CONTENTS

1.1-1.86

1.1	Representation of Power System 1.1	
1.2	Per Unit Quantities 1.2	
1.3	Equivalent Circuits of Components of Power System 1.6	
1.4	Impedance and Reactance Diagram 1.17	
1.5	Node Equations and Bus Admittance Matrix 1.32	
1.6	Bus Impedance Matrix 1.43	
1.7	Symmetrical Components 1.50	
1.8	Sequence Impedances and Sequence Networks 1.59	
1.9	Short-Answer Questions 1.73	
1.10	Exercises 1.84	
CHA	APTER 2: Load Flow Studies	2.1–2.56
2.1	Introduction 2.1	
2.2	Types of Buses 2.2	
2.3	Formulation of Load Flow Equations Using Ybus Matrix 2.3	
2.4	Load Flow Solution by Gauss-Seidel method 2.5	
2.5	Newton-Raphson Method of Load Flow Analysis 2.28	
2.6	Comparison of G-S and N-R Method of Load Flow Studies 2.36	
2.7	Voltage Control 2.37	
2.8	Short-Answer Questions 2.46	
2.9	Excercises 2.53	
CHA	APTER 3: Symmetrical Fault Analysis	3.1-3.42

Preface

CHAPTER 1: Power System Modelling

3.1 Types of Fault 3.13.2 Fault Calculations 3.2

		-	
3.3	Transient Due to Short Circuits 3.3		
3.4	Internal Voltages of Loaded Synchronous Machines Under Transient Conditions	3.6	
3.5	Symmetrical Three Phase Faults 3.7		
3.6	Bus impedance Matrix in Fault Calculation 3.9		
3.7	Selection of Circuit Breakers 3.11		
3.8	Short-Answer Questions 3.32		
3.9	Exercises 3.40		
CHA	APTER 4: Unsymmetrical Fault Analysis	4.1-4	1.28
4.1	Introduction 4.1		
4.2	Single Line-to-Ground Fault on an unloaded Generator 4.3		
4.3	Line-to-Line Fault on an Unloaded Generator 4.4		
4.4	Double Line-to-Ground Fault on an Unloaded Generator 4.6		
4.5	Unsymmetrical Faults on Power Systems 4.9		
4.6	Faults Through Impedance 4.11		
4.7	Short-Answer Questions 4.24		
4.8	Excercises 4.27		
CHA	APTER 5: Stability Analysis	5.1-5	5.30
5.1	Introduction 5.1		
5.2	Dynamics of Synchoronous Machine Rotor 5.2		
5.3	Swing Equation 5.4		
5.4	Power Angle Equation 5.6		
5.5	Steady State Stability 5.8		
5.6	Transient Stability 5.11		
5.7	Equal Area Criterion 5.12		
5.8	Solution of Swing Equation by Point-by-Point Method 5.17		
5.9	Methods of Improving Transient stability 5.19		
5.10	Short-Answer Questions 5.25		
5.11	Excercises 5.29		

INDEX 1.1–1.2