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1.1  REPRESENTATION OF POWER SYSTEM

A typical power system consists of a 3-phase grid to which all generating stations feeds energy and 
from which all substations taps energy. (A grid is either a 3-phase single circuit or 3-phase two circuit 
transmission line, running throughout the length and breadth of a country or a state). From the substations 
electrical energy is transmitted to distribution transformers and from the distribution transformer, the 
energy is fed to various loads.

The components of power system are Generating stations (Alternators), Power transformers, 
Transmission lines, Substations (Substation transformers), Distribution transformers and Loads. The various 
types of loads are Synchronous motors, Induction motors, Heating coils, Lights, etc.,

The various components of power system and their interconnections are usually represented by 
single line diagram. In a single line diagram the components are represented by standard symbols and their 
interconnections are shown by single line, eventhough they are three phase circuits.

Single line diagram (One-Line Diagram)

A balanced three-phase system is always analysed on per phase basis by considering one of the 
three phase lines and neutral. Hence it is enough if we show one phase and neutral in the diagrammatic 
representation of power system. The diagram is further simplified by omitting the neutral and so the resultant 
diagram will be a single line diagram. 

In single line representation of power system, the components of the system are represented by 
standard symbols and the transmission lines are represented by straight lines. Hence a single line diagram 
is diagrammatic representation of power system in which the components are represented  by their symbols 
and the interconnections between them are shown by straight lines. Besides the symbols, the ratings and 
the impedances of the components are also marked on the single line diagram.

The purpose of the one-line diagram is to supply in concise form the significant information about 
the system. The various symbols used in single line diagram are shown in table-1.1. A typical single line 
diagram is shown in fig 1.1.
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Table-1.1 Symbols used in single line diagram

1.2  PER UNIT QUANTITIES

The electric power transmission lines are operated at very high voltage levels and transmits large 
amount of power. Hence the operating voltage of transmission line is expressed in kilovolt (kV) and power 
transmitted is expressed in kilowatt (kW) or megawatt (MW) and kilovolt ampere (kVA) or megavoltampere 
(MVA).

The various components of power system like alternators, motors, transformers, etc., have their 
voltage, power, current and impedance ratings in kV, kVA, kA and Ω respectively.

The components or various sections of power system may operate at different voltage and power 
levels. It will be convenient for analysis of power system if the voltage, power, current and impedance 
ratings of components of power system are expressed with reference to a common value called base 
value. Hence for analysis purpose a base value is chosen for voltage, power, current and impedance. 	
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Fig 1.1 : A typical single line diagram
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              Then all the voltage, power, current and impedance  ratings of the components are expressed as 
a percent or perunit of the base value.

      The per unit value of any quantity is defined as the ratio of the actual value of the quantity to the 
base value expressed as a decimal. The ratio in percent is 100 times the value in per unit. The base value 
is an arbitrary chosen value of the quantity.

Per unit value = Base value
Actual value                                                                                       .....(1.1)

%  Per unit value = Base value
Actual value 100#                                                                        .....(1.2)

The power system requires the base values of four quantities and they are Voltage, Power, Current and 
Impedance. Selection of base values for any two of them determines the base values of the remaining two.

Single phase system

 Let,	 kVAb	 =	 Base kVA
	 kVb	 =	 Base voltage in kV
	 Ib	 =	 Base current in Amp
	 Zb	 =	 Base impedance in Ω

The following formulae relate the various quantities

	 Base current,  I kV
kVAb

b
b

=   in amps                                                                              .....(1.3)

	 Base impedance,Z I
kV in1000b

b
b

# Ω= 		                                                ....(1.4)

On substituting for Ib from equation (1.3) in equ(1.4) we get,

	 Base impedance, 
2

kVA 1000
kV

MVA
kVZ

kV
kVA

kV 1000 2
b b

b

b

b b b

#= = = b^ h 		   .....(1.5)

Per unit impedance = ,
,

Base impedance
Actual impedance

Ω
Ω

Three-phase system

The per-unit value of a line-to-neutral (VLN ) on the line-to-neutral voltage base 
(Vb , LN ) is equal to the per-unit value of the line-to-line voltage (VLL ) at the same point on the line-to-line 
voltage base (Vb , LL ) if the system is balanced,

	 i.e., V
V

V
V

b,LN

LN

b,LL

LL= 						       .....(1.6)

The perunit value of a 3-phase kVA on the 3-phase kVA base is identical to the per unit  value of 
the kVA per phase on the kVA  per  phase base

	 i.e.,  phase base kVA
phase kVA

Base kVA per phase
kVA per phase

3
3
−
− = 				    .....(1.7)
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Therefore in 3-phase systems the line value of voltages and 3-phase kVA are directly used for per 
unit calculations.

The base impedance and base current of 3-phase system can be computed directly from 3-phase 
value of base kVA and line value of base kV.

Let	 kVb	 =	 Line to line base kV
	 kVAb	 =	 3-phase base kVA
	      Ib	 =	 Line value of  base current

Now,  k VA kV I3b b b# #= 				                                               .....(1.8)

3 phase , 10In systems kVA V I kV I3 33
L L L L

a # #- = =- ^` h j

From equ(1.8) we get,

Base current, I
kV

kVA
3

b
b

b#
=

						       .....(1.9)
In a balanced power system the phase voltage is 1/ 3  times, the line voltage. Hence the base 

impedance per phase is given by

	 Base impedance
per phase

Z I
kV

I
kV3 1000

3
1000bb

b
b

b

# #= =
` j

3 		                .....(1.10)

On substituting for Ib from equ(1.9) in equ(1.10) we get,

 Base impedance
per phase

Z

kV
kVA

kV
kVA
kV

MVA
kV

3
3

1000

1000
b

2

b
b b

b

b b

b

#
#

#= = =^ ^h h
3          		        .....(1.11)

Here, the equ(1.5) and (1.11) looks similar, but in 3-phase system, the kVb is a line value and MVAb 
is a 3-phase MVA.

Note : The impedance is always expressed as phase value.

Changing the base of  per-unit quantities

The impedance of a device or component is usually specified in per unit on the base of name plate 
rating. When a system is formed by interconnecting various devices, it will be convenient for analysis if 
the impedances are converted to common base. Since all impedance in any one part of a system must be 
expressed on the common impedance base. It is necessary to have means of converting per-unit impedances 
from one base to another.

Let,	 Z = Actual impedance, Ω

	 Zb = Base impedance, Ω

Per unit impedance of a circuit element = Z
Z

MVA
kV
Z

kV
Z MVA

2 2
b

b

b b

b#= =
^ ^h h

           		    .....(1.12)

The equ(1.12) show that per unit impedance is directly proportional to base megavolt amperes and 
inversely proportional to the square of the base voltage. Using equ(1.12) we can derive an expression to 
convert the p.u. impedance expressed in one base value (old base) to another base (new base).
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Let kVb, old and MVAb, old represents old base values and kVb, new and MVAb, new represents new base 
value.

Let,	 Zpu, old = p.u. impedance of a circuit element calculated on old base.

	 Zpu, new = p.u. impedance of a circuit element calculated on new base.

If old base values are used to compute the p.u. impedance of a circuit element with impedance Z, 
then equ(1.12) can be written as,

		  Z
kV

Z MVA
2pu,old

b,old

b,old#
=

^ h
                                                                                         .....(1.13)

		  Z Z MVA
kV 2

pu,old
b,old

b,old=
^ h 		            					      .....(1.14)

If the new base values are used to compute the p.u. impedance of a circuit element with impedance 
Z, then equ(1.12) can be written as

		  Z
kV

Z MVA
2,

,

,
pu new

b new

b new#
=

^ h
				                                               .....(1.15)

On substituting for Z from equ(1.14) in equ(1.15) we get,

		  Z
kV

Z MVA
kV MVA2

2pu,new
b,new

pu,old
b,old

b,old

b,new
#=

^

^

h

h
		       

                         = Z kV
kV

MVA
MVA2

, ,b old b new

,
, ,

pu old
b new b old

# #e co m                                                           .....(1.16)

The equ(1.16) can be used to convert the p.u. impedance expressed on one base value to another base.

Advantages of  per-unit computations

1.	 Manufacturers usually specify the impedance of a device or machine in percent or per unit 
on the base of the name plate rating.

2.	 The per-unit impedances of machines of the same type and widely different rating usually 
lie within a narrow range, although the ohmic values differ widely for machines of different 
ratings.

3.	 The per-unit impedance of circuit element connected by transformers expressed on a proper 
base will be same if it is referred to either side of a transformer.

4.	 The way in which the transformers are connected in 3-phase circuits (Y or ∆) does not affect 
the per-unit impedances of the equivalent circuit, although the transformer connection does 
determine the relation between the voltage bases on the two sides of the transformer.
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1.3  EQUIVALENT CIRCUITS OF COMPONENTS OF POWER SYSTEM

The equivalent circuit of a power system is needed to perform analysis like load flow analysis, 
fault level calculations, etc. It can be obtained from the equivalent circuit of the components of the power 
system. The various components of power system are generator (alternator), transformer, transmission 
line, induction motor, synchronous motor, resistive and reactive loads. The equivalent circuits of various 
electrical machines developed in electrical machine theory can be used in power system modelling with 
or without approximations.
Equivalent circuit of  generator

The equivalent circuit of a 3-phase generator (Alternator) is shown in fig 1.2. It consists of a source 
representing induced emf per phase, a series reactance representing the armature reactance and leakage 
reactance and a series resistance representing the armature winding resistance.

Equivalent circuit of  synchronous motor

The equivalent circuit of synchronous motor is shown in fig 1.3. The synchronous motor is similar 
to a generator in construction, but it performs the reverse action of the generator. (A generator converts 
mechanical energy to electrical energy, but the motor converts electrical energy to mechanical energy). 
Therefore the direction of current in motor is opposite to that of generator.
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Fig 1.2 : Equivalent circuit of generator
(3-phase alternator)
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Equivalent circuit of  transformer

The equivalent circuit of a single phase, two winding transformer referred to primary is shown 
in fig 1.4. It consists of shunt branches to represent magnetising current and core loss, series resistance 
representing winding resistance referred to primary and the series reactance representing leakage reactance 
referred to primary.
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E

N
N

V
V

I
I

1

2

1

2

1

2

2

1.= = =

2
'R R R R R K201 1 1 2= + = +

2
X X X X X K201 1 1 2= + = +'

The three phase transformer is represented by its single 
phase equivalent and the equivalent circuit is similar to that of 
fig 1.4. In three phase transformers, the transformation ratio, 
K is taken as the ratio of line voltages. This will facilitate the direct conversion of star side impedances to 
delta side and vice versa.

Equivalent circuit of  induction motor

The single phase equivalent circuit of induction 
motor referred to stator is shown in fig 1.5. It is similar 
to equivalent circuit of transformer (The induction motor 
is also called rotating transformer).

s = Slip

r
'R s
1 1−` j    =   Resistance representing load.

R = Rs + Rr′  =   Equivalent resistance referred to stator
X = Xs + Xr′  =  Equivalent reactance referred to stator
Rs , Xs = Resistance and reactance of stator
Rr , Xr = Resistance and reactance of rotor.

Equivalent circuit of  transmission line

The transmission line can be represented by its resistance, inductance and capacitance. The single 
phase equivalent π-type and T-type model of the transmission line is shown in fig 1.6. The elements R, XL 
and Xc are resistance, inductive reactance and capacitive reactance per phase respectively.

Representation of  resistive and reactive loads

The resistive and reactive loads can be represented in the equivalent circuit by any one of the following
1. Constant power representation
2. Constant current representation    

 3. Constant impedance representation

→
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Fig 1.4 : Equivalent circuit of a transformer
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In constant power representation, the load active power (MW) and reactive power (MVAR) are 
considered to be constant. This method of representation will be useful in load flow studies.

In constant current representation the magnitude of the load current is considered as constant. The 
constant current of the load can be calculated from the specified voltage, active and reactive powers of 
the load, as shown below.

Single phase load

Let	  P = Active power
and	 Q = Reactive power
The complex power, S VI P jQ= = +) 	

∴  VI P jQ= +)^ ^h h

        V I P jQ= −)

                           	        I
V

P jQ
` = −

)
	                                                                        .....(1.17)

Let,  ;V V V V+ +δ δ= = −) 					                       .....(1.18)

and tanP jQ P Q P
Q P Q2 2 2 21+ + θ− = + − = + −-

where tan P
Q1θ = -                                                                                                                      .....(1.19)

From equations (1.17), (1.18) and (1.19) we can write

       I V
P Q

V
P Q I

2 2 2 2

+
+

+ +
δ

θ δ θ δ θ=
−

+ − = + − = − 			                  .....(1.20)
						                 

 where I V
P Q2 2

= +                                                                                                         .....(1.21)

In constant impedance representation the load is represented by its impedance or admittance. The 
impedance of the load can be calculated from the specified voltage, active and reactive powers of the load 
as shown below.

Load  Impedance, Z I
V= 						                                    .....(1.22)

On substituting for I from equ(1.17) in equ(1.22) we get,

∴ Load impedance, Z
P jQ V

V
P jQ
V V

P jQ
V 2

=
−

=
−

=
−)

)

^ h
	            	    	                  .....(1.23)

Load admittance, Y Z V
P jQ1

2= = −                                                                                       .....(1.24)

Three phase load

Balanced star connected load

Let,	 P	 =	 Three phase active power of star connected load in watts.
	 Q	 =	 Three phase reactive power of star connected load in VARs.
	 V, VL	 =	 Phase & line voltage of load respectively.
	 I, IL	 =	 Phase & line current of load respectively.
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Three phase complex power, S = 3 VI * = P + jQ

∴ VI P jQ3 = +) ) )^ ^h h

     3V I P jQ= −)

         ∴  I
V

P jQ
3

= −
)

                                                                                              .....(1.25)

Let V = |V| ∠ δ	    ;	 ∴ V * = |V| ∠ −δ

In star connected load,  V
V
3
L= 	 and I = IL	

               ∴  V
V
3
L + δ= −)                                                                                                  .....(1.26)

Let  tanP jQ P Q P
Q P Q12 2 2 2+ + θ− = + − = + −− 			                    .....(1.27)

where  tan P
Q1θ = -

Using equations (1.26) and (1.27), the equation (1.25) can be written as,

       I
V

P jQ
V
P Q

V
P Q

3 3
3

3

2 2 2 2

L L+

+

δ
δ θ= − =

−

+ = + −
)

	

       ∴ I I
V

P Q
3

2 2

L +δ θ= = + − 				                                               .....(1.28)

       ∴ I I
V

P Q
3

2 2

L
L= = + 	                                                                                  .....(1.29)

Load impedance per phase, Z I
V= 			                                                            .....(1.30)

On substituting for I from equ(1.25) in equ(1.30) we get,

            Z

V
P jQ
V

P jQ
VV

P jQ
V

3

3 3=
−

=
−

=
−

)

) 2

^ h

                P jQ
V

P jQ
V3 3 2

2
LL=

−
=

−
` j

∴ Load impedance per phase, Z P jQ
V 2
L=
−

			                                              .....(1.31)

∴ Load impedance per phase,  Y Z V
P jQ1

2
L

= = − 				                   .....(1.32)

Balanced delta connected Load

Let	 P	 =	 Three phase active power of delta connected load in watts
	 Q	 =	 Three phase reactive power of delta connected load in VARs.
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	 V, VL	 =	 Phase & line voltage of load respectively.
	 I, IL	 =	 Phase & line current of load respectively.

Three  phase complex power, S = 3 V I * = P + jQ

                        ∴ VI P jQ3 = +) ) )^ ^h h

                                3V I P jQ= −)

		         ∴  I
V

P jQ
3

= −
)

			                                                              .....(1.33)

Let V = |V|∠ δ	    ;	 ∴V * = |V| ∠ −δ

In delta connected load,  V = VL and  I I 3L= 		                                                .....(1.34)

Let,  tanP jQ P Q P
Q P Q2 2 2 21+ + θ− = + − = + −- 			                   .....(1.35)

where  tan P
Q1θ = -

Using equations (1.34) and (1.35), the equation (1.33) can be written as,

             I V
P Q

V
P Q

V
P Q

3 3 3
2 2 2 2 2 2

L+
+

+ +
δ
θ δ θ δ θ=

−
+ − = + − = + −^ ^h h

                = I + δ θ−^ h

        where I V
P Q
3
2 2

L
= +

I I V
P Q

V
P Q3 3 3 3

2 2 2 2

L
L L

` = = + = + 	                                                           .....(1.36)

	 Load impedance per phase, Z I
V= 				                                      .....(1.37)                

On substituting for I from equ(1.33) in equ(1.37) we get,

             Z

V
P jQ
V

P jQ
VV

P jQ
V

P jQ
V

3

3 3 32 2
L=

−
=

−
=

−
=

−
)

)

^ h	

Load impedance per phase, Z P jQ
V3 2
L=

−
                                                                                .....(1.38)

Load admittance per phase,  
3 VY Z
P jQ1

2
L

= = −                                                                        .....(1.39)

Three winding transformer

In addition to the primary and secondary winding, the transformer may be constructed with a third 
winding called tertiary winding. In three winding transformers, the two windings are connecting in star and 
one winding in delta or two windings in delta and one winding in star. The purpose of providing the tertiary 
winding are the following.
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1	 To get supply voltage for the substation auxiliary devices. [The auxiliary devices may work 
at a voltage different from those of the primary and secondary windings].

2.	 Static capacitors or synchronous condensers may be connected to the tertiary winding for 
reactive power injection into the system for voltage control.

3.	 A delta connected tertiary reduces the impedance offered to the zero sequence currents thereby 
allowing a large earth-fault current to flow for proper protection of protective equipments. 
Further it limits voltage imbalance when the load is unbalanced. It also permits the third 
harmonic current to flow thereby reducing third harmonic voltages. For these reasons the 
tertiary winding is also called stabilization winding.

4.	 Three windings may be used for interconnecting three transmission line at different voltages.
5.	 Tertiary can serve the purpose of measuring voltage of an HV testing transformer.

In three winding transformer, the three windings may have different kVA rating. [But the primary 
and secondary of two winding transformers have the same kVA rating]. The impedance of each winding 
of a three winding transformer may be given in p.u. calculated by using their own winding rating as bases. 
But while representing in reactance/impedance diagram it is necessary to convert the p.u. reactances to a 
common base.

The equivalent circuit of a three winding transformer can be represented by the single phase 
equivalent circuit shown in fig 1.7.

In this equivalent circuit the impedance per phase of the three windings (referred to one of winding, 
usually primary) are connected in star to represent the single phase equivalent circuit. For simplicity, the 
effect of exciting current is ignored in the equivalent circuit. The subscripts p, s and t indicate the primary, 
secondary and tertiary respectively. Three external circuits are connected between P & O, S & O and T & 
O, where the terminal O is the common terminal.

The impedances of the three windings are calculated using a common base kVA or MVA. The base 
voltage is the voltage rating of respective windings. The three impedances can be measured by the standard 
short-circuit tests.

Zp	 =	 Impedance of primary winding

Z′s	 =	 Impedance of secondary winding referred to primary

Z′t	 =	 Impedance of tertiary winding referred to primary

Zps	 =	 Leakage impedance measured in primary with secondary short-circuited and tertiary open.

