1.		
1.1	Introduction	1
1.2	Concept of Sets	1
1.3	Set of Numbers	3
1.4	Cartesian Product of Sets	4
1.5	Relation	5
1.6	Function	7
1.7	Boundedness of a Subset of Real Numbers R	10
1.8	Sequences	15
1.9	Countable Set	18
1.10	Algebraic Numbers	21
1.11	Cardinally Equivalent Sets	22
1.12	Cardinal Number of a Set	23
1.13	Transcendental Number	28
1.14	Continuum Hypothesis	36
2.		
2.1	Introduction	39
2.2	Neighbourhood of a Point	39
2.3	Interior of a Set	43
2.4	Limit Point of a Set	45
2.5	Theorems on Closed and Derived Sets	49
2.6	Interior, Exterior and Boundary of a Set	59
2.7	Dense and Perfect Sets	61
2.8	Sets of First and Second Category	62
2.9	Compactness of a Set	64
2.10	Heine-Borel Theorem	65
2.11	Cantor Ternary Set	67
3.		
3.1	Introduction	73
3.2	Metric Space	73
3.3	Distance Between Two Sets and Diameter of a Set	78
3.4	Some Inequalities	81
4.		
4.1	Introduction	101

4.2	Open and Closed Spheres in a Metric Space	101
4.3	Neighbourhood	110
4.4	Equivalent Metrics	114
4.5	Closure of a Set	122
4.6	Interior Point and Interior of a Set	125
4.7	Exterior Points and Exterior of a Set	127
4.8	Frontier Points and Frontier of a Set	127
4.9	Boundary Points and Boundary of a Set	127
4.10	Separable Spaces	136
5.		
5.1	Introduction	149
5.2	Sequence	149
5.3	Complete Metric Space	155
5.4	Properties of Complete Metric Space	157
5.5	Metric Spaces of First and Second Category	160
5.6	Completion of a Metric Spaces	164
6.		
6.1	Continuity at a Point (Local Continuity)	179
6.2	Homeomorphism	179
6.3	Uniform Continuity in a Metric Space	180
6.4	Isomorphism	180
7.		
7.1	Introduction	197
7.2	Separated Sets	197
7.3	Connected and Disconnected Sets	202
7.4	Continuity and Connectedness	213
7.5	Characterisation of Connected Subsets of The Real Line	214
7.6	Connectedness of Unions	216
7.7	Connectedness of Products	220
7.8	Components	221
7.9	Totally Disconnected Spaces	223
7.10	Locally Connected Spaces	224
8.		
8.1	Introduction	231
8.2	Compact Metric Space	231
8.3	Equivalent characterisations for Compactness	234
8.4	Compact Subsets of The Real Line	236
8.5	Compact Subset in R ⁿ	237
8.6	Countably Compactness	238
8.7	Sequential Compactness	240
8.8	Total Boundedness	242

8.9	Compactness and Continuity	249
8.10	Locally Compact Spaces	251
8.11	Lindelof Spaces	252
8.12	Product of Two Compact Metric Spaces	253
9.		
9.1	Introduction	259
9.2	Pointwise Convergence	259
9.3	Uniform Convergence of Sequences	260
9.4	Uniform Convergence of a Series of Functions	262
9.5	Cauchy's General Principle of Uniform Convergence	262
9.6	Dini's Criterion for Uniform Convergence of a Sequence of Continuous	
	Functions	263
9.7	Tests for Uniform Convergence	264
9.8	Uniform Convergence and Continuity	281
9.9	Equicontinuous Family of Functions	286
9.10	Weirstrass's Approximation Theorem	288
10.		
10.1	Introduction	297
10.2	Limit	297
10.3	Continuity of a Function of Two Variables	304
10.4	Partial Differentiation of Function of Two Variables	312
10.5	Differentiability of Function of Two Variables	320
10.6	Directional Derivatives of a Function of Two Variables	328
10.7	Composite Functions	329
10.8	Mean Value Theorem for Two Variables	330
10.9	Taylor's Theorem for Function of Two Variables	330
10.10	Schwarz's Theorem	334
10.11	Young's Theorem	335
10.12	Invertible Function	339
10.13	Linear Transformation	339
10.14	Implicit Function	344
10.15	Implicit Function Theorem	344
10.16	Maxima and Minima of a Function of Several Independent Variables	349
10.17	Necessary Condition for The Existence of Maxima Or Minima	349
10.18	Necessary Condition for Maxima Or Minima	351
10.19	Sufficient Condition for Maxima Or Minima: The Lagrange's Condition	352
10.20	Maxima and Minima of The Function of Three Independent Variables	365
10.21	Maxima and Minima for a Function of Three Independent Variables:	
	The Lagrange's Condition	366
10.22	Lagrange's Method of Undetermined Multipliers	371

_	_	

۱.		
11.1	Introduction	385
11.2	Cauchy Sequence of Rational Numbers	385
11.3	A Necessary Condition for Convergence	386
11.4	Cantor's Numbers	386
11.5	Algebra of Cantor's Numbers	387
11.6	Order in R _c	388
11.7	Cantor Rational and Irrational Numbers	391
11.8	Convergence of Cantor Numbers	393
11.9	Order Completeness of Cantor Number System	394