<1,

3 1 1 1 1
=—-x for —<x<=;then —<y<—,
! 473 4°7°7

3 1 1 1 1
==—-x for =<x<—;then —=<y<—,
V=38 8°*%% 874

and so on.
From the above correspondence, we see that for every x €]0,1], there corresponds
one and only one y of 10,1[ . Hence by definition ]0,1] ~ 10,1[ .
Show that for every real number x, the real number in the semi-open
interval [x, x +1) form an uncountable set.
Let x be any real number. Define a function
f:lx,x+1)—>[0,1) given by f(y)=y-x.
Then f is well defined, for obviously,
f)=x-x=0, f(x+D)=x+1-x=1.
Again fOD=f(yy) = y1—-x=y-Xx = Y=Y, = f isone-one.
Also f is a continuous map which implies that f is an onto map.
Hence [x,x+1)~[0,1)
card [x,x+1)=card [0,1).
Now we know that the set of all real numbers in the set semi-open interval [0, 1) is

uncountable and hence the set of all real numbers in [x, x + 1) which is cardinally
equivalent to [0, 1) is uncountable.
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EXAMPLE 11.
SOLUTION.

EXAMPLE 12.

SOLUTION.

EXAMPLE 13.

SOLUTION.

EXAMPLE 4.

SOLUTION.

If a is any transfinite cardinal number; then a<o.
Let A be an infinite arbitrary set st. card A=o.
Now, A is infinite set = 3 an enumerable subset Bof A =card B=a

BcA = cardB<cardA = a<a.

Show that the set of all transcendental numbers in any interval is non-
enumerable. (MEERUT 1995, 2003; PUNJAB UNIV. 2002)

We know that the set of all algebraic numbers and transcendental numbers is the set
of all real numbers which is known to be uncountable. Also we know that the set of
algebraic numbers in an interval is enumerable.

But we have already proved that if an enumerable set is removed from a non-
enumerable set, the remaining set is non-enumerable. Therefore the complement of
the set of all algebraic numbers in any interval relative to the set of all real numbers
in that interval is uncountable. But this is the set of all transcendental numbers. Hence
the result.

Show that the interval (0, 1) is equivalent to the set R of all real numbers

and hence show that card (0,1) =card R.
Define a function f:(0,1) - R s.t.

gx_——_l,x € (0,1)
x 2

f)=

which show that this function is one-one and onto implying that (0,1) ~R and hence
card (0,1)=card R=c.
Also since (0,1) is uncountable, the set R is also uncountable.

Above property supports our idea of defining the same cardinal numbers e of the two
sets (0,1) and R. Then c is called the Cardinal number of continuum.

Prove that a<c< f where a,c and f denote the cardinal numbers of set
of all natural numbers, and real numbers and set of all real valued
functions defined over [0,1] respectively. (GARHWAL 1997; MEERUT 1983,89)
We have already proved that a < e . Now it remains to prove that ¢ < f. Let F be set of
all real valued functions defined over [0, 1].

Now consider the mapping f; :[0,1]1 > R defined as fi(x)=k, Vxe[0,1] and k
being a real number in [0, 1].

All these functions are real valued and so that set F ={ fi :0<ky} is a proper subset
of the set F.

We can set up a one-to-one correspondence between [0,1] and F* (st.F cF).Hence
card [0,1] = card F'<cardF or ¢< f.
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EXAMPLE1S. Show that a countable set is a Borel set.
SOLUTION. Let A={a;,a,,as,...} be a countable set. Now note that
hag 1
{x:x=a.}=N {x:ar Sar+—}
n=1 n
and A= U {a}
reN

= A is obtained by the formation of countable union and intersection of closed and
open sets and hence A is a Borel set.

A CONTINUUM HYPOTHESIS

It is assumed that there is no cardinal number between a and e. Thus ¢ is assumed to be the
second transfinite cardinal number. However, there are other cardinal number greater than e. For
instance card P(R)>c.

* REVIEW QUESTIONS AND ARCHIVE

(a) Define an enumerable set. Show 8. If {E,} be a sequence of countable sets and
that the set of real numbers can not &
be enumerable, although the set of S= anJl E, , then prove that S is countable.
rationales is enumerable. (KANPUR 2003)
M) If f:A—>B and the range of f is 9. Let o and B be any two cardinal numbers

uncountable, prove that domain of f
is also uncountable.

. Define cardinal number of a set. Show that

n<2" for any cardinal number n.

. Prove that the set of all real numbers in the
closed interval [0, 1] is uncountable.

. Prove that if A and B are enumerable then
A X B is also enumerable.

. Prove that o+ o = o for any infinite cardinal
number o .