Zpt	 =	 Leakage impedance measured in primary with tertiary short-circuited and secondary open.

Z′st	 =	 Leakage impedance measured in secondary with tertiary short-circuited and primary open 
and then referred to primary.

Fig 1.7 : Single phase equivalnet circuit of three winding transformer
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The  leakage impedances measured by short circuit test are related to winding impedance as follows,

	 Zps = Zp + Zs′
						                                    .....(1.40)

	 Zpt = Zp + Zt′
						                                    .....(1.41)

	 Zst′= Zs′ + Zt′
						                                    .....(1.42)

The equations (1.40) to (1.42) can be expressed in the form of matrix equation as shown in equ(1.43)

		
st

s

t
' '

Z
Z
Z

Z
Z
Z

1
1
0

1
0
1

0
1
1

p ps

pt='> > >H H H				                                                .....(1.43)

The matrix equation (1.43) can be solved by cramer’s rule as shown below.
	

	 1 1(1) 2
1
1
0

1
0
1

0
1
1

1#T = = − − = −^ h

           

st

st st
1

Z
Z Z Z Z Z Z Z

1
0
1

0
1
1

1 ps pt

ps

pt ps pt1T = = − − − = − − +
Z

' '
'

^ ^h h

            

st

st st
1 (1)

Z
Z Z Z Z Z Z Z

1
1
0

0
1
1

ps

pt pt ps ps pt2 #T = = − − = − +
Z

' '
'

^ h

            

st

st st
1 1

Z
Z Z Z Z Z Z Z

1
1
0

1
0
1

1
ps

pt pt ps pt ps3
#T = = − − + = − +

Z

' '
'

^ ^ ^h h h

            st stZ Z Z Z Z Z Z2
1

2
11

p ps pt ps pt3
3= =

−
− − + = −' '6 6@ @                                                    .....(1.44)

           
st st st
Z Z Z Z Z Z Z2

1
2
1

pt
2

ps ps pt3
3= =

−
− − + = + −' ' '6 6@ @                                                 .....(1.45)

           
st stt

'Z Z Z Z Z Z Z2
1

2
1

ps
3

pt pt ps3
3= =

−
− − + = + −' '6 6@ @                                                 .......(1.46)

  The equations (1.44) to (1.46) can be used to calculate the impedances of the three windings 
(referred to primary) using the short circuit test data.

EXAMPLE 1.1

A three phase generator with rating 1000 kVA, 33 kV has its armature resistance and synchronous reactance 
as 20Ω/phase and 70Ω/phase. Calculate p.u. impedance of the generator.

SOLUTION

The generator ratings are chosen as base kV and base kVA.

	 ∴  Base kilovolt, kVb = 33 kV

	 Base kilovoltampere, kVAb = 1000 kVA
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             1089Base impedance
per phase

Z
MVA
kV

1000 1000
332 2

b
b

b Ω= = =^ ^h h
3

             

              /Actual impedance
per phase

Z j phase20 70 Ω= +^ h3

              ∴ p. u. impedance, 0.018 0.064 . .Z
Base impedance
Actual impedance

Z
Z j j p u

1089
20 70

pu
b

= = = + = + 	

EXAMPLE 1.2

A three phase, ∆-Y transformer with rating 100 kVA, 11 kV/400 V has its primary and secondary leakage 
reactance as 12 Ω/phase and 0.05 Ω/phase respectively. Calculate the p.u. reactance of transformer.

SOLUTION

Case(i)

The high voltage winding (primary) ratings are chosen as base values.

	 ∴Base kilovolt, kVb = 11 kV

	 Base kilovoltampere, kVAb = 100 kVA

             1210Base impedance
per phase

Z
MVA
kV

100 1000
11 2

b
b

b Ω= = =^ ^h h
3

             Transformer line voltage ratio, 
,

.K
11 000
400 0 0364= =

             
2
' 12

.
. 12 37.737tanTotal leakage reac ce

referred to primary
X X X

K
X

0 0364
0 05

2 20 1
2

1= + = + = + = +X
^ h3

                                                                            = 49.737 Ω / phase

            p. u. reactance per phase, tanX
Base impedance

Total leakage reac ce
pu =

                                                               = . 0.0411 . .
Z
X

p u
1210
49 737

b

01 = = 	

Case(ii)

The low voltage winding (secondary) ratings are chosen as base values.

	 ∴Base kilovolt, kVb = 400/1000 = 0.4 kV

	 Base kilovoltampere, kVAb = 100 kVA

  
/
.

1.6Base impedance
per phase

Z
MVA
kV

100 1000
0 42 2

b
b

b Ω= = =^ ^h h
3

  Transformer line voltage ratio,  
,

.K
11 000
400 0 0364= =

   
1
'tan

sec
Total leakage reac ce
referred to ondary

X X X K X X2
02 2 1 2= + = +3   

                                                    = . . . . . /phase0 0364 12 0 05 0 0159 0 05 0 06592 # Ω+ = + =^ h     

     p. u. reactance per phase, 
.

. 0.0411 . .tanX
Base impedance

Total leakage reac ce
Z
X

p u
1 6

0 0659
pu

b

02= = = =                                               
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Note :   1.	 It is observed that the p.u. reactance of a transformer referred to primary and secondary are same.

                             2.  In three phase transformer if the voltage ratio K is obtained using line values then using this value othe   

                             phase impedance per phase of star side can be directly transferred to delta side or vice-versa.

EXAMPLE 1.3
A three phase Y-∆ transformer is constructed using three identical single phase transformers of rating 200 kVA, 

63.51 kV/11 kV transformer. The impedances of primary and secondary are 20 + j45Ω and 0.1 + j0.2Ω respectively. 
Calculate the p.u. impedance of the transformer.

SOLUTION

The three phase transformer is formed using three numbers of identical single phase transformers. Hence 
the kVA rating of three phase transformer is three times that of single phase transformer.

∴kVA rating of three phase transformer = 3 × 200 = 600 kVA

  Line voltage rating of Y-∆ transformer  = 63.51 kV kV3 11#

                                                                   = 110 kV / 11 kV

Case(i)

The high voltage winding (primary) ratings are chosen as base values.

	 ∴ Base kilovolt, kVb = 110 kV

	 Base kilovoltampere, kVAb = 600 kVA

             20166.7Base impedance
per phase

Z
MVA
kV

600 1000
1102 2

b
b

b Ω= = =^ ^h h
3

            
            Transformer line voltage ratio, .K

110
11 0 1= =

            
2
' 20 45

.
. . 20 45 10 20Total impedance

referred to primary
Z Z Z Z

K
Z j j j j

0 1
0 1 0 2

2 2
2

01 1 1= + = + = + + + = + + +
^ h3

                                                   = /j phase30 65Ω+

             p.u. reactance per phase, 
.

0.0015 0.0032 . .Z
Base impedance
Total impedance j j p u

20166 7
30 65

pu = = + = +

                                                       
Case(ii)

The low voltage winding (secondary) ratings are chosen as base values.

	 ∴ Base kilovolt, kVb = 11 kV

	 Base kilovoltampere, kVAb = 600 k V A

             201.67Base impedance
per phase

Z
MVA
kV

600 1000
112 2

b
b

b Ω= = =^ ^h h
3

            Transformer line voltage ratio, .K
110
11 0 1= =

	 1
'

sec
Total impedance
referred to ondary

Z Z Z K Z Z2
02 2 1 2= + = +3

                                                         = . . . . . . .j j j j0 1 20 45 0 1 0 2 0 2 0 45 0 1 0 22 # + + + = + + +^ ^h h  

                                                         = 0.3 + j 0.65 Ω / phase

           p.u. reactance per phase, 
.

. 0.0015 0.0032 . .Z
Base impedance
Total impedance j j p u

201 67
0 3 65

pu = = + = +
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Note :  1.  It is observed that the p.u. impedance of a transformer referred to primary and secondary are  same.

           2.  In three phase transformer if the voltage ratio K is obtained using line values then using this val of K,  
                            the impedance per phase of star side can be directly transferred to delta side or vice-versa.

EXAMPLE 1.4

A 50 kW, three phase, Y connected load is fed by a 200 kVA transformer with voltage rating 11 kV/400 V 
through a feeder. The length of the feeder is 0.5 km and the impedance of the feeder is 0.1+j0.2 Ω/km. If the load p.f. 
is 0.8, calculate the p.u. impedance of the load and feeder.

SOLUTION

Let us choose the secondary winding rating of transformer as base values.

	 ∴ Base kilovolt, kVb = 400/1000 = 0.4 kV

	 Base kilovoltampere, kVAb = 200 kVA

              
.

0.8Base impedance
per phase

Z
MVA
kV

200 1000
0 42 2

b
b

b Ω= = =^ ^h h
3

             . . 0.5 0.05 0.1 /Actual impedance
of feeder

Z j j phase0 1 0 2fed # Ω= + = +^ h3

             . .p u impedance
of feeder

Z
Base impedance
Actual impedance

Z
Zfed

pu,fed
b

= =3

                                                  =
.

. . 0. 6 . . .j j p u
0 8

0 05 0 1 0 25 0 125+ = +  

Given that P = 50 kW and pf = cosφ = 0.8

	 ∴ sinφ = sin(cos−1 0.8) = 0.6

Reactive power, 
.

. .sinQ
Cos
P kVAR

0 8
50 0 6 37 5# #φ

φ= = =

. .
Load impedance
per phase

Z
P jQ
V

j j50 37 5 10
400

50 37 5
400 10

2

3

2 2 3

L
L

#

#=
−

=
−

=
−

-

^ h
3

                                   = 
. .

2.56 36.87 2.048 1.536 /j W phase
62 5 36 87

160
o

o

+
+

−
= = +

.
.

. . 2.56 1.92 . .p u value of
load impedance

Z
Base impedance
Load impedance

Z
Z j j p u

0 8
2 048 1 536

L,pu
b

L= = = + = +3

EXAMPLE 1.5
The three-phase ratings of a three winding transformer are

Primary	 :	 Y-connected, 110 kV, 20 MVA
Secondary	 :	 Y-connected, 13.2 kV, 15 MVA
Tertiary	 :	 ∆ - connected, 2.1 kV, 0.5 MVA

Three short-circuit tests performed on this transformer yielded the following results (i) primary excited, 

secondary shorted : 2290 V, 52.5 A (ii) Primary excited, Tertiary shorted : 1785 V, 52.5 A (iii) Secondary excited, 

Tertiary shorted : 148 V, 328 A.

Find the p.u. impedances of the star-connected single-phase equivalent circuit for a base of 20 MVA, 110 kV 

in the primary circuit. Neglect resistances.

SOLUTION

Test (i) and (ii) are performed on primary winding, hence the p.u. impedances of Zps and Zpt can be obtained 
directly using the primary winding ratings as base values.



1. 16 	 Power System Analysis

The test (iii) is performed on secondary winding, hence the p.u. impedance Zst is obtained using secondary 
winding rating as bases and then it can be converted to primary winding base.

To find p.u. value of Zps and Zpt

Base kilovolt of primary circuit, kVb, py = 110 kV

Base megavoltampere of primary circuit, MVAb, py = 20 MVA

           ∴  ( )Base impedance
of primary circuit

Z
MVA
kV

phase
20
110 605

2 2

b,py
b,py

b,py Ω= = =
^ h

3
	

The readings of test (i) can be used to calculate the value of Zps in Ω/phase.

            
.
/ 25.1835 /Z in phase phase

52 5
2290 3

ps Ω Ω= =
	

Note : The primary is star connected.

             p.u. value of 
/ . 0.0416 . .Z

Z
Z in phase

p u
605

25 1835
ps

b,py

ps Ω
= = =

	
The readings of test (ii) can be used to calculate the value of Zpt in Ω/phase.

            
.
/ 19.6299 /Z in phase phase

52 5
1785 3

pt Ω Ω= =

Note : The primary is star connected.

               p.u. value of 
/ . 0.0324 . .Z

Z
Z in phase

p u
605

19 6299
pt

b,py

pt Ω
= = =

To find p.u. value of Zst′

Base kilovolt of secondary circuit, kVb, sec = 13.2 kV

Base megavoltampere of secondary circuit, MVAb, sec = 15 MVA

             ∴  ( . ) .Base impedance
of primary circuit

Z
MVA
kV

phase
15

13 2 11 616
2 2

b,sec
b,sec

b,sec Ω= = =
^ h

3
	

 The readings of test (iii) can be used to calculate the value of Zst in Ω/phase.

                  / . /Z in phase phase
328

148 3 0 2605
st

Ω Ω= =
 
Note : The secondary is star connected.

                   . . /
.
. 0.0224 .

sec
p u value of Z on the base
values of ondary circuit

Z
Z

Z in phase
p u

11 616
0 2605

st
b,sec

stst
Ω

= = =3
               

The p.u. value of Zst on the secondary circuit base values can be converted to primary circuit base using the 
following formula

                       Z Z
kV
kV

MVA
MVA2

b,new
pu,new pu,old

b,new

b,old

b,old
# #= e eo o

	

Here new refers to primary and old refers to secondary.

                       
st
'. . 0.0224 0.0299 . .p u value of Z on the base

values of primary circuit
Z p u

110
110

15
202

st # #= =` `j j3
               

Note : The kVb, sec when referred to primary side will be (110/13.2)×13.2 = 110 kV
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To compute Zp, Zs′ and  Zt′

	
st

. . . 0.0221 . .Z Z Z Z p u
2
1

2
1 0 0416 0 0324 0 0299

p ps pt= + − = + − ='6 6@ @

            
sts

' . . . 0.0196 . .Z Z Z Z p u
2
1

2
1 0 0416 0 0299 0 0324ps pt= + − = + − ='6 6@ @

            
stt

' . . . 0.01035 . .Z Z Z Z p u
2
1

2
1 0 0324 0 0299 0 0416

pt ps= + − = + − ='6 6@ @

The single phase star connected equivalent circuit of three winding transformer is shown in fig 1.5.1. Since 

the resistances are neglected the impedances are represented as pure reactances.

1.4  IMPEDANCE  AND REACTANCE DIAGRAM

The Impedance or Reactance diagram of a power system is the equivalent circuit of the power system 
in which the various components of the power system are represented by their approximate or simplified 
equivalent circuits. This equivalent circuit of power system is used to analyse the performance of a system 
under load conditions (load flow studies) or to analyse the condition of the system under fault.

Impedance diagram

The impedance of a power system diagram is used for load flow studies. The impedance diagram 
can be obtained from the single line diagram by replacing all the components of the power system by their 
single phase equivalent circuit. The following approximations are made while forming impedance diagram.

1.	 The current limiting impedances connected between the generator neutral and ground are 
neglected since under balanced conditions no current flows through neutral.

2.	 Since the magnetizing current of a transformer is very low when compared to load current 
the shunt branches in the equivalent circuit of the transformer can be neglected.

3.	 If the inductive reactance of a component is very high when compared to resistance then the 
resistance can be omitted, which introduces a little error in calculations.

Reactance diagram

The reactance diagram is used for fault calculations. The following approximations are made in 
constructing reactance diagram, (when the system is balanced).

1.	 The neutral to ground impedance of the generator is neglected for symmetrical faults.
2.	 Shunt branches in the equivalent circuits of transformer are neglected.
3.	 The resistances in the equivalent circuits of various components of the system are omitted.
4.	 All static loads are neglected.
5.	 Induction motors are neglected in computing fault current a few cycles after the fault occurs, 

because the current contributed by an induction motor dies out very quickly after the induction 
motor is short-circuited.

Fig 1.5.1 : Single phase 
equivalnet circuit of three 
winding transformer

ZP = j0.0221

A

Z’s = j0.0196

Z’t = j0.01035
T

S

O
common
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6.	 The capacitance of the transmission lines are neglected.

The reactance diagram can be obtained from impedance diagram if we omit all static loads, all 
resistances, shunt branches of transformer and capacitance of transmission lines in the impedance diagram. 
The simplified representation of various components of power system in reactance diagram are shown in 
table 1.2.

The impedance and reactance diagram obtained from the above approximations are also called 
positive sequence impedance diagram and positive sequence reactance diagram.

Table-1.2 : Representation of  components of  power system in reactance diagram

A sample single-line diagram of a power system, its impedance and reactance diagram are shown 
in fig 1.8.

The impedance or reactances of various components of power system in a single line diagram 
are expressed in percentage value or per unit calculated by taking their ratings as base values. When the 
impedance or reactance diagram is formed, all the impedances or reactances should be expressed in per unit 
calculated on a common base value. Hence it is necessary to convert all the p.u. reactances to a common 
base. The conversion of per unit reactances from one base to another can be performed using the following 
equation which is obtained from equation (1.16) after replacing Z by X.

       X X
KV
KV

MVA
MVA2

, ,
,

,

,

,

pu new pu old
b new

b old

b old

b new
# #= e eo o				                                      .....(1.47)

Procedure to form reactance diagram from single line diagram

1.	 Select a base kilovoltampere or megavoltampere (kVAb or MVAb). The kVAb or MVAb will 
be same for all sections of the power system. In case of three phase power system, the kVAb 
or MVAb is three phase power rating.

2.	 Select a base kilovolt (kVb) for one section of power system. In case of three phase power 
system, the kVb is a line value. The various sections of power system works at different 
voltage levels and the voltage conversion is achieved by means of transformers. Hence the 
kVb of one section of power system should be converted to a kVb corresponding to another 
section using the transformer voltage ratio. In case of three phase transformer, line-to-line 
voltage ratio is used to transfer the kVb on one section to another section.

	 sec seckV on LT tion k V on HT tion
HT voltage rating
LT voltage rating

b b #= 		                              .....(1.48)

	  sec seckV on HT tion kV on LT tion
LT voltage rating
HT voltage rating

b b #= 		                               .....(1.49)  

	 Component	 Equivalent circuit	 Component	 Equivalent circuit

	 3-phase					    Synchronous
	 generator				    motor	

	 Transformer				    Transmission
						      line

+−

→ IgjXs

Eg
+−

← ImjXs

Em

% X Inductive
Reactance
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3.      The impedance of the components of power system are expressed either in ohms (actual 
impedance) or in p.u. which is calculated using the component rating as base values. In 
reactance diagram, the resistances are neglected and the reactances of all the components are 
expressed on a common base. Hence starting from one end of power system the reactances 
of each component should be converted to p.u. reactances on the selected new base. When 
the specified reactance of the component is in ohms then 

		   tance. . tanp u reac
Base impedance

Actual reac ce in ohms=

	 when the specified reactance of the component is in p.u. on the component rating as base 
values, then consider the component rating as old base values and selected base values as 

Fig c : Reactance diagram

Eg1 +−
Eg2

+−

→←
Generator

G1 

→←
Generator

G2

→←
Transformer

T1

→←
Transmission

line

→←
Transformer

T2

+− Em

Synchronous
motor

→←

Fig a : Single line diagram

G1

Synchronous motor

Transmission line
T2

T1

G2
↓

Load B
↓

Load A

M

Eg1
+− Eg2

+−

→←
Generator

G1 

→←
Generator

G2

→←
Load

A

→←
Transformer

T1

→←Transmission
line

→←
Transformer

T2

+− Em

→←
Load

B

Synchronous
motor

Fig b : Impedance diagram

Fig 1.8 : Single line diagram, impedance diagram and reactance diagram of a 
                                            sampled power system
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new bases. Now the p.u. reactance on new base can be calculated using the formula.

                     
MVA
MVA

X X
k V
k V 2

b,new
pu,new pu,old

b,new

b,old

b,old
# #= e eo o

		
EXAMPLE 1.6

a)	 A generator is rated 500 MVA, 22 kV. Its Y-connected winding has a reactance of 1.1 p.u. Find the 

ohmic value of the reactance of winding.

b)	 I f  the  generator  is  working in  a  c i rcui t  for  which the bases are  speci f ied as  

100 MVA, 20 kV. Then find the p.u. value of reactance of generator winding on the specified base.

SOLUTION
(a)	 The generator p.u. reactance will be specified by taking its rating as base values

∴Base kilovolt, kVb = 22 kV and Base megavoltampere, MVAb = 500 MVA

            Base impedance, 0.968Z
MVA
kV

500
22

2 2

b
b

b Ω= = =^ h

            Per unit reactance,
,
,tanX

Base impedance
Actual reac ce

Z
X

pu
bΩ

Ω= =

            ∴  Actual reactance, 1.1 0.968 .X X Z phase1 0648pu b# # Ω= = =

(b)        The formula used to convert the p.u. reactance specified on a base value to another base is given below

	  
MVA
MVA

X X
KV
KV 2

pu,new pu,old
b,new

b,old

b,old

b,new
# #= e eo o

The new base values are, kVb, new = 20 kV and MVAb, new = 100 MVA.

The old base values are kVb, old = 22 kV and MVAb, old
 = 500 MVA

             ∴ 1.1 0.2662 . .X p u
20
22

500
1002

pu,new # #= =` `j j
	

EXAMPLE 1.7

A 300 MVA, 20 kV, 3φ generator has a subtransient reactance of 20%. The generator supplies 2 synchronous 
motors through a 64 km transmission line having transformers at both ends as shown in fig 1.7.1. In this, T1 is a 3φ 
transformer and T2 is made of 3 single phase transformer of rating 100 MVA, 127/13.2 kV, 10% reactance. Series 
reactance of the transmission line is 0.5 Ω/km. Draw the reactance diagram with all the reactances marked in p.u. 
Select the generator rating as base values.

SOLUTION

Base megavoltampere, MVAb, new = 300 MVA

Base kilovolt, kVb, new = 20 kV

Fig 1.7.1

G
M1

300 MVA
20 kV
20%

350 MVA
20/230 kV,
10%

T1

j0.5 Ω/km
M2

200 MVA
13.2 kV
20%

100 MVA
13.2 kV

20%

T2

3 × 100 MVA
127/13.2 kV

10%
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Reactance of Generator G

Since the generator rating and the base values are same, the generator p.u. reactance does not change.

∴p.u. reactance of generator = 20% = 0.2 p.u.

Reactance of Transformer T1

	
. .

kV
kVtanThe new p u reac ce

of Transformer T
X

MVA
MVA2

b,new

1
pu,old

b,new

b,old

b,old
# #= e eo o3

                                                                                  =  . . .p u0 1
20
20

350
300 0 0857

2

# # =` j

Reactance of Transmission line

Reactance of transmission line = 0.5 Ω/km.

Total reactance of transmission line = 0.5 × 64 = 32 Ω.

20 230Base kV on HT side
of transformer T

Base kV on LT side
LT voltage rating
HT voltage rating kV

20
230

1

# #= = =3

 Base impedance, 176.33Z
MVA
kV

300
230

2 2

b
b

b Ω= = =^ h

cetan
.

0.1815 . .tanper unit reac of
Transmission line Base impedance

Actual reac ce p u
176 33
32= = =3

Reactance of Transformer T2

The transformer T2 is a 3-phase transformer bank formed using three numbers of single phase transformers 

with voltage rating 127/13.2 kV. In this the high voltage side is star connected and low-voltage side is delta connected.

∴ Voltage ratio of line voltage of 3 - phase transformer bank = 
. .

kV
13 2
3 127

13 2
220# =

Base kV on LT side of transformer T2  = Base kV on HT side × 
HT voltage rating
LT voltage rating  

                                                               = . . kV230
220
13 2 13 8# =  

The new p.u. reactance of transformer T2 = X
kV
kV

MVA
MVA2

pu,old
b,new

b,old

b,old

b,new
# #e eo o

                                                                     = 0.1
.
. 0.0915 . .p u

13 8
13 2

3 100
3002

# #
#

=` cj m

Reactance of M1

p.u. reactance of M1 on new base = X
kV
kV

MVA
MVA2

pu,old
b,new

b,old

b,old

b,new
# e eo o

                                                        = 0.2
.
. 0.2745 . .p u

13 8
13 2

200
3002

# # =` j

Reactance of M2

p.u. reactance of M2 on new base = 
MVA
MVA

X
kV
kV 2

pu,old
b,new

b,old

b,old

b,new
# e eo o

                                                       = 0.2
.
. 0.549 . .p u

13 8
13 2

100
3002

# # =` j
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Reactance diagram

The reactance diagram is shown in fig 1.7.2.

EXAMPLE 1.8

A 120 MVA, 19.5 kV generator has a synchronous reactance of 0.15 p.u. and it is connected to a transmission 
line through a transformer rated 150 MVA, 230/18 kV (Y/∆) with X = 0.1 pu. 

(a)	 Calculate the p.u. reactances by taking generator rating as base values.

(b)	 Calculate the p.u. reactance by taking transformer rating as base values.

(c)	 Calculate the p.u. reactances for a base value of 100 MVA and 220 kV on HT side of transformer.

SOLUTION

(a)	 Base megavoltampere, MVAb, new= 120 MVA

	 Base kilovolt, kVb, new= 19.5 kV

Since the generator ratings are chosen as base values, its p.u. reactance will not change.

∴Reactance of generator = 0.15 p.u.

New p.u. reactance of transformer = X
kV
kV

MVA
MVA2

pu,old
b,new

b,old

b,old

b,new
# #e eo o

                                                         = 0.1
.

0.0682 . .p u
19 5
18

150
1202

# # =` j  

(b)	 Base megavoltampere, MVAb, new= 150 MVA

	 Base kilovolt, kVb, new= 18 kV

Since the transformer ratings are chosen as base values, its pu reactance will not change.

∴Reactance of transformer = 0.1 p.u.

New p.u. reactance of generator = X
kV
kV

MVA
MVA2

pu,old
b,new

b,old

b,old

b,new
# #e eo o

                                                      = 0.15 . 0.22 . .p u
18
19 5

120
1502

# # =` j

(c)	 Base megavoltampere, MVAb, new= 100 MVA

	 Base kilovolt, kVb, new= 220 kV

In this case the base values are neither generator ratings nor transformer ratings. Hence both the p.u. reactances  
            should be converted to new base.

New p.u. reactance of transformer = X
kV
kV

MVA
MVA2

b,old
pu,old

b,new b,new

b,new
# #e eo o

                                                         = 0.1 0.0729 . .p u
220
230

150
1002

# # =` j

Fig 1.7.2 : Reactance diagram of the system shown in fig 1.7.1. (all reactance values are in p.u.)

j0.2

Egl

+

−

j0.0857 j0.1815 j0.0915

j0.2745

Em1

+

−

j0.549

Em2

+

−
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The generator is connected to LT side of transformer.

∴  Base kV referred of
LT side of transformer

Base kV on HT side
HT voltage rating
LT voltage rating

#=3

                                              = . KV220
230
18 17 22# =

New, k Vb,new = 17.22 kV

New p.u. reactance of generator = X
kV
kV

MVA
MVA2

pu,old
b,new

b,old

b,old

b,new
# #e eo o

                                                      = .
.
. . . .p u0 15

17 22
19 5

120
100 0 1603

2

# # =` `j j

RESULT
a.	 kVb = 19.5 kV ;  MVAb = 120 MVA,  Xpu, gen = 0.15 p.u.  ;  Xpu, tr = 0.0682 p.u.

b.	 kVb = 18 kV   ;  MVAb = 150 MVA,  Xpu, gen = 0.22 p.u. ;  Xpu, tr = 0.1 p.u.

c.	 kVb = 220 kV ;  MVAb = 100 MVA,  Xpu, gen = 0.1603 p.u. ;  Xpu, tr = 0.0729 p.u.

EXAMPLE 1.9

The single line diagram of an unloaded power system is shown in fig 1.9.1. The generator and transformers 
are rated as follows.

Generator, G1 = 20 MVA, 13.8 kV, X″ = 20%

Generator, G2 = 30 MVA, 18 kV,   X″ = 20%

Generator, G3 = 30 MVA, 20 kV,   X″ = 20%

Transformer, T1 = 25 MVA, 220/13.8 kV, X = 10%

Transformer, T2 = 3 single phase units each rated at 10 MVA, 127/18 kV, X = 10%.

Transformer, T3 = 35 MVA, 220/22 kV, X = 10%.

Draw the reactance diagram using a base of 50 MVA and 13.8 kV on the generator G1.

SOLUTION

Base megavoltampere, MVAb, new = 50 MVA

Base kilovolt, kVb, new = 13.8 kV

Reactance of Generator G1

. . tanNew p u reac ce
of generator G

X
kV
kV

MVA
MVA2

1
pu,old

b,new

b,old

b,old

b,new
# #= e eo o3

G1

G2

G3

j80Ω
j100Ω

T2

Fig 1.9.1

T1

section 1
section 2

20 k

T3
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                                    = 0.2
.
. 0.5 . .p u

13 8
13 8

20
502

# # =` `j j

Reactance of Transformer T1

. . 0.1
.
. 0.2 . .tanNew p u reac ce

of transformer T
X

kV
kV

MVA
MVA

p u
13 8
13 8

25
50

2
2

1
pu,old

b,new

b,old

b,old

b,new
# # # #= = =e e ` `o o j j3

Reactance of Transmission lines

 13.8
.

220Base kV on HT side
of transformer T

Base kV on LT side
LT voltage rating
HT voltage rating kV

13 8
220

1

# #= = =3

 Now, kV kV220
,b new

=

 968Base impedance on HT side
of transformer MVA

kV
50
220

2 2

b,new

b,new Ω= = =
^ h

3

 tion. .
,
, 0.0826 . .tan secp u reac ce of

of transmission line Base impedance
Actual impedance p u1

968
80

Ω
Ω= = =3

 tion. .
,
, 0.1033 . .tan secp u reac ce of

of transmission line Base impedance
Actual impedance p u2

968
100

Ω
Ω= = =3

Reactance of Transformer  T2

The transformer T2 is a 3-phase transformer bank formed using three numbers of single phase transformer 
with voltage rating 127/18 kV. In this the HT side is star connected and LT side is delta connected.

∴  Voltage ratio of line voltage
of phase transformer back

kV
3 18

3 127
18
220#

−
= =3

 Base kV on LT side
of transformer T

Base kV on HT side
HT voltage rating
LT voltage rating kV220

220
18 18

2

# #= = =3

 Now, kVb, new= 18 kV

 . . tanNew p u reac ce
of transformer T

X
kV
kV

MVA
MVA2

pu,old
b,new

b,old

b,old

b,new

2

# #= e eo o3

                                     = 0.1 0.1667 . .p u
18
18

3 10
502

# #
#

=` cj m

Reactance of Generator  G2 

  tance. .New p u reac
of Generator G

X
kV
kV

MVA
MVA2

pu,old
b,new

b,old

b,old

b,new

2

# #= e eo o3

                                      = 0.2 0.3333 . .p u
18
18

30
502

# # =` `j j

Reactance of Transformer T3 

   220Base kV on LT side
of transformer T

Base kV on HT side
HT voltage rating
LT voltage rating kV

220
22 22

3

# #= = =3
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     Now, kV kV220
,b new

=

    tance. . 0.1 0.149 . .New p u reac
of transformer T

X
kV
kV

MVA
MVA

p u
22
22

35
50

2
2

3
pu,old

b,new

b,old

b,old

b,new
# # # #= = =e e ` `o o j j3

Reactance of Generator  G3

     tance. .New p u reac
of generator G

X
kV
kV

MVA
MVA2

pu,old
b,new

b,old

b,old

b,new

3

# #= e eo o3

                                         = 0.2 0.2755 . .p u
22
20

30
502

# # =` `j j

Reactance diagram

The reactance diagram is shown in fig 1.9.2.

EXAMPLE 1.10

Draw the reactance diagram for the power system shown in fig 1.10.1. Neglect resistance and use a base of 
100 MVA, 220 kV in 50 Ω line. The ratings of the generator, motor and transformer are given below.

Generator : 40 MVA, 25 kV, X″ = 20%

Synchronous motor : 50 MVA, 11 kV, X″ = 30%

Y-Y Transformer : 40 MVA, 33/220 kV, X = 15%

Y-∆ Transformer : 30 MVA, 11/220 kV (∆/Y), X = 15%

SOLUTION

Base megavoltampere, MVAb, new = 100 MVA

Base kilovolt, kVb, new = 220 kV

Reactance of Transmission line

Base impedance = 484
MVA
kV

100
2202

b,new

b,new
2

Ω= =
^ h

Fig 1.10.1

G M
j50Ω

T2
T1

j0.5

Eg1

+

−

j0.2 j0.0826 j0.1033

j0.2755

Eg3

+

−
Eg2

+

−

Fig 1.9.2 : Reactance diagram of the system shown in fig 1.9.1 (all reactance values are in p.u.)

j0.1667
j0.1429

j0.3333
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tancetance. .
,
, 0.1033 . .p u reac

of transmission line Base impedance
Actual reac p u

484
50

Ω
Ω= = =1

Reactance of Transformer T1

 220Base kV on LT side
of Transformer T

Base kV on HT side
HT voltage rating
LT voltage rating kV

220
33 33

1

# #= = =3

 Now, 33kV kV
b,new

=

 tance. .New p u reac
of transformer T

X
kV
kV

MVA
MVA2

1
pu,old

b,new

b,old

b,old

b,new
# #= e eo o3

                               = 0.1 0. . .p u5
33
33

40
100 375

2

# # =` `j j

Reactance of Generator G

 tance. . VNew p u reac
of generator G

X
kV
k

MVA
MVA2

pu,old
b,new

b,old

b,old

b,new
# #= e eo o3

                                     = . . . .p u0 2
33
25

40
100 0 287

2

# # =` `j j

Reactance of Transformer T2

 220 11Base kV on LT side
of Transformer T

Base kV on HT side
HT voltage rating
LT voltage rating kV

220
11

2

# #= = =3

 Now, 11kV kV
b,new

=

 tance. .New p u reac
of transformer T

X
kV
kV

MVA
MVA2

2
pu,old

b,new

b,old

b,old

b,new
# #= e eo o3

                                     = 0.15 0. . .p u
11
11

30
100 5

2

# # =` `j j

Reactance of Synchronous motor

  tance. . VNew p u reac
of synchronous motor

X
kV
k

MVA
MVA2

pu,old
b,new

b,old

b,old

b,new
# #= e eo o3

                                          = 0.3 0.6 . .p u
11
11

50
1002

# # =` `j j

 

Reactance diagram

The reactance diagram is shown in fig 1.10.2.
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EXAMPLE 1.11
Draw the reactance diagram for the power system shown in fig 1.11.1. The ratings of generator, motor and  

 transformers are given below. Neglect resistance and use a base of 50 MVA, 138 kV in the 40 Ω line.

Generator G1 : 20 MVA, 18 kV, X″ = 20%

Generator G2 : 20 MVA, 18 kV, X″ = 20%

Synchronous motor : 30 MVA, 13.8 kV, X″ = 20%

3-phase, Y-Y Transformer : 20 MVA, 138/20 kV, X = 10%

3-phase, Y-∆ Transformer : 15 MVA, 138/13.8 kV, X = 10%

SOLUTION

Base megavoltamere, MVAb, new = 50 MVA

Base kilovolt, kVb, new = 138 kV

Reactance of j40Ω Transmission line

Base impedance = .
MVA

kV

50
138 380 88

2
2

,

,

b new

b new Ω= =
` j

. .
,
,

.
0.105 . .tan tanp u reac ce of

Transmission line Base impedance
Actual reac ce p u

40 380 88
40

Ω Ω
Ω= = =3

Reactance of Transformer T1

 Base kV on LT side
of Transformer T

Base kV on HT side
HT voltage rating
LT voltage rating kV138

138
20 20

1

# #= = =3

Fig 1.11.1

G1 G2

j40Ω
T3T1

T2

T5

j20Ω

T6

j20Ω T4

M

Fig 1.10.2 : Reactance diagram of the system shown in fig 1.10.1 (all reactance values are in p.u.)

j0.287

Eg1

+

−

j0.375 j0.1033 j0.5

j0.6

Em1

+

−
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 Now, kV kV20
,b new

=

tance. . 0.1 0.25 . .New p u reac
of Transformer T

X
kV
kV

MVA
MVA

p u
20
20

20
50

2
2

pu,old
b,new

b,old

b,old

b,new

1

# # # #= = =e e ` `o o j j3

Reactance of Generator  G1

  tance. . 0.2 0.405 . .New p u reac
of generator G

X
kV
kV

MVA
MVA

p u
20
18

20
50

2
2

1
pu,old

b,new

b,old

b,old

b,new
# # # #= = =e e ` `o o j j3

Reactance of Transformer  T2

  tance. .New p u reac
of Transformer T

X
kV
kV

MVA
MVA2

2
pu,old

b,new

b,old

b,old

b,new
# #= e eo o3

                                      = 0.1 0.25 . .p u
20
20

20
502

# # =` `j j

Reactance of j20Ω Transmission line

  Base kV on LT side
of Transformer T

Base kV on LT side
LT voltage rating
HT voltage rating

2

#=3

                                     = kV20
20
138 138# =

 Now, 138kV kV
b,new

=

 Base impedance = 380.88
MVA
kV

50
138

2
2

b

b Ω= =

 . .
,
,

.
0. . .tan tanp u reac ce of

Transmission line Base impedance
Actual reac ce p u

20 380 88
20 0525

Ω Ω
Ω= = =3

Here it is observed that both the sections of j20Ω transmission lines have same values of reactances and base 
kV ’s. Hence their p.u. reactances will be same.

Reactance of Transformer T5

   . . tanNew p u reac ce
of Transformer T

X
kV
kV

MVA
MVA2

pu,old
b,old

b,old

b,new

,b new5

# #= e eo o3

                                       = 0.1 0.333 . .p u
138
138

15
502

# # =` `j j

Reactance of Synchronous motor

   138 .Base kV on LT side
of Transformer T

Base kV on HT side
HT voltage rating
LT voltage rating kV

138
13 8 138

2

# #= = =3

   Now, kV kV138
,b new

=

  tance. .New p u reac
of synchronous motor

X
kV
kV

MVA
MVA2

pu,old
b,new

b,old

b,old

b,new
# #= e eo o3
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                                          = 0. 0.333 . .p u2
138
138

30
502

# # =` `j j

Reactances of T6 , T4 , T3 and G2

1.	 The transformer T6 is identical to that of T5. Hence p.u. reactance of T5 and T6 are same.

2.	 The transformers T1 , T2 , T3 and T4 are identical. Hence their p.u. reactances are same. 

3.	 The generator G2 is identical to that of G1. Hence their p.u. reactances are same.

Reactance diagram

The reactance diagram of the power system is shown in fig 1.11.2.