. Find the cardinal number of the set {x} of
those numbers in the interval [0,1] whose
ternary expansion does not have the digit 1.

. Prove the following:

(» [0,11~10,1[,
(ll) [O’ 1] -~ [2, 5] })
(iii) [0’ 1["']0) 1[ .

10.

11.

12,

13.

14.

15.

16.

such that a« <P and B<a, then prove that

a=f.

(i) Prove that the set of all numbers in any
interval can not be enumerable.

(ii) Show that the set of all characteristic
functions on R is uncountable.

Set of real numbersis ......................

(KANPUR 2002)
By an example show that cancellation law
does not hold in case of cardinal numbers?
Set of integers {0,1,2,...} is uncountable.
(KANPUR 2003)
Show that the family of all finite subsets of
the natural numbers is countable infinite.
Prove that
(i) a+c=c
(iii) c+c=c
V) a.a=a

Every isolated set of point is

(i) a+ta=a
(iv) a.c=c
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17. State and prove Schroder-Bernsteing N x N is countable equivalent.

theorem. 23. Show that the set of points in the closed
18. Prove that the set of complex numbers is interval [2,4] and in the open interval (1,2)

19.

20.

21.

22,

B0

uncountable.

Exhibit a1-1 correspondence between the
points of the closed interval [0,1] of R and the
points of the half closed interval (0,1] of R.
Show that the set of all polynomial
functions with integer (rational) coefficients
is countable (or say has the cardinal a)

Prove that card P(A)=2"%4 where A is
any finite set. (GARHWAL 1992)

Using the mapping f:NxN — N given by

flx,y)=2"(x¥ +1)-1, show that set

24.

25.

26.

27.

\_CHAPTER SUMMARY /

are cardinally equivalent. (MEERUT 2004)
If a finite set of elements in added to an
enumerable set, the executing set is also
enumerable.

If B is a countable subset of an uncountable
set A.Then A-B is.......... (MEERUT 2001)
Show that the set of all sequence whose
elements are the digit 0 and 1 is
uncountable. (KANPUR 2001; PUNJAB 2003)

If {E,} be a sequence of countable sets and

S= U E, then prove that S is countable.
n=1

B0

This chapter introduced the fundamental notions and basic concepts. The important points

discussed in this chapter are as follows :

9The numbers 1, 2, 3,... are called natural
numbers. We represent the set of natural
numbers by N, i.e., N = {1, 2, 3, ...}

9 The numbers ... ... ,-3,-2,-1,0,1, 2,3, ...
are called integers. We represent the set of
integers by Z, ie., Z = {..., -3, -2,-1,0, 1,
2,3,...}

SAny number of the form p/q, where
p,q € Z,q # 0 and p, g have no common
factor (except +1) is called a rational
number.

2A number which is either rational or
irrational is called a real number. The set of
real numbers is denoted by R.

A set is a well defined collection of objects

<A set containing no elements is called empty
set and is denoted by the symbol ¢ .

< Set containing only one element is a Singleton
set. The set {a} is a singleton set.

9OThe supremum of a set ScR, if exists, is
unique.

SThe infimum of a set, if exists, is unique.

<A sequence is represented as <s,, > or {s,},
when s, is the n term of the sequence.

SThe set of all distinct terms of a sequence is
called the range set of that sequence.

<A sequence, whose range is a subset of R is
called a real sequence or a sequence of real
numbers.
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B

wh If x > 0, y > 0 then xy > 0; if x > O,
y > 0then 0 > xy. If 0 > x, 0 > y then
xy > 0 and these results hold with >
replaced everywhere by >.

ws If S is a non-empty set of integers then
m = sup S is an integer.

m There exists n € Z such thatn -1 <x < n.

m If x > 0, y > 0 then there exists n € N such
that nx > y.

m If ¢ € Q such that x < q < y. If we choose

integers n> and k > ny and let m be

the least integer such that ysﬂ. Then
n

mp If S and T are non-empty set of positive
numbers then

sup{st:xe€S,te T} =supS Xsup T

\FOR ADVANCED LEARNERS/

mrd

m» Following conditions are equivalent on non-
empty subset X and Y of R
() x<yVxeX,yeY
(i) 3re Rsuch thatx<r <y V x € X and
yeY
mb If0 <a+1landa*=1thenx =0
m Ifa > 0andx >y.Ifa > 1 then a* > @’ and
that if a < 1 then a* < &@.
w If a > O then for each x > 0 there exists a
unique y € R such that @ = x.
we If @ > 1 then the function logx is strictly
increasing and that if 0 < a < 1 then log x
is strictly decreasing.
we If in the system of axioms for R, the least
upper bound principle is replaced by the
axioms of Acrhimedes, then the nested
interval principle is equivalent to the
completeness of R.
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