EXAMPLE 1.12

A 15 MVA, 8.5 kV, 3-phase generator has a subtransient reactance of 20%. It is connected through a ∆-Y transformer 
to a high voltage transmission line having a total series reactance of 70 ohms. The load end of the line has Y-Y step 
down transformer. Both transformer banks are composed of single phase transformers connected for 3-phase operation. 
Each of three transformers composing three phase bank is rated 6667 kVA, 10/100 kV, with a reactance of 10%. The 
load represented as impedance, is drawing 10 MVA at 12.5 kV and 0.8 pf lagging. Draw the single line diagram of the 
power network. Choose a base of 10 MVA, 12.5 kV in the load circuit and determine the reactance diagram.  Determine 
also the voltage at the terminals of the generator.

SOLUTION

The single line diagram of the power system is shown in fig 1.12.1.

Base values

Base megavoltampere,  MVAb, new = 10 MVA

Base kilovolt, kVb, new = 12.5 kV

Fig 1.11.2 : Reactance diagram of the system shown in fig 1.11.1 (all reactance values are in p.u.)

j0.405

Eg1
+

−

j0.25 j0.105 j0.25

j0.405

Eg2

+

−

j0.25 j0.0525

j0.333 j0.333

j0.0525 j0.25

Em

+

−

j0.333

Fig 1.12.1 : Single line diagram

G Load
j70Ω T2

T115 MVA
8.5 kV
20%

3 × 6667 kVA
10/100 kV, 10%

3 × 6667 kVA
100/10 kV, 10%

10 MVA
12.5 kV, 0.8 pf  lag
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Reactance of Transformer  T2

Voltage ratio of line voltage of transformer 
.
.T

kV
kV

kV
kV

10 3
100 3

17 32
173 2

2
#

#= =

 3 - phase k V A rating of transformer ,T kVA MVA3 6667 20 000 20
2 #= = =  

 ∴ 17.32k V kV on LT sideb,old = ^ h

 20MVA MVAb,old =

tance. .New p u reac
of Transformer T

X
kV
kV

MVA
MVA2

2
pu,old

b,new

b,old

b,old

b,new
# #= e eo o3

                                    = .
.
. . . .p u0 1

12 5
17 32

20
10 0 096

2

# # =` `j j

Reactance of Transmission line

 1 .
.
. 1Base kV on HT side

of Transformer T
Base kV on LT side

LT voltage rating
HT voltage rating kV2 5

17 32
173 2 25

2

# #= = =3

 Now, 125kV kV
b,new

=

 Base impedance  1562.5Z
MVA
k V

10
1252 2

b
b,new

b,new Ω= = =
^ ^h h

. .
,
,

.
0. . .tan tanp u reac ce of

Transmission line Base impedance
Actual reac ce p u

1562 5
70 0448

Ω
Ω= = =3

Reactance of Transformer T1

Voltage ratio of line voltage of transformer 
.

T
kV

kV
kV

kV
100 3

10
173 2
10

1
#

= =

 3 - phase k V A rating of transformer 3 6667 20,000 20T kVA MVA
1 #= = =

∴ 173.2k V kV on HT sideb,old = ^ h

 20MVA MVAb,old =

. .
kV
kV

MVA
MVAtanNew p u reac ce

of Transformer T
X

2

1
pu,old

b,new

b,old

b,old

b,new
# #= e eo o3

                                    = 0.1 . 0.096 . .p u
125
173 2

20
102

# # =` `j j

Reactance of Generator

 125
.

7.217Base kV on LT side
of Transformer T

Base kV on HT side
HT voltage rating
LT voltage rating kV

173 2
10

1

# #= = =3

 Now, 7.217kV kV
b,new

=

. . tanNew p u reac ce
of generator

X
kV
kV

MVA
MVA2

pu,old
b,new

b,old

b,old

b,new
# #= e eo o3

                                    =  0.
.
. 0. . .p u2

7 217
8 5

15
10 185

2

# # =` `j j
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Load
This can be represented as constant current load.

p.f  of load = 0.8 lag

∴p.f. angle = − cos− 1 0.8 = −36.87°

Complex load power = 10 ∠ −36.87° MVA

p. u. value of load (power) = . 1 36.87 . .
Base value of MVA
Actual load MVA p u

10
10 36 87o

o+ += − = −

p. u. value of load voltage = 
.
. . . .

Base voltage
Actual load voltage

kV
kV p u

12 5
12 5 1 0= =

Let,	 I = Load current in p.u.

	 V = Load voltage in p.u.

we know that, V × I = p. u. value of load (power)

                       ∴ . .
.
. 1 36.87I

V
p u value of load

1 0
1 36 87o

o+ += = − = −

Reactance diagram

The reactance diagram of the system is shown in fig 1.12.2.

To find the terminal voltage of the generator

With reference to fig 1.12.2.

The terminal voltage of the generator, . . .V V I j j j0 096 0 0448 0 096
t = + + +^ h

                                                           = 1.0 1 36.87 .j0 2368o++ − ^ h

                                                                    =  1.0 1 36.87 0.2368 90o o
#+ ++ −

                                                                    = 1.0 0.2368 53.13o++

                                                                    = . . .j1 0 0 1421 0 1894+ +

                                                                    = 1.1421 + j0.1894

                                                                    = 1.1577 9.4 . .p uo+

. .
min

Actual value of generator
ter al voltage

p u value of voltage
Base kV on
LT side of
Transformer T

#=

J

L

K
K
K

N

P

O
O
O

3

                                              = 1.1577 9.4 7.217 8.355 9.4 kVo o
#+ +=

Fig 1.12.2 : Reactance diagram of the system shown in fig 1.12.1 (all reactance values are in p.u.)

j0.185

Eg

+

−

j0.096 j0.0448 j0.096↑

↓

Vt
Lo

ad

↑

↓

V =1.0 p.u.

+ ↓ I =1∠−36.87° p.u
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1.5  NODE EQUATIONS AND BUS ADMITTANCE MATRIX

The meeting point of various components in a power system is called bus. (practically, the element 
used to connect one component to another is called bus). The bus or bus bar is a conductor made of copper 
or aluminium having negligible resistance. Hence the bus bar will have zero voltage drop when it conducts 
the rated current. Therefore the buses are considered as points of constant voltage in a power system.

When the power system is represented by impedance/reactance diagram, it can be considered as a 
circuit or network. The buses can be treated as nodes and the voltages of all buses (nodes) can be solved 
by conventional node analysis technique.

Let N be the number of major or jprincipal nodes in a circuit or network. (The principal nodes are 
meeting points of more than two elements). Since the voltage of a node can be measured only with respect 
to a reference point, one of the node is considered as reference node. Now the network will have (N-1) 
independent voltages. In nodal analysis, the independent  voltages are solved by writing Kirchoff’s Current 
Law (KCL) equation for (N-1) nodes in the circuit. For writing KCL equations, the voltage sources in the 
circuit should be converted to equivalent current sources.

Let, V1, V2, V3 ,......, Vn	 =	 Node voltages of nodes 1, 2, 3 ,......, n respectively.

I11, I22, I33 ,........, Inn	 =	 Sum of current sources connected (or injecting current) to nodes 1, 
2, 3 ,......., n respectively.

Yjj = Sum of admittances connected to node-j.

Yjk = Negative of sum of admittances connected between node-j and node-k.

Note:   If the direction of current in current source is towards the node then the source is considered 
positive and if it is away from the node then the source is negative.

Now the n-number of nodal equations for N-bus system will be in the form shown below (Here n = N-1)

         Y11V1 + Y12V2 + Y13V3 +.................+ Y1nVn = I11 

         Y21V1 + Y22V2 + Y23V3 +.................+ Y2nVn = I22

          Y31V1 + Y32V2 + Y33V3 +.................+ Y3nVn = I33 

	                  	           		                           

	 Yn1V1 + Yn2V2 + Yn3V3 +.................+ YnnVn = Inn 

The  above n-number of equations can be arranged in the matrix form as shown in equ(1.50).

.......

.......

.......

.......

Y
Y
Y

Y

Y
Y
Y

Y

Y
Y
Y

Y

Y
Y
Y

Y

V
V
V

V

I
I
I

Innn n n

n

n

n

n nn

11

21

31

1

12

22

32

2

13

23

33

3

1

2

3

1

2

3

11

22

33

h h h h h h

=

R

T

S
S
S
S
S
SS

R

T

S
S
S
S
S
SS

R

T

S
S
S
S
S
SS

V

X

W
W
W
W
W
WW

V

X

W
W
W
W
W
WW

V

X

W
W
W
W
W
WW

		                                                 .....(1.50)

In matrix notation the equ(1.50) can be written as,

	 YV = I					                                                              .....(1.51)
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In power system the Y-matrix is designated as Ybus, and called bus admittance matrix. The node 
voltages are called bus voltages.

Therefore the equ(1.51) can be written as shown in equ(1.52)

	 Ybus V = I					                                                              .....(1.52)

where,	 Ybus	 =	 Bus admittances matrix of order (n × n)
	 V	 =	 Bus voltage matrix of order (n × 1)
	  I	 =	 Current sources matrix of order (n × 1)
	 n	 =	 Number of independent buses in the system.

   Bus admittance matrix, 

.......

.......

.......

.......

Y
Y
Y

Y

Y
Y
Y

Y

Y
Y
Y

Y

Y
Y
Y

Y

Y

n n n

n

n

n

nn

bus

11

21

31

1

12

22

32

2

13

23

33

3

1

2

3

h h h h

=

R

T

S
S
S
S
S
SS

V

X

W
W
W
W
W
WW

                                                            .....(1.53)

The bus admittance matrix, Ybus is symmetrical around the principal diagonal. The admittances 
Y11, Y22, Y33 ,......, Ynn are called self admittances at the buses and the other admittances are called mutual 
admittances.

In general,

Yjj = Sum of all admittances connected to bus-j.

Yjk = Negative of sum of all admittances connected between bus-j and bus-k.

Also, Yjk = Ykj 

Note:  If the power system is represented by reactance diagram, then all the elements of the networkare 
inductive susceptances (which are negative). In this case, Yjj will be negative and Yjk will be positive.

Solution of  bus voltages

Consider the node basis matrix equation [equ(1.52)] of N-bus system.

	 Ybus V = I				                                                                           .....(1.54)

On premultiplying the equ(1.54) by Ybus
−1 we get,

	 V =
bus

Y 1-   I	 			                                                              .....(1.55)

we know that, int
bus minDeter ant of

Adjo ofY Y
Y1

bus

bus=-  	

Let   ∆ = Determinant of Ybus

and   ∆ij = Cofactor of Yjk

Now, Adjoint of 

......

......
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......

......

......

......

......
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n
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T

T

T
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                             .....(1.56)
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     			                                                            .....(1.57)

Using equations (1.56) and (1.57), the equation (1.55) can be written as shown in equ(1.58).
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                                                                   .....(1.58)

By matrix multiplication the equation (1.58) can be expressed as n-number of linear independent 
equations shown below.

                 ........V I I I I1
1 11 11 21 22 31 33 n1 nnT

T T T T= + + + +6 @	

                  ........V I I I I1
2 12 11 22 22 32 33 n2 nnT

T T T T= + + + +6 @   

                  ........V I I I I1
3 31 11 23 22 33 33 n3 nnT

T T T T= + + + +6 @         

                    h                                   h  

                  ........V I I I I1
n 1n 11 2n 22 3n 33 nn nnT

T T T T= + + + +6 @                   

In general the kth bus voltage is given by,

	  ........V I I I I1
k 1k 2k 22 3k 33 nk nn11T

T T T T= + + + +6 @                                                   .....(1.59)

             ∴ IV 1
j

n

1
jjk jkT

T=
=

/
where,	 ∆	 =	 Determinant of Ybus matrix.

	 Ijj	 =	 Sum of current sources injecting current to node-j.

	 ∆jk	 =	 Cofactor of the element Yjk of bus admittance matrix.

Note:   The equ(1.59) is Cramer’s rule and this equation can be expressed in another simpler form 
as shown below.

Let	 ∆	 =	 Determinant of  Ybus matrix.

 	 ∆k	 =	 Determinant of  Ybus matrix after replacing kth column by current 
			   source vector I.

          Now, kth bus coltage, V k
k T

T=
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Bus or node elimination by matrix algebra

The buses or nodes which does not have any current sources can be eliminated by matrix manipulation 
of the standard node equation.

Consider the general form of node basis matrix equation,

	 YbusV = I							                                                 .....(1.60)

Now the matrices in the equ(1.60) can be partitioned using the guidelines given below.

1.	 The column matrices V and I are rearranged such that the element associated with buses to 
be eliminated are in the lower rows of the matrices.

2.	 The square matrix Ybus is rearranged such that the elements associated with buses to be 
eliminated are in the last rows and columns of the matrices.

3.	 The bus admittance matrix is partitioned so that elements identified only with nodes to be 
eliminated are separated from the other elements by horizontal and vertical lines.

Consider a bus admittance matrix of order (5×5). Now the matrix equ(1.60) for n = 5 can be written 
as shown in equ(1.61). Let us assume that the buses 4 and 5 does not have any current source and so they 
can be eliminated.
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	                                                                        .....(1.61)

Let us partition the matrix equ(1.61) and define the following submatrices.
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where,	 IX	 =	 Submatrix composed of the currents entering the buses to be eliminated.
	 VX	=	 Submatrix composed of the voltages of the buses to be eliminated.
	 K	 =	 Submatrix composed of self and mutual admittances identified only with buses to 

be retained.
	 M	 =	 Submatrix composed of self and mutual admittances identified only with buses to 

be eliminated.
	 L	 =	 Submatrix composed of only mutual admittances between buses to be retained and 

eliminated.
	 LT	 =	 Transpose of L.
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Using the submatrices as defined above, the matrix equation (1.61) can be written as shown in equ 
(1.62).

		  K
L

L
M

V
V

I
IT

A

X

A

X

== = =G G G				                                                 .....(1.62)

By matrix multiplication the equ(1.62) can be written as,

	 K VA + LVX = IA						                                    .....(1.63)

	 LT VA + MVX = IX						                                   .....(1.64)

From equ(1.64) we get,

	 M  VX  =  IX − LT VA 					                                               .....(1.65)

Here all the elements of the submatrix IX are zero, because the buses to be eliminated does not have 
any current source.

	 ∴ M  VX  = − LT VA 	 					                                     .....(1.66)

On premultiplying equ(1.66) by M 
− 1 we get,

	 VX  = − M 
− 1 LT  VA		  			                                                .....(1.67)

On substituting for VX from equ (1.67) in equ(1.63) we get,

	 K VA − L M 
− 1 LT  VA = IA 		

	 ∴[ K − L M 
− 1 LT ] VA = IA 	

		   	   Ybus, new VA = IA	 			                                               .....(1.68)

where,  Ybus, new = K − L M 
− 1 LT 					                                   .....(1.69)

The new bus admittance matrix Ybus, new used to reconstruct the circuit with the unwanted buses 
eliminated.

The matrix partitioning method discussed above is a general procedure and it is suitable for computer 
solutions. When large number of buses are to be eliminated, then the size of matrix M will be large and 
finding M 

− 1 will be tedious.
The process of bus elimination can be simplified if one bus is eliminated at a time. In this case 

the matrix M will have only one element and M 
− 1 is the reciprocal of this element. Here, the bus to be 

eliminated must be the highest numbered bus and renumbering may be required. This can be achieved by 
row interchange and column interchange. When bus-p has to be eliminated in a system with n-independent 
buses, the pth row is interchanged with nth row and pth column is interchanged with nth column in the bus 
admittance matrix..

Consider a bus admittance matrix of order (n×n), in which the nth bus has to be eliminated
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	                                             .....(1.70)
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Let us partition the bus admittance matrix as shown in equ(1.70). The submatrices are given below.
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From equ(1.69) we get,

	 KY LM LT1

,bus new
= − - 				      	                                   .....(1.71)

On substituting the submatrices in equ(1.71) we get,
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E  
.....(1.72)

From equation (1.72) the element Yjk (i.e. the element in row-k and column-j) of the resulting (n−1) 
× (n−1) new bus admittance matrix is given by

	 Y Y
Y Y

Y
,jk new jk

nn

jn nk= − 						                      .....(1.73)

for j = 1, 2, 3 ,...., (n−1) and  k = 1, 2, 3 ,...., (n−1).

whereYjk, Yjn, Ynk and Ynn are elements of original or given bus admittance matrix.

The equ(1.73) can be used to compute the elements of new bus admittance matrix directly from the 
elements of original bus admittance matrix.

The following procedure can be used to compute an element of bus admittance matrix using equ(1.73).

Step 1:	Consider an element Yjk of original bus admittance matrix.

Step 2:	Get the product of last element of row-j and last element of column-k.

Step 3:	Divide the product obtained in step-2 by Ynn of original bus admittance matrix.

Step 4:	On substracting the resultant value obtained in step-3 from Yjk of original bus admittance 
matrix we get, the new value of Yjk.

Note:	 Since bus admittance matrix is symmetrical we can take Ykj, new = Yjk, new and can avoid m(m-
1)/2 calculations for a new bus admittance matrix of order (mxm), where m = n-1.
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EXAMPLE 1.13
Solve the node voltages V1 and V2 in the network 

shown in fig 1.13.1. The voltages and impedances are in p.u.

SOLUTION

The voltage sources in the network can be converted 
to current sources by source transformation as shown in fig 
1.13.2.

The node basis matrix equation is formed as shown below.
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In node basis analysis, kth node voltage Vk , is given by,

	 V I1

j

n

1
k jk jjT

T=
=

/
where,	∆jk = Cofactor of Yjk 

	 ∆  = Determinant of Y

	 Ijj   = Sum of current sources connected to node j.

Here	 n = 2
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EXAMPLE 1.14
For the network shown in fig 1.14.1. form the bus 

admittance matrix. Determine the reduced admittance matrix by 
eliminating node 4. The values are marked in p.u.

SOLUTION

The Ybus matrix of the network is,
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The elements of new bus admittance matrix after eliminating the 4th row and 4th column is given by

	 Y Y
Y

Y Y
,jk new jk

nn

jn nk= −  ;  where n = 4 ; j = 1, 2, 3   and  k = 1, 2, 3,

The bus admittance matrix is symmetrical , ∴ Ykj, new = Yjk, new
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The reduced bus admittance matrix after eliminating 4th row is shown below.
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EXAMPLE 1.15

Eliminate buses 3 and 4 in the given bus admittance matrix and form new bus admittance matrix.
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SOLUTION

First let us eliminate 4th bus,  ∴Ynn = Y44 = − j18.0

The elements of new bus admittance after eliminating 4th row and 4th column is given by
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The reduced bus admittance matrix after eliminating 4th node is given by
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Elimination of node 3 :    Ynn = Y33 = − j10.444

The other elements of the reduced bus admittance matrix can be formed from the equation
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                    The reduced bus admittance matrix after eliminating node 3 and 4 is

                
.
.

.
.

j
j

j
j

Y
4 7043
4 2011

4 2011
4 7761bus

=
−

−= G
	

EXAMPLE 1.16

Determine the bus admittance matrix of the system whose reactance diagram is shown in fig 1.16.1. The 
currents and admittances are given in p.u. Determine the reduced bus admittance matrix after eliminating node-3.

SOLUTION

The bus admittance matrix can be formed by inspection using the following guidelines.

1.	 The diagonal element Yjj is given by sum of all the admittances connected to node-j.

2.	 The off-diagonal element Yjk is given by negative of the sum of all the admittances connected between 
node-j and node-k.

           ∴  
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=
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−j2
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Fig 1.16.1.

↑ −j2 −j4 1∠0°2∠−30°

−j1
3

−j5

4
−j2
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               ∴ 
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                                                                                                            .....(1.16.1)

For eliminating node-3, the bus admittance matrix is rearranged by interchanging row-3 & row-4, and then 
interchanging column-3 & column - 4.

After interchanging row - 3 & row-4 of Ybus matrix of equ (1.16.1) we get,
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                                                                                                          .....(1.16.2)    

After interchanging column - 3 & column - 4 of Ybus matrix of equ (1.16.2) we get,
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                                                                                                      .....(1.16.3)   

Now the last row and last column [i.e., 4th row and 4th column] of Ybus matrix of equ(1.16.3) can be eliminated.

The elements of new bus admittance matrix after eliminating 4th row and 4th column is given by

           Y Y
Y

Y Y
,jk new jk

nn

jn nk= −  ;  where n = 4 ; j = 1, 2, 3   and  k = 1, 2, 3,

              5 4.556Y Y
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j
j j
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2 2
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−

= −^ ^h h
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−
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−
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−
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−
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                       9 6.222Y Y
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j j j
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−
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The reduced bus admittance matrix after eliminating bus-3 is given by,

              
.
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.
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j

j
j
j

j
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j
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0
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1.6  BUS IMPEDANCE MATRIX

Consider the node basis matrix equation representing the power system

Y V I
bus

=                                                                                                                  ......(1.74)

On premultiplying the equ (1.74) by Y 1-
bus

 we get,

                 V Y I1= -
bus                                                                                                                ......(1.75)

Now the elements of Y 1-
bus  will be impedances and so the matrix Y 1-

bus  can be represenred by an 
impedance matrix called bus impedance matrix, Z

bus
.

                 busZ Y 1

bus
= -                                                                                                            ......(1.76)

          and V Z I
bus

=                                                                                                             ......(1.77)

Since the bus admittance matrix is symmetrical, the bus impedance matrix is also symmetrical around 
the principal diagonal. In bus impedance matrix, the elements on the main diagonal are called driving point 
impedance of the buses or nodes and the off-diagonal elements are called the transfer impedances of the 
buses or nodes. The bus impedance matrix is very useful in fault analysis or calculations.

Note : The equ (1.77) resembles a mesh basis matrix equation but it is not so,because the matrix V 
is a node voltage matrix and the matrix I is a current source matrix.

The bus impedance matrix can be determined by two methods. In one method we can form the 
bus admittance matrix and then taking its inverse to get the bus impedance matix. In another method the 
bus impedance matrix can be directly formed from the reactance diagram and this method requires the 
knowledge of the modifications of existing bus impedance matrix due to addition of new bus or addition  
of new line (or impedance) between existing buses.

Modification of  an existing bus impedance matrix

                  Let us denote the orginal Zbus of a system with n- number of independent buses as Zorig.
When a branch of impedance Zb is added to the system the Zorig gets modified. The branch impedance Zb 
can be added to the original system in the following four different ways.

Case 1 : Adding a branch of impedance Zb   from a new bus-p to the reference bus.

Case 2 : Adding a branch of impedance Zb   from a new  bus-p to an existing bus-q.

Case 3 : Adding a branch of impedance Zb  from an existing bus-q to the reference bus.

Case 4 : Adding a branch of impedance Zb  between two existing buses h and q.

The modification of Zorig for the above four cases have been presented here without proof

Case 1 : Adding Zb  from a new bus-p to the reference bus.

Consider a n-bus system as shown in fig 1.9. Let us add a bus-p through an impedance Zb to the 
reference bus. The addition of a bus will increase the order of the bus impedance.
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......

Z Z

Z0 0 0
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0
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h=
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WW

               ......(1.78)

In this case the elements of (n + 1)th column and row are all zeros except the diagonal. The diagonal 
element is the added branch impedance Zb. The elements of original Zbus matrix are not altered. The new 
bus impedance matrix will be as shown in equ (1.78).

Case 2 : Adding  Zb from a new  bus-p to an existing bus-q.

Consider a n-bus system as shown in fig 1.10. in which a new bus-p is added through an impedance 
Zb  to an existing bus-q. The addition of a bus will increase the order of the bus impedance matrix by one.

                                                                     

......
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qq b1 2
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+
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S
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SS

V

X

W
W
W
W
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WW

              ......(1.79)

In this elements of (n + 1)th  column are the elements of qth column and elements of (n + 1)th row are 
the elements qth row. The diagonal element is given by sum of Zqq and Zb .The elements of original Zbusmatrix 
are not altered. The new bus impedance matrix will be as shown in equ (1.79).

Case 3 : Adding  Zb from an existing bus-q to the reference bus

Consider a n-bus system shown in fig 1.11 in which an 
impedance Zb is added from an existing bus-q to the reference bus. Let 
us consider as if the impedance Zb is connected from a new bus-p and 
existing bus-q. Now it will be an addition as that of case-2. The new 
bus impedance matrix order (n + 1) can be formed as that of case-2. 
Then we can short-circuit the bus-q to reference bus. This is equivalent 
to eliminating (n + 1)th bus (i.e., bus-p in this case) and so the bus 
impedance matrix has to be modified by eliminating (n + 1)th row and 
(n + 1)th column. The reduced bus impedance matric can be formed 
by a procedure similar to that of bus elimination in bus admittance 
matrix, developed in section 1.5. This reduced bus impedance matrix is the actual new bus impedance 
matrix. Every element of actual new bus impedance matrix can be determined using the equation (1.80).

     Z
Z Z

Z Z
,jk act jk

n n

j n n k

1 1

1 1= −
+ +

+ +

^ ^

^ ^

h h

h h                                                                               ......(1.80)

bus-p

n-bus
system

Zb

reference bus

Fig 1.9 : Adding a new bus through
an impedance to reference bus.

Bus-q

n-bus
system

Zb

Fig 1.10 : Adding a new bus through
an impedance to an existing bus.

bus-p

bus-p

n-bus
systemZb

reference bus

Fig 1.11 : Adding an impedance
between existing bus and reference.
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Note: 1. Zjk,act  is the impedance corresponding to row-j and column-k of actual new bus impedance 
                       matrix.

         2. Zjk, Z(n+1)k, Zj(n+1), Z(n+1) (n+1) are impedance of new bus impedance matrix of order (n + 1).

        3. Since bus impedance matix is symmetrical

Z Z
, ,jk act kj act

=

Case 4 : Adding Zb between two existing buses h and q

Consider a n-bus system shown in fig 1.12, in which an impedance 
Zb is added between two existing buses h and q.

In this case the bus impedance matrix is formed as shown in 
equ(1.81). Here the elements of (n + 1)th column is the difference between 
the elements of column-h and column-q. The elements of (n + 1)th row is 
the difference between the elements of row-h and row-q. The diagonal 
element is given by equ(1.82).

 

......

Z Z

Z Z Z Z Z Z

Z Z
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Z Z
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− − −

−
−

−

+ +^ ĥ h
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W
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                                           .......(1.81)

Z Z Z Z Z2
n n b hh qq hq1 1

= + + −
+ +^ ĥ h

                                                                           .......(1.82)

Since the modification does not involve addition of new bus, the order of new bus impedance matrix 
has to be reduced to nxn by eliminating the (n + 1)th column and (n + 1)th row.

This reduced bus impedance matrix is the actual new bus impedance matrix.Every element of this 
actual new bus impedance matrix can be determined using equ (1.80) which is also given below for reference.

 Z
Z Z

Z Z
,jk act jk

n n

j n n k

1 1

1 1= −
+ +

+ +

^ ^

^ ^

h h

h h

Direct dtemination of  a bus impedance matriux

 The bus impedance matrix can be directly obtained from impedance or reactance  diagram instead of 
forming Ybus and then inverting it. In direct determination of Zbus  first consider an impedance Za   connected      
from bus-1 to reference bus. Now the bus impedance matrix will have a single elements as shown below.

                                                               ZZbus a= 6 @

Then add each elemnt of impedance or reactance diagram one by one and modify the Zbus in each 
step. Each modification of Zbus involve any one of the four cases discussed above.

bus-h

n-bus
systemZb

Fig 1.12 : Adding an impedance
between bus-h and bus-q.

bus-q

bus-1

Zo

reference bus
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EXAMPLE 1.17

Determine Zbus for system whose reactance 
diagram is shown in fig 1.17.1. where the impedance 
is given in p.u. preserve all the three nodes.

SOLUTION

Step 1: Consider the branch with impedance 
j1.2 p.u. connected between bus-1 and reference as 
shown in fig 1.17.2. The system shown in fig 1.17.2. 
has a single bus and so the order of bus impedance matrix is on, as shown in below.

.jZ 1 2
bus = 6 @

Step 2:  Connect bus-2 to bus-1 through an impedance j0.2 as shown in fig 1.17.3. 
This is case-2 modification and so the order of bus impedance matrix increases by one. In 
the new bus impedance matrix, the elements of 1st column are copied as elements of 2nd 
column and the elements of 1st  row are copied as elements of 2nd row.The diagonal elements 
is given by Z11 + Zb where Zb = j0.2.

∴ .
.

.
. .

.

.
.
.

j
j

j
j j

j
j

j
j

Z
1 2
1 2

1 2
1 2 0 2

1 2
1 2

1 2
1 4bus

=
+

== =G G

Step 3: Connect the bus -3 to bus-2  through an impedance j0.15 as shown in fig 1.17.4. This is case-2 
modification and so the order of the bus impedance matrix increases by one. In the new bus impedance matrix the 
elements of 2nd row are copied as elements of 3rd row. The diagonal element is given by Z22 + Zb where Zb = j0.15.
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Step 4  :  Connect the impedance j1.5 from bus-3 to reference bus 
as shown in fig 1.17.5. This is case-3 modification. In case-2 and then 
the last row and column are eliminated by node elimination techniques.

In new bus impedance matrix the elements of 3rd column are 
copied as elements of 4th column and the elements of 3rd  row are copied 
as elements of 4th row. The diagonal element is given by Z33 + Zb where 
Zb = j1.5. 
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The  actual new bus impedance matrix is obtained by eliminating the 4th row and 4th column. The element Zjk 
of the actual new bus impedance matrix is given by,

∴  
Z

Z Z
Z Z

,jk act jk

n n

j n n k

1 1

1 1= −
+ +

+ +

^ ^

^ ^

h h

h h        where n = 3 ;  j = 1, 2, 3   and k = 1, 2, 3

j0.2

j0.3

j1.2

j0.15

j1.5
Reference bus

1
3

2

Fig 1.17.1

Reference bus

j1.2

Fig 1.17.2

1

Reference bus

j1.2

Fig 1.17.3

1 2

j0.2

Reference bus

j1.2

Fig 1.17.4
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3

j0.2 j0.15
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Step 5: Connect the impedance j0.3 between bus-1 and bus-3 as shown in fig 1.17.6.

This is case-4 modification.

In new bus impedance matrix, the elements of 4th column are 
obtained by substracting the elements of 3rd column from 1st column 
and the elements of 4th row are obtained by substracting the elements 
of 3rd row from 1st row.The diagonal element Z44 is given by the 
following equation.

Z Z Z Z Z2
b44 11 33 13= + + −

where  Zb = j0.3

∴ . . . . .Z j j j j j0 3 0 728 0 762 2 0 59 0 61
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Since this modification does not add a new bus, the 4th row and column has to be eliminated using node 
elimination technique, to determine the actual new bus impedance matrix. The element Zjk of actual new bus 
impedance matrix is given by. 

Reference bus

j1.2

Fig 1.17.5

1 2 3
j0.2 j0.15

j1.5
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Fig 1.17.6
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j0.2 j0.15

j1.5

j0.3
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EXAMPLE  1.18

Find  the bus impedance matrix for the system whose reactance 
diagram is shown in fig 1.18.1. All the impedance are in p.u.

SOLUTION

Step 1 :  Consider the branch with impedance j1 p.u. connected 
between bus-1 and refence as shown in fig 1.18.2

The system shown in fig 1.18.2. has a single bus and so the 

order of bus impedance matrixis one, as shown below.

 Zbus = [j1.0]

Step 2 :  Connect  bus -2 to bus-1 through an impedance j0.25 as shown in fig 1.18.3. 

This  is case-2 modification and so the order of bus impedance matrix increases by one.

In the new bus impedance matrix, the elemenets of 1st column are copied as elements 

of 2nd column and the elements of 1st row are copied as elements of 2nd row. The diagonal 

element is given by  Z11 + Zb where Zb = j0.25.
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Fig 1.18.2
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Step 3 :  Connect the impedance j1.25 from bus-2 to reference bus as 

shown in fig 1.18.4. This is case-3 modification. In case-3 modification thenew bus 

impedance matrix is formed as that of case-2 and then the last row and column 

are eliminated by node elimination technique.

In the new  bus impedance matrix the elements of 2nd column are copied 

as elements of 3rd column and the elements of 2nd row are copied as elements of 

3rd row. The diagonal element is given by Z22 + Zb where Zb = j1.25
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The actual new bus impedance matrix is obtaned by eliminating the 3rd row and 3rd column. The element 

Zjk of the actual new bus impedance matrix is given by,

 ∴  
Z

Z Z
Z Z

,jk act jk

n n

j n n k

1 1

1 1= −
+ +

+ +

^ ^

^ ^

h h

h h        where n = 2 ;  j = 1, 2,    and k = 1, 2,

.
.

. . .Z Z
Z

Z Z
j

j
j j j1 0

2 5
1 0 1 0 0 6

,act11 11
33

13 31 #= − = − =

.
.

. . 0.Z Z
Z

Z Z
j

j
j j j1 0

2 5
1 0 1 25 5

,act12 13
33

13 32 #= − = − =

.Z Z j0 5
, ,act act21 12= −

.
.

. . 0.Z Z
Z

Z Z
j

j
j j j1 25

2 5
1 25 1 25 625

,act22 22
33

23 32 #= − = − =

∴  
.
.

.
.

j
j

j
j

Z
0 6
0 5

0 5
0 625bus = = G

Step 4 :  Connect the bus-3 to bus-2 through an impedance 

j0.05 as shown in fig 1.18.5. This is case-2 modification and so the 

order of the bus impedance matrix increases  by one.

In the new bus impedance matrix, the elements of 2nd column 

are copied as elements of 3rd column and the elements of 2nd row are 

copied as elements of 3rd row. The diagonal elements is given by Z22 

+ Zb where Zb = j0.5.

.

.

.

.
.
.

.
.

. .

j
j
j

j
j
j

j
j

j j
Z

0 6
0 5
0 5

0 5
0 625
0 625

0 5
0 625

0 625 0 05
bus =

+
> H

∴ 
.
.
.

.
.
.

.
.
.

j
j
j

j
j
j

j
j
j

Z
0 6
0 5
0 5

0 5
0 625
0 625

0 5
0 625
0 675

bus = > H

Reference bus

j1.0

Fig 1.18.3

1 2

j0.25

Reference bus

J1.0

Fig 1.18.4

1
2

j0.25

j1.25

Reference bus

j1.0

Fig 1.18.5

1

2

3
j0.25 j0.05

j1.25
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1.7  SYMMETRICAL COMPONENTS

The analysis of unsymmetrical polyphase network by the method of symmetrical components was 
introduced by Dr. C. Fortesque. He proved that an unbalanced system of n related vectors can be resolved 
into n system of balanced vectors called symmetrical components of original vectors. The n vectors of each 
set of components are equal in length and the phase angles between adjacent vectors of the set are equal.

In three phase system, the three unbalanced vectors [either Va, Vb & Vc or Ia, Ib & Ic] can be resolved 
into three balanced system of vectors. The vectors of the balanced system are called symmetrical components 
of the original system. The symmetrical components of three phase system are,

1. Positive sequence components

2. Negative sequence components

3. Zero sequence components.

The positive sequence components consists of three vectors equal in magnitude, displaced form 
each other by 120o in phase, and having the same phase sequence as the original vectors.

The negative sequence components consists of three vectors equal in magnitude, displaced form 
each other by 120o in phase, and having the phase sequence opposite to that of the original vectors.

The zero sequence components consists of three vectors equal in magnitude and with zero phase 
displacement from each other.

Let  Va1, Vb1 & Vc1  =  Positive sequence components of  Va, Vb & Vc respectively with phase 		
	                        sequence abc.

        Va2, Vb2 & Vc2  = Negative sequence components of  Va, Vb & Vc respectively with phase 		
	                         sequence acb.

        Va0, Vb0 & Vc0  = Zero sequence components of  Va, Vb & Vc respectively.
The vector diagrams of positive, negative and zero sequence components are shown in fig 1.13.

From the vector diagram of symmetrical components the following conclusions can be made.

1. On rotating the vector Va1 by 120o in anticlockwise direction we get Vc1 	

2. On rotating the vector Va1 by 120o in anticlockwise direction we get Vb1	

Fig a : Positive sequence
components

120
o

120
o

120
o

vc1

va1

vb1

abc
Va0

V b0

V c0

Fig c : Zero sequence
components

vb2

Fig b : Negative sequence
components

acb

120
o

120
o

120
o

va2

vc2

Fig 1.13 : Vector diagram of symmetrical components of unbalanced 3-phase voltage vectors.
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  3. On rotating the vector Va2 by 120o in anticlockwise direction we get Vb2

  4. On rotating the vector Va2 by 240o in anticlockwise direction we get Vc2      

Therefore, on rotating the symmetrical component of one vector by 120o or multiples of 120o we get 
the symmetrical components of other vectors. Hence we can define an operator which causes a rotation of 
120o in the anticlockwise direction, such an operator is denoted by the letter “a”. 

The operator “a” is defined as,
1 120 1 0.5 0.866cos sina e j j2 3 2 3o j2 3+ π π= = = + = − +r+      

Since, 1 120 0.5 0.866a jo+= = − +                                                                                  ......(1.83)

          1 240 0.5 0.866a jo2 += = − −                                                                                 ......(1.84)

          1 360 1a o3 += =                                                                                                     ......(1.85) 

          . . . .a a j j1 1 0 5 0 866 0 5 0 866 02+ + = + − + + − − =^ ^h h

         ∴  1 + a + a2 = 0                                                                                                    ......(1.86)
Computation of  unbalanced vectors from their symmetrical components

Each of the original unbalanced vector is the sum of its positive, negative and zero sequence 
component. Therefore the original unbalanced three phase voltage vectors can be expressed in terms of 
therir components as shown below.

V V V Va a a a0 1 2= + +                                                                                                ......(1.87)

V V V Vb b b b0 1 2= + +                                                                                                  ......(1.88)

 V V V Vc c c c0 1 2= + +                                                                                               ......(1.89)

From the vector diagram shown in figure (1.11), we get the following relations between various 
symmetrical components.

; ;V V V a V V aV2

b a b a b a0 0 1 1 2 2= = =                                                            ......(1.90)

; ;V V V aV V a V2
c a c a c a0 0 1 1 2 2= = =                                                             ......(1.91)

Using equations (1.90) and (1.91), the equations (1.87) to (1.89) can be written as shown below.
V V V Va a a a0 1 2= + +                                                                                                ......(1.92)

V V a V a V2
b a a a0 1 2= + +                                                                                                ......(1.93)

V V a V a V2
c a a a0 1 2= + +                                                                                               ......(1.94)

The equation (1.90) and (1.91) can be arranged in the matrix form as shown in equ (1.95).

V
V
V

a
a
a
a

V
V
V

1
1
1

1 1
2

2

a0a

b

c

a

a

1

2

=> > >H H H                                                                                            ......(1.95)

The equation (1.95) can be used to compute the unbalanced voltage vectors from the knowledge 
of symmetrical components.
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Computation of  symmetrical components of  unbalanced vectors

The matrix equation (1.95) can be written in the vector notification as shown in equ(1.96).

V = A Vsy                                                                                                                                                                                           ......(1.96)

where, ;
V
V
V

a
a
a
a

and
V
V
V

V A V
1
1
1

1 1
2

2

a

b

c

sy

a

a

a

0

1

2

= = =

R

T

S
S
SS

R

T

S
S
SS

>
V

X

W
W
WW

V

X

W
W
WW

H

On premultiplying the equ(1.96) by A-1 we get

A V V1
sy=-

∴ V A V1sy = -                                                                                                                                                          ......(1.97)

min
int

Deter ant of
Adjo ofA A

A1 =-

Let  T = Determinant of A

∴ a
a
a
a

a a a a a a
1
1
1

1 1
1 1 12

2

4 2 2 2
# #O = = − − − + −^ ^ ^h h h

                         =  a a a a a a a a32 2 2 2− + − + − = −^ ^ ^ ^h h h h

Let  jj3  = Cofactor of Aij

∴  
23

1a a a a a a14 2 2
11T T= − = − = − − = −^ h

     a a a a a a2 2 2
12 31T T= − − = − = −^ h

     1a a a a12
13 32T T= − = − − = −^ h

     1a a a a a2 2 2
21 33T T= − − = − = −^ h

     a 12

22
3 = −

∴ intadjo ofA A1 1
T

1
11

21

31

12

22

32

13

23

33

T T

T

T

T

T

T

T

T

T

T

= =- > H

           = 1 11

12

13

21

22

23

31

32

33

T

T

T

T

T

T

T

T

T

T
> H

    

 
a a

a a
a a
a a

a a
a
a

a a
a

a
A

3
1 1

1
1

1

T

1

2

2

2

2

2

2

2

2

=
−

−
−
−

−
−
−

−
−
−

-

^ h
> H

.a a a a
a 1

4 2

3

a = =
=

e o
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a a
a a

a a
a

a a
a
a a
a

a a
a

A
3

1
1

1

1
1

1

1
1

1

1

2

2

2

2

2

2

2

2

=
−
−

−
−

−
−

−
−

−
−

-

^

^

h

h

R

T

S
S
S
S
SS

V

X

W
W
W
W
WW

                                                                           ......(1.98)

a a
a

a a
a a

a a
a a a a1

2

2

2

2 3

2

2

−
− =

−
− =

−
− =^ h                                                                                   ......(1.99)

a a
a

a a a
a a

a a
a a

a
a a a1 1 1
1
1

2 2 2

2

3 4

2 2
2

−
− =

−
− =

−
− =

−
− =

^

^

^

^ ^

h

h

h

h h                                                 ......(1.100)

Note:  a3 = 1     ;       a4 = a3 .  a = a

Using equations (1.99) and (1.100) the equation (1.98) can be written as

a
a
a
a

A 3
1
1
1
1

1 1

2

21 =- > H                                                                                               ......(1.101)

On substituting for A-1 from equ(1.101) in equ(1.97) we get

a
a
a
a

V V3
1
1
1
1

1 1

2

2

sy
= > H

V
V
V

a
a
a
a

V
V
V

3
1
1
1
1

1 1

2

2

c

a

a

a

a

b

0

1

2

=> > >H H H                                                                                        ......(1.102)

The  matrix equ(1.102) can be expressed as three independent linear equations as shown below.

∴  V V V V3
1

a a b c0
= + +6 @                                                                                   ......(1.103)

      V V a V a V3
1 2

a a b c1
= + +6 @                                                                                   ......(1.104)

      V V a V a V3
1 2

a a b c2
= + +6 @                                                                                   ......(1.105)

The equations(1.102) to (1.105) can be used to compute the symmetrical components of the 
unbalanced voltages.

Symmetrical components of  unbalanced current vectors

The symmetrical components of unbalanced current vectors can be obtained by an analysis similar to 
that of voltage vectors. All the equations developed for voltages can be used for current if we replace V by I.

Let  Ia, Ib, Ic    =   Unbalanced current vectors with phase sequence abc

        Ia1, Ib1, Ic1     =   Positive sequence components of Ia,Ib  and Ic  respectively with phase sequence abc.

        Ia2, Ib2, Ic2      =   Negative sequence components of Ia,Ib  and Ic  respectively with phase sequence acb.
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      Ia0, Ib0, Ic0   =  Zero sequence components of Ia,Ib  and Ic  respectively.
The vector diagram of positive, negative and zero sequence components are shown in fig 1.14.

The following equations are used to compute the unbalanced current vectors from the knowledge 
of  their symmetrical components [Refer equations(1.92) to (1.95)].

I I I Ia a a a0 1 2= + +                                                                                                 ......(1.106)

I I a I a I2
b a a a0 1 2= + +                                                                                             ......(1.107)                                             

I I a I a I2c a a a0 1 2= + +                                                                                          ......(1.108)

I
I
I

a
a
a
a

I
I
I

1
1
1

1 1
2

2

a

b

c

a

b

c

0

1

2

=> > >H H H                                                                                                  ......(1.109)

The following equations are used to compute the symmetrical components of unbalanced current 
vectors [Refer equations (1.102) to (1.105)].

I I I I3
1

a a b c0 = + +6 @                                                                                              ......(1.110)

I I a I a I3
1 2

a a b c1 = + +6 @                                                                                       ......(1.111)

I I a I a I3
1 2

a a b c2 = + +6 @                                                                                        ......(1.112)

I
I
I

a
a
a
a

I
I
I

3
1
1
1
1

1 1

2

2
a

a

a

a

b

c

0

1

2

=

R

T

S
S
SS

R

T

S
S
SS

>
V

X

W
W
WW

V

X

W
W
WW

H                                                                                         ......(1.113)

EXAMPLE 1.19

The voltages across a 3 phase unbalanced load are 300 20 , 360 90V V V Vo o

a b
+ += =  and  500 140V Vo

c
+= −

Determine the symmetrrical components of voltages, phase sequenceis abc.

SOLUTION

The symmetrical components of Va are given by the following matrix equations.

V
V
V

a
a

a
a

V
V
V

3
1

1
1
1

1 1

2

2
a

a

a

a

b

c

0

1

2

=

R

T

S
S
SS

R

T

S
S
SS

>
V

X

W
W
WW

V

X

W
W
WW

H

Ia0

I b
0

I c0

Fig c : Zero sequence
components

I
b2

Fig b : Negative sequence
components

acb

120
o

120
o

120
o

I
a2

I
c2

Fig 1.14 : Vector diagram of symmetrical components of unbalanced 3-phase current vectors.

Fig a : Positive sequence
components

120
o

120
o

120
o

abc

I
b1

I
a1

I
c1
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∴  V V V V
3
1

a a b c0
= + +6 @

 V V a V a V
3
1 2

a a b c1
= + +8 B

 V V a V a V
3
1 2

a a b c2
= + +8 B

Given that  300 20 281.91 102.61V V j Vo
a

+= = +

                    360 90 0 360V V j Vo
b

+= = +

                    500 140 383.02 321.39V V j Vo
c

+= − = − −

∴  1 120 360 90 360 210 311.77 180aV j Vo o o
b #+ + += = = − −

 1 240 360 90 360 330 311.77 180a V j Vo o o2
b #+ + += = = −

 1 240 500 140 500 20 469.85 171.01aV j Vo o o
c #+ + += − = − = −

 1 240 500 140 500 100 86.82 492.40a V j Vo o o2
c #+ + += − = = − +

. . . .V V V V j j j
3
1

3
1 281 91 102 61 0 360 383 02 321 39

a a b c0 = + + = + + + − −^ h6 @

      =  . . 33.70 47.07 57.89 126j j V
3
1 10 111 141 22 o+− + = − + =^ h

. . . . .V V aV a V j j j
3
1

3
1 281 91 102 61 311 77 180 86 82 492 402

a a b c1 = + + = + − − − +^ h6 @

      =  . . 38.89 138.34 143.0 106j j V
3
1 116 68 415 01 o+− + = − + =^ h

. . . . .V V a V aV j j j
3
1

3
1 281 91 102 61 311 77 180 469 85 171 012

a a b c2 = + + = + + − + −^ h6 @

      =  . . 354.51 82.80 364.05 13j j V
3
1 1063 53 248 40 o+− = − = −^ h

We know that Va0 = Vb0 = Vc0

∴  The Zero sequence components are

57.89 126V Vo
a0

+=

57.89 126V Vo
b0

+=

57.89 126V Vo
c0

+=

we know that,  Vb1 = a2  Va1    ;      Vc1 = a Va1

 ∴  The positive sequence components are

143.70 106V Vo
a1

+=

1 240 143.70 106 143.70 346V a V Vo o o
b a1 2 #+ + += = =

1 120 143.70 106 143.70 226V a V Vo o o
c a1 1 #+ + += = =
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we know that,  Vb2 = a Va2    ;      Vc2 = a2 Va2

 ∴  The negative sequence components are

364.05 13V Vo
a2

+= −

1 120 364.05 13 364.05 107V a V Vo o o
b a2 2 #+ + += = − =

1 0 . . 22V a V V24 364 05 13 364 05 7o o o2
c a2 2 #1 1 1= = − =

EXAMPLE 1.20

The symmetrical components of phase-a voltage in a 3-phase unbalanced system are 10 180 , 50 0V V V Vo o

a a0 1
+ += =  

and 20 90V Vo
a2

+= . Determine the phase voltages Va, Vb and Vc.

SOLUTION 

 The phase voltages of Va, Vb and Vc are given by the following matrix equations.

V
V
V

a
a

a
a

V
V
V

1
1
1

1 1
2

2

a

b

c

a

a

a

0

1

2

=

R

T

S
S
SS

R

T

S
S
SS

>
V

X

W
W
WW

V

X

W
W
WW

H

∴  V V V V
a a a a0 1 2
= + +

 V V a V a V2

b a a a0 1 2
= + +

 V V a V a V2

c a a a0 1 2
= + +

Given that  10 180 10 0V V jo
a0

+= = − +

                    50 0 50 0V V jo
a1

+= = +

                    20 90 0 20V V jo
a2

+= = +

           ∴  1 120 50 0 50 120 25 43.30aV jo o o
a1 #+ + += = = − +

                1 240 50 0 50 240 25 43.30a V jo o o2
a1 #+ + += = = − −

 1 120 20 90 20 210 17.32 10aV jo o o
a2 #+ + += = = − −

 1 240 20 90 20 330 17.32 10a V jo o o2
a2 #+ + += = = −

10 50 20 40 20 44.72 27V V V V j j Vo
a a a a0 1 2

+= + + = − + + = + =

10 . .V V a V a V j j25 43 30 17 32 102
b a a a0 1 2= + + = − − − − −

     =  52.32 53.30 74.69 134j Vo+− − = −

10 . .V V a V a V j j25 43 30 17 32 102
c a a a0 1 2= + + = − − + + −

     = 17.68 33.3 37.70 118j Vo+− + =
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EXAMPLE 1.21

The Symmetrical components of phase-a faulit current in a 3-phase unbalanced system are 
350 90 , 600 90I A I Ao o

a a0 1
+ += = −  and 250 90I Ao

a2
+= . Determine the phase currents Ia, Ib, and Ic .

SOLUTION

The currents Ia, Ib, and Ic  are given by the following matrix equations.

I
I
I

a
a

a
a

I
I
I

1
1
1

1 1
2

2

a

b

c

a

a

a

0

1

2

=

R

T

S
S
SS

R

T

S
S
SS

>
V

X

W
W
WW

V

X

W
W
WW

H

∴  I I I I
a a a a0 1 2
= + +

 I I a I a I2

b a a a0 1 2
= + +

 I I a I a I2

c a a a0 1 2
= + +

Given that  350 90 0 350I jo
a0

+= = +

                    600 90 0 600I jo
a1

+= − = −

                    250 90 0 250I jo
a2

+= = +

           ∴  1 120 600 90 600 30 519.62 300aI jo o o
a1 #+ + += − = = +

                1 240 600 90 600 150 519.62 300a I jo o o2
a1 #+ + += − = = − +

 1 120 250 90 250 210 216.51 125aI jo o o
a2 #+ + += = = − −

   1 240 250 90 250 330 216.51 125a I jo o o2
a2 #+ + += = = −

I I I I j j j350 600 250 0
a a a a0 1 2= + + = − + =

. .I I a I a I j j j350 519 62 300 216 51 1252
b a a a0 1 2= + + = − + − −

     =  736.13 525 904.16 145j Ao+− + =

. .I I a I a I j j j350 519 62 300 216 51 1252
c a a a0 1 2= + + = + + + −

      = 736.13 525 904.16 35j Ao++ =

EXAMPLE 1.22

Determine the symmetrical components of the unbalanced three phase currents 10 0 , 12 230I A I Ao o
a a0 1

+ += =  

and 10 130I Ao
a2

+= .

SOLUTION

The symmetrical components of Ia given by the following matrix equations.
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I
I
I

a
a

a
a

I
I
I

3
1

1
1
1

1 1

2

2
a

b

c

a

b

c

=

R

T

S
S
SS

R

T

S
S
SS

>
V

X

W
W
WW

V

X

W
W
WW

H

∴  I I I I
3
1

a a b c0
= + +^ h

 I I a I a I
3
1 2

a a b c1
= + +` j

 I I a I a I
3
1 2

a a b c2
= + +` j

Given that  10 0 10 0I jo
a

+= = +

                    12 230 7.71 9.19I jo
b

+= = − −

                    10 130 6.43 7.66I jo
c

+= = − +

            ∴  1 120 12 230 12 350 11.82 2.08aI jo o o
b #+ + += = = −

                1 240 12 470 12 110 4.10 11.28a I jo o o2
b #+ + += = = − +

 1 120 10 130 10 250 3.42 9.40a I jo o o
c #+ + += = = − −

   1 240 10 130 10 370 10 10 9.85 1.74a I jo o o o2
c #+ + + += = = = +

. . . .I I I I j j
3
1

3
1 10 7 71 9 19 6 43 7 66

a a b c0 = + + = − − − +^ ^h h

     =  . . 1.38 0.51 1.47 160j j
3
1 4 14 1 53 o+− − = − − = −^ h

. . . .I I a I a I j j
3
1

3
1 10 11 82 2 08 9 85 1 742

a a b c1 = + + = + − + +^ ^h h

     =  . . 10.56 0.11 10.56 0.6 10.56 0j j
3
1 31 67 0 34 o o+ +c− = − = −^ h

. . . .I I a I a I j j
3
1

3
1 10 4 10 11 28 3 42 9 402

a a b c2 = + + = − + − −^ ^h h

     = . . 0.83 0.63 1.04 37j j
3
1 2 48 1 88 o++ = + =^ h

We know that Ia0 = Ib0 = Ic0

∴  The Zero sequence components are

1.47 160I Ao
a0

+= −

1.47 160I Ao
b0

+= −

1.47 160I Ao
c0

+= −

we know that,  Ib1 = a2  Ia1    ;      Ic1 = a Ia1

 ∴  The positive sequence components are

10.56 0I Ao
a1

+=

1 240 10.56 0 10.56 240I a I Ao o o2
b a1 1 #+ + += = =
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1 120 10.56 0 10.56 120I a I Ao o o
c a1 1 #+ + += = =

we know that,  Ib2 = a Ia2    ;      Ic2 = a2 Ia2

 ∴  The negative sequence components are

1.04 37I Ao
a2

+=

1 120 1.04 37 1.04 157I a I Ao o o
b a2 2 #+ + += = =

1 240 1.04 37 1.04 277I a I Ao o o2
c a2 2 #+ + += = =

1.8  SEQUENCE IMPEDANCE AND SEQUENCE NETWORKS

The sequence impedance are impedance offered by the circuit elements (or power system components) 
to positive, negative, and zero sequence currents. In any element of a circuit, the voltage drop caused by 
current of a certain sequence depends on the impedance of the element to that sequence current.

The impedance of a circuit element when positive sequence currents alone are flowing is called the 
positive sequence impedance. Similarly, when only negative sequence currents are present, the impedance 
is called negative sequence impedance. When only zero sequence currents are present the impedance is 
called zero sequence impedance. The impedance of any element of a balanced circuit to current of one 
sequence may be different from impedance to current of another sequence.

The single phase equivalent circuit of power system (impedance or reactance diagram) formed 
using the impedances of any one sequence only is called the sequence network for that particular sequence. 
Therefore the impedance or reactance diagram formedusing positive sequence impedance is called positive 
sequence network. Similarly the impedance or reactance diagram formed using negative sequence impedance 
is called negative sequence network. The impedance or reactance diagram formed using zero sequence 
impedance is called zero sequence network.

The sequence impedances and networkes are useful in the analysis of unsymmetrical faults in the 
power system. In unsymmetrical fault analysis of a power system, the positive, negative and zero sequence 
networks of the system are determined and then they are interconnected to represent the various unbalanced 
fault conditions. Each sequence network includes the generated emfs and impedances of like sequence. 
Also, the sequence network carries only the current of like sequence.

Sequence Impedances and networks of  generator 

Consider the three phase equivalent circuit of generator shown in fig 1.15. The neutral of the generator 
is grounded through a reactance, Zn.

When the generator is delivering a balanced load or under symmetrical fault the neutral current is 
zero.But when the generator is delivering an unbalanced load or during unsymmetrical faults the neutral 
current flows through Zn.      

The generator is designed to supply balanced three phase voltages.Therefore the generated emfs 
are of positive sequence only.
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Let   Ea,Eb,Ec =  Generated emf per phase in phase a, b and  c respectively. (Positive sequence emf)

                  Z1    =  Positive sequence impedance per phase of generator.

                  Z2    =  Negative sequence impedance per phase of generator.

                  Zg0  =  Zero sequence impedance per phase of generator.

                  Zn     = Neutral reactance.

                    Z0    = Total zero sequence impedance per phase of zero-sequence network of generator.

The positive sequence network consists of an emf in series with positive sequence impedance of the 
generator. The negative and zero sequence network will not have any sources but include their respective  
sequence impedance. The positive, negative and zero sequence current paths are shown in fig 1.16. The 
positive, negative and zero sequence networks of the generator are shown in fig 1.17.

Note : the positive and negative sequence currents are balanced currents and so they will not pass 
through neutral reactance.

The reactances in positive sequence network is subtransient, transient or synchronous reactance 
depending on whether subtransient, transient or steady state conditions are being studied. Under no load 
condition the emf Ea is the induced emf per phase. Under load or fault condition Ea is replaced by 'Ea  for 
transient state and Ea is replaced by "Eg  for subtransient state.
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On examining the zero sequence current paths (refer fig 1.16-c) we can say that the current through 
neutral reactance is 3 Ia0. The zero-sequence voltage drop from point-a to ground is 3 I Z I Zao n a g0 0

− − .
The zero sequence network is a single phase network and assumed to carry only the zero sequence 

current of one phase. Hence the zero sequence current of one phase, must have an impedance of 3 Zn + Z g0.

tan ce
3Total zero sequence impedance per phase

of a generator grounded through reac
Z Z Z

n g0 0

` = +3                                           ......(1.114)

With reference to fig 1.17, the equations for the phase-a component voltage are,

V E I Za a a1 1 1
= −                                                                                                              ......(1.115)

V I Z
a a2 2 2= −                                                                                                                 ......(1.116)

V I Za a3 0 0= −                                                                                                                 ......(1.117)

The zero sequence network of generator when the neutral is solidly grounded (i.e. directly grounded) 
and when the neutral is ungrounded are shown in fig 1.18 and fig 1.19 respectively. In these cases there is 
no change in positive and negative sequence network.

Note : The sequence networks of synchronous motor is same as that of generator when the directions 
of currents in the sequence network of generator are reversed.

Sequence impedance and networks of  transmission lines

The impedance per phase of transmission line for balanced currents in independent of phase sequence. 
This is due to the symmetry of transposed transmission lines. Therefore, the impedances offered by the 
transposed transmission lines for positive and negative sequence currents are identical.

The zero sequence current is identical (both in magnitude and phase) in each phase conductor and 
returns through the ground, through overhead ground wires or through both. The ground wires being 
grounded at several towers, the return currents in the ground wire may not be uniform along the entire 
length of transmission line. But for positive or negative sequence currents there is no return current and 
they have a phase difference of 120o . Therefore the magnetic field due to zero sequence current is different 
from the magnetic field caused by either positive or negative sequence current. Due to the difference in the 
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magnetic field, the zero sequence inductive reactance is 2 to 3.5. times the positive sequence reactance.

Let,   Z1  =  Positive sequence impedance of transmission line

         Z2  =  Negative sequence impedance of transmission line

         Z3  =  Zero sequence impedance of transmission line  

The positive, negative and zero sequence impedances of transmission lines are represented as a 
series impedance in their respective sequence networks as shown in fig 1.20.

Sequence impedances and networks of  transformer 

 When the applied voltage is balanced, the positive and negative sequence of linear, symmetrical, 
static devices are identical. Therefore in a transformer the positive and negative sequence impedances 
are identical. Eventhough the zero sequence impedance may slightly differ from positive and negative 
sequence impedance, it is normal practice to assume the zero sequence impedance as equal to positive or 
negative  sequence impedance. [For all types of transformers the series impedance of all sequences are 
assumed equal].

Note : When the neutral of star connection is grounded through reactance Zn then 3Zn should be 
added to zero sequence impedance of transformer to get the total zero sequence impedance.

Let   Z1  =  Positive sequence impedance of transformer

        Z2   =  Negative sequence impedance of transformer

        Z3   = Zero sequence impedance of transformer

The positive and negative sequence impedances of transformer are represented as a series impedance 
in their respective sequence networks as shown in fig 1.21.
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Fig 1.20 : Positive, Negative and Zero sequence networks of transmission line
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The zero-sequence network of the transformer depends on the type of connections ( Y or 3) of the 
primary and secondary windings and also on the grounding of neutral in Y connection.

The following general observations can be made for zero sequence currents in transformers.

1.  When magnetizing current is neglected, the primary winding will carry current only if there is a 
current flow on the secondary winding. Therefore the zero sequence current can flow in the primary winding 
of a transformer only if there is a path for zero sequence current in secondary winding or vice-versa.

2.   If the neutral point in the Y connected winding is not grounded then there is no path zero sequence 
current in star connected winding.

3.  The zero sequence current flows in the star connected winding and in the lines connected to the 
winding only when the neutral point is grounded.

4.  The zero sequence current can circulate in the delta connected winding but the zero sequence 
current cannot flow through the lines connected to the delta connected winding.

Based on the above observations the zero sequence network of 3-phase transformer can be obtained 
for any configuration. The zero sequence network for nine possible configuration are presented in table-1.3. 
The arrows on the windings, indicate path for zero sequence current and the absence of arrows indicate 
that there is no path for zero sequence currents.
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Fig 1.21 : Positive and Negative sequence networks of transformer
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Table-1.3 : Zero Sequence network of  three phase transformer

Configuration                                   Winding Connection                                         Zero Sequence
                                                                 Diagram                                                                  Network

M N

M N

M N

M N

M N

NM

NM

N
M

M N

M N

M N

M N

M N

Reference bus

M NZ0

Reference bus

M NZ0

Reference bus

M NZ0

Reference bus

M NZ0

Reference bus

M NZ0

Reference bus

M NZ0

Reference bus

M NZ0

M
N
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Sequence impedances and networks of  loads

In balanced Y or T connected loads the positive, negative and zero sequence impedances are equal. 
When the neutral point of star connected loads is grounded through a reactance Zn the 3Zn is added to the 
zero sequence impedance of load to get the total zero sequence impedance of load.

Let    ZL1  =  Positive sequence impedance of load 

         ZL2  =   Negative sequence impedance of load

         ZL0  =  Zero sequence impedance of load   

The positive and negative sequence impedances of load are represented as a shunt impedance in 
their respective sequence networks as shown in fig 1.22.

The zero sequence network of the 3-phase load depends on the type of connection, i.e., Y or T 
connection. The zero sequence current will flow in network only if a return path exists for it. The zero 
sequence network for various types of loads are shown in table-4.
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Table - 1.4 : Zero Sequence networks of  loads

Connection Diagram of load                                                             Zero sequence network

EXAMPLE 1.23
Draw the positive, negative and zero sequence reactance diagram of the power system shown in fig 1.23.1.

SOLUTION
The positive, negative and zero sequence reactance diagram (networks) of the power system are shown in fig 

(1.23.2), (1.23.3) and (1.23.4) respectively.

Let,    XG,1   =  Positive sequence reactance of generator G

          XM,1   = Positive sequence reactance of motor M

          XT1,1  = Positive sequence reactance of Transformer T1

          XT2,1  = Positive sequence reactance of Transformer T2

          XT3,1  = Positive sequence reactance of Transformer T3

          XTL,1  = Positive sequence reactance of Transmission line-1
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          XTL,1 = Positive sequence reactance of Transmission line-2

EXAMPLE 1.24
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Fig 1.23.2 : Positive sequence reactance diagram of power system shown in fig 1.23.1
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For the power system shown in fig 1.24.1, draw the positive, negative and zero sequence reactance diagrams.

SOLUTION         

The positive, negative and zero sequence reactance diagram (networks) of the power system are shown in fig 
(1.24.2), (1.24.3) and (1.24.4) respectively.
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Fig 1.24.2 : Positive sequence reactance diagram of power system shown in fig 1.24.1
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EXAMPLE 1.25

Determine the positive, negative and zero sequencce networks for the system shown in fig 1.25.1. Assume 
zero sequence reactances for the generator and synchronous motors as 0.06 p.u. Current limiting reactors of 2.5 Ω 
are connected in the neutral of the generator and motor No.2. The zero sequence reactance of the transmission line 
is j300 Ω.

SOLUTION  

Let us choose the generator ratings as new base values for entire system.

Base megavoltampere, MVAb,new = 25 MVA

Base kilovolt, kVb,new = 11 kV

Sequence reactances of Generator G

Since the generator rating and the new base values are same, the generator p.u. reactances does not change. 
Also for generator the positive and negative sequence reactances are same.

∴ Positive sequence reactance of generator, XG,1 = 10% = 10/100 = 0.1 p.u.

Negative sequence reactance of generator, XG,2 = 0.1 p.u.

Zero sequence reactance of generator, XG,0 = 0.06 p.u.

, 4.84Base impedance Z
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kV
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2
2

,

,

b
b new

b new Ω= = =
^ h

. .
.
. . . .

tan
tanp u value of generator

neutral reac ce
X
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Actual Neutral reac ce p u
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2 5 0 517

GN
= = =3

Sequence reactances of Transformer T1

 
. . tanNew p u reac ce
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k V
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,
,

,

,

,
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1

# #= e o3

Here,  Xpu,old = 10% = 0.1,            kVb,old = 10.8 kV,         MVAb,old = 30 MVA

           kVb,new = 11 kV,                 MVAb,new = 25 MVA

 
. .

. . . . .
tanNew p u reac ce

of transformer T
p u0 1

11
10 8

30
25 0 08

2

1

# #= =` `j j3

In transformer the specified reactance is positive sequence reactance. Also we assume that the positive, 
negative and zero sequence reactances of the transformer are equal.

 ∴ Positive sequence reactance of transformer, T1, XT1,1 = 0.08 p.u.

Negative sequence reactance of transformer, T1, XT1,2 = 0.08 p.u.
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Zero sequence reactance of transformer, T1, XT1,0 = 0.08 p.u.

Sequence reactances of Transmission line

 The base kV on HT side
of transformer T

Base kV on LT side
LT voltage rating
HT voltage rating

1

#=3

                                            = 
.

. kV11
10 8
121 123 24# =

  Now,   kVb,new =  123.24 kV,  

  ,
.

.Base impedance Z
MVA
kV

30
123 24

506 27
2 2

,

,

b
b new

b new Ω= = =
^ ^h h            

 . .
.

0. . .tan tanp u reac ce of
transmission line Base impedance

Actual reac ce p u
506 27
100 198= = =3

The specified reactance in single line diagram is positive sequence reactance. Also the negative sequence 
reactance of a transmission line is same as that of positive sequence reactance.

 ∴ Positive sequence reactance of transmission line, XTL,1 = 0.198 p.u.

     Negative sequence reactance of transmission line, XTL,2 = 0.198 p.u.

 . .
.

0. . .
tan

tanp u value of zero sequence
reac ce of transmission line

X
Base impedance

Zero sequence reac ce in p u
506 27
300 593

,TL 0

Ω= = =3

Sequence reactances of Transmission line T2

The ratings and winding connections of transformer T1 and T2 are identical and so the sequence reactances 
of T1 and T2 are same.

Positive sequence reactance of transformer, T1, XT1,1 = 0.08 p.u.

Negative sequence reactance of transformer, T1, XT1,2 = 0.08 p.u.

Zero sequence reactance of transformer, T1, XT1,0 = 0.08 p.u.

Sequence reactances of Synchronous motor M1

 Base kV on LT side
of transformer T

Base kV on HT side
HT voltage rating
LT voltage rating
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                                            = 1 . . 1 kV23 24
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   . . tanNew p u reac ce
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,
,

,
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1 0

# #= e o3

Here,  Xpu,old = 25% = 0.25,            kVb,old = 10 kV,         MVAb,old = 15 MVA

           kVb,new = 11 kV,                 MVAb,new = 25 MVA

 . . 0. 0. . .tanNew p u reac ce
of motor M

p u25
11
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15
25 344
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The reactance specified in single line diagram is positive sequence reactance. Also the negative sequence 
reactance of synchronous motor is same as that of positive sequence reactance.

 ∴ Positive sequence reactance of motor, M1, XM1,1 = 0.344 p.u.

     Negative sequence reactance of motor, M1, XM1,2 = 0.344 p.u.
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  Here,  Xpu,old = 25% = 0.25,            kVb,old = 10 kV,         MVAb,old = 7.5 MVA

            kVb,new = 11 kV,                 MVAb,new = 25 MVA

 cetan. . 0.25
.

0.689 . .New p u reac
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The reactance specified in single line diagram is positive sequence reactance. Also the negative sequence 
reactance of synchronous motor is same as that of positive sequence reactance.

 ∴ Positive sequence reactance of motor, M2, XM2,1 = 0.689 p.u.

     Negative sequence reactance of motor, M2, XM2,2 = 0.689 p.u.
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Fig 1.25.2 : Positive sequence reactance diagramof the power system shown in fig 1.25.1
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Negative Sequence network

Zero Sequence network

1.9  SHORT-ANSWER QUESTIONS

Q1.1     What is single line diagram?

      A single line diagram is diagrammatic representation of power system in which the components are represented    
              by their symbols and the interconnection between them are shown by a single straight line (eventhrough the  
               system  is 3-phase system). The ratings and the impedances of the components are also marked on the single  
             line diagram.

Q1.2     What are the components of power system?

         The components of power system are Generators, Power Transformers, Transmission lines, Substation  
              Transformers, Distribution Transformers and Loads.

Q1.3    Draw the symbols used to represent variuos components in a power system.

             The  symbols used to represent various components are shown in the following table.
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Q

j0.08 j0.198 j0.08

j0.1
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Reference bus
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Fig 1.25.3 : Negative sequence reactance diagram of the power system shown in fig 1.25.1

j0.689

3xj0.517
=j1.551

F P

3XGN

D

XT1,0

Fig 1.25.4 : Zero sequence reactance diagram of power system shown in fig 1.25.1
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Q1.4   Define per unit value.

           The  per unit value of any quantity is defined as the ratio of the actual value of the quantity to the base value  
           expressed as a dcimal. The base value is an arbitary chosen value of the quantity.

                                       Per unit value = Base value
Actual value

Q1.5   What are the quantities whose base values are required to represent the power system by reactance     
            diagram?

       The base values of Voltage, Current, Power and impedance are required to represent the power          
        system by reactance diagram. Selection of base values for any two of them determines the base values     
        of the remaining two. Usually the base values of voltage and power are chosen in kilovolt and kVA    
            or MVA respectively. The base values of current and impedance are calculated using the chosen bases.

Q1.6     What is the need for base values?

        The components or various sections of power system may operate at different voltage and power     
         levels. It will be convenient for analysis of power system if the voltage, power, current and impedance  
         ratings of components of power system are expressed with reference to a common value called base  
         value. Hence for analysis purpose a base value is chosen for voltage, power, current and impedance.  
         Then all the voltage, power, current and impedance ratings of the components are expressed as a  
              percent or per unit of the base value. 

Q1.7   Write the equation for converting the p.u. impedance expressed in one base to another?

                        Z Z kV
kV

MVA
MVA2

, ,
,

,

,

,

pu new pu old
b new

b old

b old

b new
# #= e o

Q1.8   What are the advantages of per-unit computations?

        (i)   Manufacturers usually specify the impedance of device or machine in per unit on the base of the  
                     name plate rating.

Machine or rotating armature 

Two-winding power transformer

P o w e r  c i r c u i t  b r e a k e r,  
(oil/gas filled)

Three-winding power 
transformer

Fuse

Current transformer

Potential transformer or Ammeter and voltmeter A V

Air circuit breaker

Three-phase, three-wire delta 
connection

Three-phase star,  neutral 
ungrounded

Three-phase star,  neutral 
grounded
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        (ii)  The  p.u values of widely different rating machines lie within a narrow range, eventhough the  
                     ohmic values has a very large range. 

        (iii)  The p.u. impedance of circuit element connected by transformers expressed on a proper base will  
                     be same if it is referred to either side of a transformer.

        (iv)  The p.u. impedance of a 3-phase transformer is independent of the type of winding connection  
                      (Y orT)

Q1.9    Draw the equivalent circuit of a 3-phase generator.

Xs  =  Synchonous reactance per phase

Ra  =  Armature resistance per phase

Eg  = Inducted emf per phase

Ig   = Current per phase

Q1.10  How the loads are represented in reactance or impedance diagram?

            The resistive and reactive loads can be represented by any one of the following representation 

            (i)   Constant power representation 

                    Load power, S = P + j Q

            (ii)   Constant current representation 

                    Load current, I V
P Q2 2

+δ θ= + −

            (iii)   Constant impedance representation

                      Load current, Z P jQ
V 2

=
−

Q1.11   Draw the single phase equivalent circuit of  a three-winding transformer.

�

�
E

g

jX
s

R
a

I
g

Q1.11 : Single phase equivalnet circuit of three winding transformer

S

↓

↓

↓

VP

+

−

ZP
A

Z’s

Z’t

↓

V’t

+

− ↓

↓

V’s

+

−O
common

123
123

123 T
P
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Q1.12   A Y-T, 3-phase transformer bank is formed using three numbers of 1-phase transformers each rated    
           at 300 kVA, 127/13.2 kV. what is the kVA and kV rating of the 3-phase bank?

        SOLUTION 

              kVA  rating of 3-phase transformer                                  = 3 × 300 = 900 kVA

           Line voltage of Y-connected winding                               = kV3 127 220# =

           Line voltage of Y-connected winding                               = . kV13 2

           ∴ The ratio of line voltage of 3-phase transformer bank  = . kV Y220 13 2 T^ h

Q1.13   If the reactance in ohms is 15 ohms, find the p.u. value forra base of 15 kVA and 10 kVA.

          SOLUTION 

                  , .Base impedance Z MVA
kV

kVA
kV
1000 15 1000

10 6666 67
2 2 2

b Ω= = = =^ ^h h

                   . . . . . .tan tanp u value of reac ce Base impedance
reac ce in ohms p u6666 67

15 0 0022= = =

Q1.14  A generator rated at 30 MVA, 11 kV has a reactance of  20%. Calculate its p.u. reactances for a base   
           of 50 MVA and 10 kV.

         SOLUTION 

                  . . tanNew p u reac ce of generator X k V
kV

MVA
MVA2

,
,

,

,

,

pu old
b new

b old

b old

b new
# #= e o

                  Here,  % . . . ; ,X p u KV kV MVA MVA20 0 2 11 30, , ,pu old b old b old
= = = =

                  ;k V kV MVA MVA10 50
, ,b new b new

= =

                  ∴ . . . . . .tanNew p u reac ce of generator p u0 2 10
11

30
50 0 403

2

# #= =` j

Q1.15   A Y-connected generator rated at 300 MVA, 33 kV, has a reactance of 1.24  p.u. Find the ohmic value   
           of reactance.

          SOLUTION 

               , . /Base impedance Z MVA
kV phase300

33 3 63
2 2

b Ω= = = =^ h

               we know that, . . tan tanp u reac ce Base impedance
Actual reac ce=

               ∴  Reactance of generator = p.u. reactance ×  Zb = 1.24 × 3.63 = 4.5012 Ω / phase  
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Q1.16   The base kV and base MVA of a 3-phase transmission line is 33 kV and 10 MVA respectively. Calculate    
            the base current and base impedance.

       SOLUTION 

              Base current, .I
kV

k VA
kV

MVA
A

3 3
1000

3 33
10 1000 174 95b

b

b b

b
#

#

#= = = =

              Base impedance, 108.9 /Z MVA
kV

phase10
332 2

b
b

b Ω= = =^ h

Q1.17   How the induction motor is represented in reactance diagram?

                  For estimation of steady statee fault current, the induction motor is neglected. But for estimation of fault current  
                 immediately after the fault (i.e., to estimate sub-transient fault currents), the induction motor can be represented  
           by a source in series with reactance. The value of the source is the induced emf per phase and the value of  
             reactance is total reactance of induction motor per phase reffered to stator.

Q1.18    What is impedance and reactance diagram?

                 The impedance diagram is the equivalent circuit of power system in which the various components of power  
          system are represented by their approximate or simplified equivalent circuits. The impedance diagram is    
          used for load flow studies. The reactance diagram is the simplified equivalent circuit of power system in  
                   which the various components are represented by their reactances. The reactance diagram can be obtained from    
           impedance diagram if all the resistive components are neglected. The reactance diagram is used for fault  
              calculations.

Q1.19    What are the approximations made in impedance diagram?

               The following approximations are made while forming impedance diagram.

               (i)  The neutral reactances are neglected.

               (ii)  The shunt branches in equivalent circuit of induction motor are neglected.

Q1.20   What are the factors that need to be omitted for an impedance diagram to reduce it to a reactance  
             diagram?          (or)

             what are the approximations made in reactance diagram?

             The following approximations are made in reactance diagram

             (i)  The neutral reactances are neglected.

            (ii)  Shunt branches in the eguivalent circuits of transformer are neglected.

            (iii)  The resistnces are neglected.

            (iv)   All static loads and induction motors are neglected.

            (v)  The capacitance of the transmission lines are neglected.

Q1.21  Give equations for transforming base kV on LV side to HV side of transformer and vice-versa.

             Base kV on HT side Base kV on LT side LT voltage rating
HT voltage rating

#=

             Base kV on HT side Base kV on HT side HT voltage rating
LT voltage rating

#=
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Q1.22   For the power system shown in fig Q22, by taking generator rating as base values, specify the base  
            values of the transmission line and motor circuit.

             The transmission line and motor circuit

        

        SOLUTION 

         Generator circuit (selected base)

                     Base kilovolt = 25 kV

                     Base megavoltampere = 40 MVA

                                                                                              

             Base kilovolt = . kV25 33
220 166 67# =                        Base kilovolt = . . kV166 67 220

11 8 33# =     

             Base megavoltampere = 40 MVA                                  Base megavoltampere = 40 MVA

Q1.23   What is a bus?

         The meeting point of various components in a power system is called a bus. The bus is a conductor  
         made of copper or aluminium having negligible resistance. The buses are considered as points of  
              constant voltage in power system.

Q1.24   What is bus admittance matrix?

         The matrix consisting of the self and mutual admittances of the network of a power system is called      
         bus admittance matrix. It is given by the admittance matrix Y in the node basis equation of a power 
              system and it is denoted as Ybus, The bus admittance matrix is symmetrical. 

Q1.25   Name the diagonal and off-diagonal elements of bus admittance matrix.

        The diagonal elements of bus admittance matrix are called self admittance of the buses and off- 
             diagonal elements are called mutual admittances of the buses. 

Q1.26  Write the equation to find the elements of new bus admittance matrix after eliminating nth row and   
            column in n × n bus admittance matrix.

             The elements Yjk of new bus admittance matrix is given by 

                  , , ......, , , , ......,Y Y Y
Y Y

for j n and k n1 2 3 1 1 2 3 1
,jk new jk

nn

jn nk= − = − = −^ ^h h

             where Yjk, Yjn ,Ynk and Ynn are elements of original or given bus admittance matrix of order (n × n).

Transmission line     Motor Circuit    

Transmission line
G M40 MVA

25 kV

25 MVA

10 kV

33/220 kV

35 MVA

220/11 kV

30 MVA Fig Q1.22
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Q1.27  From the bus admittance matrix for the system whose reactance diagram is shown in fig Q27.

       SOLUTION 

              . . .

. .

. .

. . .
Y j j j

j j

j j

j j j

0 1
1

0 25
1

0 5
1

0 25
1

0 5
1

0 25
1

0 5
1

0 25
1

0 5
1

0 2
1bus

=
+ +

− +

− +

+ +c

c

m

m
R

T

S
S
SS

V

X

W
W
WW

                    =
j
j

j
j

16
6

6
11

−
−

= G

Q1.28   What is bus impedance matrix?
         The matrix consisting of driving point impedances and transfer impedances of the network of a power    
         system is called bus impedance matrix. It is given by the inverse of bus admidance matrix and it is  
             denoted as Zbus. The bus impedance matrix is symmetrical.

Q1.29  Name the diagonal elements and of  diagonal elements of bus impedance matrix.
        The diagonal elements of bus impedance matrix are called driving point impedances of the buses and  
            off-diagonal elements of bus impedance matrix are called transfer impedances of the buses.

Q1.30  What are the methods available for forming bus impedance matrix?
             The following two methods are available for forming bus impedance matrix.
             Method 1  :    From the buis admittance matrix and then take its inverse to get bus impedance matrix
         Method 2 :  Directly form the bus impedance matrix from the reactance diagram. This method utilizes 
                      the techniques of modifications of exixting bus impedance matrix due to addition of  
                                    new bus.

Q1.31   Write the four ways of adding an impedance to an existing system so as to modify bus impedance matrix.

             To modify a bus impedance matrix, a branch of impedance Zb can be added to origial system in the following    
            four different ways.
           Case 1 :  Adding a branch of impedance Zb from a new bus-p to the reference bus.
           Case 2 :  Adding a branch of impedance Zb from a new bus-p to an reference bus.
           Case 3 :  Adding a branch of impedance Zb from a new bus-q to the reference bus.
           Case 4 :  Adding a branch of impedance Zb between two existing buses h and q.

Q1.32   How the Zbus is modified when a branch of impedance Zb is added from a new bus-p to the reference 
            bus?
                 When a branch of impedance Zb is added from a new bus-p to the reference bus, the order of the bus impedance 
             matrix increases by one.
              Let the original bus impedance matrix have an order of n and so the new bus impedance matrix have an order  
             of (n + 1). The first n × n submatrix of new bus impedance matrix. The elements of  (n + 1)th column and row 
             are all zeros except the diagonal. The (n + 1)th diagonal elementsis the added branch impedance Zb. 

Q1.33  How the Zbus is modified when a branch of impedance Zb is added from a new bus-p to the existing  
            bus-q?

                When a branch of impedance Zb is added from a new bus-p to the existing bus-q the order of the bus impedance  
            matrix increases by one.

�

�

�

�

Reference bus

j0.1

j0.25

j0.5

j0.2

1 2

Fig Q1.27
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             Let the original bus impedance matrix have an order of n and so the new bus impedance matrix have an order  
               of (n + 1). The first n × n submatrix of new bus impedance matrix. The elements of (n + 1)th row are the elements 
           of qth row. The ( n + 1)th diagonal element is given by sum of Zqq and Zb.  

Q1.34  Determine Zbus when Ybus = j
j

j
j

1
2

2
5

−
−

= G

       SOLUTION 

                   bus min
int

Deter e of Y
Adjo of Y

Z Y 1
bus

bus

bus= =-

                   Determinant of Y j
j

j
j

j j j1
2

2
1

1 5 2 5 4 12

bus
=
−

−
= − − − = − + =−^ ^ ^h h h

                   Adjoint of 
j
j

j
j

j
j

j
j

Y 5
2

2
1

5
2

2
1

T

bus
=
−
−

−
−

=
−
−

−
−

= =G G

                               Z j
j

j
j

j
j
j
j

1 5
2

2
1

5
2
2
1bus

= −
−
−

−
−

== =G G

Q1.35    What are symmetrical components?

                  An unbalanced system of N related vectors can be resolved into N systems of balanced vectors. The N-sets of  
                   balanced vectors are called symmetrical components. Each set consist of N-vectoprs which are equal in length  
              and having equal phase.

Q1.36   Write the symmetrical components of three phase system.
                  In a 3-phase system, the three unbalanced vectors (either current or voltage vectors) can be resolved into three  
             balanced system of vectors. They are

             1.   Positive sequence components.

             2.   Negative sequence components.

             3.   Zero sequence components.

Q1.37   What are positive sequence components?

        The positive sequence components of a 3-phase unbalanced vectors consists of three vectors of equal   
        magnitude, displaced fron each other by 120o in phase and having the same phase sequence as the 
            original vectors.  

Q1.38   What are the negative sequence components?
         The negative sequence components of a 3-phase unbalanced vectors consists of three vectors of equal  
         magnitude displaced from each other by 120o in phase and having the phase sequence opposite to that 
              of the original vectors.     

Q1.39   What are zero sequence components?
        The zero sequence components of a 3-phase unbalanced vectors consists of 3-vectors of equal  
             magnitude and with zero phase displacement from each other.

Q1.40   Express the value of the operator “a” and “a2” in both polar and rectangular form.
                   a polar form1 120o1= −
                       = gulartan0.5 0.866 Rej c form− + −
                 a polar form1 240o2 1= −
                      = gulartan formc0.5 0.866 Rej− − −
             Note :  a2 is conjugate of a.
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Q1.41   Prove that 1 + a + a2 = 0.

          SOLUTION  
                         1 120 0.5 0.866a jo+= = − +

                       1 240 0.5 0.866a jo2 += = − −

                    ∴ . . . .a a j j1 1 0 5 0 866 0 5 0 866 02+ + = − + − − =

Q1.42   Express the unbalanced voltages Va,  Vb and Vc in terms of semmetrical components Va1, Va2, and Va0.
             Ans :

                    

V V V V
V V a V aV
V V a V a V

2

2

a a a a

b a a a

c a a a

0 1 2

0 1 2

0 1 2

= + +

= + +

= + +

           or          
V
V
V

a
a
a
a

V
V
V

1
1
1

1 1
2 2

a

b

c

a

a

a

0

1

2

=

R

T

S
S
SS

> >
V

X

W
W
WW

H H

Q1.43   Express the unbalanced voltages Va0,  Va1 and Va2 in terms of semmetrical components Va, Va, and Vc.

                  

V V V V

V V a V a V

V V a V a V

3
1

3
1

3
1

2

2

a a b c

a a b c

a a b c

0

1

2

= + +

= + +

= + +

^

^

^

h

h

h

           or       
V
V
V

a
a
a
a

V
V
V

3
1
1
1
1

1 1

2

2
a

b

c

a

b

c

0

0

0

=

R

T

S
S
SS

> >
V

X

W
W
WW

H H

Q1.44  If  12 0 , 10 90 10 90 .I A I A and I Ao o o

a b c+ + += = = −  Find the zero sequence current.

       SOLUTION 

             The zero sequence current, I I I I3
1

a a b c0
= + +^ h

                                                        = 3
1 12 0 10 90 10 90o o o+ + ++ + −^ h

                                                        = j j3
1 12 10 10 3

12 4+ − = =^ h

                                              ∴ 4 0I Ao
a0

+=

Q1.45   If  18 0 , 10 30 10 30 .I A I A and I Ao o o

a b c+ + += = − =  Find the positive sequence current.

      SOLUTION 

             The positive sequence current, I I a I a I3
1 2

a a b c1
= + +^ h

                                                                = 3
1 18 0 1 120 10 30 1 240 10 30o o o o o

# #+ + + + ++ − +^ ^h h6 @

                                                                =  j j3
1 18 10 10 3

18 6+ − = =^ h

                                                           ∴ 6 0I o

a0
+=
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Q1.46   What are the sequence impedance and sequence networks?

         The sequence impedances are the impedances offered by the devices or components for the like  
              sequence components of the current.

         The single phase equivalent of a circuit of a power system consisting of impedances to current of 
               any one sequence only is called sequence network.

Q1.47   What is meant by positive, negative and zero sequence reactance diagram?

        The reactance diagram of power system, when formed using positive, negative and zero sequence  
             component currents are called positive, negative and zero sequence impedances respectively.

Q1.48   What is meant by positive, negative and zero sequence reactance diagram?

        The reactance diagram of a power system, when formed using positive, negative or zero sequence  
             reactances are called positive, negative and zero sequence reactance diagram respectively.

Q1.49  Draw the zero sequence network of a generator when the neutralo is grounded and when it is  
             ungrounded?

Q1.50     Draw the zero sequence network of Y/T with neutral of star grounded and 3 T

Z0

Reference bus

Fig a : Zero sequence network of Y/
transformer with neutral of Y grounded

�

Z0

Reference bus

Fig b : Zero sequence

network of / transformer� �

�

�

�

�

Reference bus

Z
g0

I
a0

I Z
a0 0

V
a0

Fig a: Neutral is
solidly grounded

�

�

�

�

Reference bus

Z
g0

I
a0

I Z
a0 g0

V
a0

Fig b: Neutral is grounded
through reactance

�

�

I 3Z
a0 n

3Z
n

�

�

Reference bus

Z
g0

I =0
a0

V
a0

Fig c: Neutral is
ungrounded

Fig Q1.49 : Zero sequence networks of generator
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1.10   EXRCISES

I.  State whether the following statements are TRUE / FALSE

1.    A balanced 3-phase system is always analysed on per phase basis.

2.    The base values for power, voltage, current and impedance can be selected independently.

3.    The impedance of a device or component is usually specified in p.u. on the base of name plate rating.

4.    In 3-phase system the base kV is phase value and base kVA is per phase kVA.

5.   In forming reactance/ impedance diagram the base kVA is same for every section but the base kV  
       depends on through it.

6.    The p.u. impedance of a transformer depends on the Y or T  connection of the winding.

7.    In three winding transformer transformer, the three windings may have different kVA rating.

8.    In impedance and reactance diagram the neutral impedance has to be included because the return  
       current flows through it.

9.     In reactance diagram the induction motors and reactance are neglected.

10.  If Ybus is symmetrical then corresponding Zbus is also symmetrical.

11.   In matrix partitioning method of bus elimination any bus can be eliminated.

12.   The positive sequence components hase same phase sequence as that of original vectors.

13.   The Negative sequence components hase same phase sequence as that of original vectors.

14.   The induced emfs of synchronous machines are positive sequence voltages.

15.   The impedance per phase of transmission line for balanced currents is independent of phase sequence.

16.   For all types of transformers the series impedances of all sequences are equal.

17.   When neutral is grounded there is path for zero sequence current in transformer.

18.  Zero sequence current can flow in one winding of a transformer only when there is a path for it in 
the other winding.

19.   In delta connected winding there is no zero sequence currents.
20.   In loads, the zero sequence currents will flow in the network only if a return path exists for it.

                                                         Answers

                                                          1.  True               6.   False              11.False           16. True

                                                          2.  False              7.   True               12. True           17. False

                                                          3.   True               8.  False              13.  False          18.  True

                                                          4.  False               9. True                14. True            19.  False

                                                          5.  True               10. True                15.  True          20.  True         
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II. Fill in the blanks with appropriate words

1. In a ................. the components of power system are represented by symbols and the interconnections   
     between them are shown by straight lines.

2.  For a balanced 3-phase system the ................. is same as positive sequence reactance diagram.

3.  The impedance diagrams are used fo ................. and reactance diagrams are used for .................

4.  The meeting point of various components in a power system is called .................

5.  The diagonal point Ybus are called ................. and off-diagonal elements are called .................

6.  The diagonal point Zbus are called ................. and off-diagonal elements are called .................

7.  An unbalanced system of N related vectors can be resolved into N system of balanced vectors called  
      .................

8.  The ................. components consiusts of three vactors equal in magnitude and phase

9.  In transmission line the .................reactance is ................. times the positive sequence reactance.

10. The ................. and ................. sequence network of generator will not have any sources.

                   Answers

                     1.  Single line diagram                                    6.  driving point impedance, transfer impedances

                     2.  reactance diagram                                     7. symmetrical components

                     3. load flow studies, fault calculations         8.  zero sequence

                     4. bus                                                                  9. zero sequence, 2 to 3.5

                     5. self admittances, mutual admittances     10. negative, zero

iii.   Unsolved problems

E1. 1     (a) A generator is rated 30 MVA, 10.5 kV. Its Y-connected winding has a reactance of 1 p.u. Find the  
           ohmic value of the reactance of winding.

               (b) If the generator is working in a circuit for which the bases are specified as 10 MVA,  kV. Then  
           find the p.u. value of generator working on the specified base.   

E1.2       A 15 MVA, 10.5 kV, 3φ generator has a synchronous reactance of 0.2 p.u. and it is connected to a 
            transmission line through a transformer rated 15 MVA, 33/11kV with X = 0.15 p.u.

            (i) Calculate the p.u. reactances by taking generator rating as base values.

            (ii) Calculate the p.u. reactances by taking transformer rating as base values.

E1.3        A single line diagram of an unloaded power system shown in fig E3.1. The generators are rated as   
           follows. Draw the reactance diagram.
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          Generator 1          , . , . . .MVA kV X p u50 13 8 0 15'' =   

          Generator 2          0 , , 0. . .MVA kV X p u4 33 20'' =   

           Y-Y transformer   , , . . .MVA kV kV X p u60 16 110 0 1=

           Y-3 transformer   0 , , . . .MVA kV kV X p u4 33 110 0 15=   

E1.4    A 40 MVA, 25 kV, 3φ generator has a subtransient reactance of 25%. It  is connected through a 3-Y  
                transformer to a high voltage transmission line having totral series reactance of 50 Ω. At the load end 
            of the lines is Y-Y step down transformer. Both transformer banks are composed of 1φ transforer 
           connected for 3φ operation. Each of the 3 transformer composing each bank is rated 16.67 MVA, 
             13.8 kV/100 kV with a lekage reactance of 20%. The load represented as impedance, is drawing 330  
             MVA at 24 kV, 0.9 pf lag. Draw the single line diagram of power network. Choose a base of 30 MVA,  
         24 kV in the load cicuit. Determine also the coltage at the terminals of the generator.

E1.5   Solve the node voltages.

E1.6       For the network shown in fig E6.1. Give the total number of elements, nodes, buses and branches. Write  
          the element of  Ybus matrix directly by inspection.

E1.7       Determine the reduced admittance matrix by eliminating nodes (3) and (4). Values marked in the E7.1      
          are p.u. admittances and currents.

G1 G2

j80 �

Fig E 1.3

�j5.0

�

� �

�

V1 V2

�j20

�j2 �j10
�j10

1.1 0
o

Fig E 1.5
1.1 0

o

�j5

�j20

�j10 Fig E1.6�j10
�j10

�j5

1 45�
o

1.2 ���
�

�

�j20

�j10 Fig E 1.7
�j2

�j2

�j50 �j10

�j10 1.0<0
o

1.1<6
o
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E1.8     For the system shown in fig E8.1., determine Zbus .

E1.9      Determine Zbu  for the network shown in fig E9.1., where the impedances are given in p.u. Preserve 
           all the 3 nodes.

E1.10    The voltage across a 3φ unbalanced load are , .V V V V and V V200 200 180 600 145 2o

a b c
1 1= = =  

            respectively. Determine the symmetrical components of voltages. Phase sequence is abc.

E1.11     Draw the positive, negative and zero sequence impedance networks for the power system shown in  
             fig E11.1. 

                  Choose a base 50 MVA, 220 kV in the 50 Ω transmission line and mark all reactances in p.u. The 
             ratings of the generators and transformers are :

             : , , %G MVA kV X25 11 20''

1
=

             : 25 ,11 , 20%G MVA kV X''

2
=

              The   negative sequence reactance of each synchronous machine is equal to its subtransient      
         reactance. The zero sequence reactance of each machine is 8%. Assume that the zero  
             sequence reactancesof transmission  lines are 250% of their positive sequence reactances.
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