CHAPTER 1

INTRODUCTION TO DIGITAL
SIGNAL PROCESSING

1.1 Introduction

Digital Signal Processing (DSP) refers to processing of signals by digital systems like Personal
Computers (PC) and systems designed using digital Integrated Circuits (ICs), microprocessors and
microcontrollers. DSP gained popularity in the 1960s. Earlier, DSP systems were limited to general purpose
non-real-time scientific and business applications. The rapid advancement in computers and IC fabrication
technology leads to complete domination of DSP systems in both real-time and non-real-time applications
in all fields of engineering and technology.

The basic components of a DSP system are shown in Fig 1.1. The DSP system involves conversion of
analog signal to digital signal, then processing of the digital signal by a digital system and then conversion
of the processed digital signal back to analog signal.
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Fig 1.1: Basic components of a DSP system.

The real-world signals are analog, and only for processing by digital systems, the signals are
converted to digital. For conversion of signals from analog to digital, an ADC (Analog to Digital Converter)
is employed. The various steps in analog to digital conversion process are sampling and quantization of
analog signals, and then converting the quantized samples to suitable binary codes. The digital signals
in the form of binary codes are fed to digital system for processing, and after processing, it generates an
output digital signal in the form of binary codes. The output analog signal is constructed from the output
binary codes using a DAC (Digital to Analog Converter).

The processing of signals are basically spectrum analysis to determine the various frequency
components of a signal and filtering the signal to extract the required frequency component of the signal.

The digital system can be a specially designed programmable hardware for DSP or an algorithm/
software running on a general purpose digital system like Personal Computer (PC).

Advantages of Digital Signal Processing

Some of the advantages of digital processing of signals are,
1. The digital hardware are compact, reliable, less expensive and programmable.

2. Since the DSP systems are programmable, the performance of the system can be easily upgraded/
modified.
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3. By employing high speed, sophisticated digital hardware higher precision can be achieved in
processing of signals.

4. The digital signals can be permanently stored in magnetic media so that they are transportable
and can be processed in non-real-time or off-line.

1.2 Signal

Any physical phenomenon that conveys or carries some information can be called a signal. The
music, speech, motion pictures, still photos, heart beat, etc., are examples of signals that we normally
encounter in day-to-day life.

When a signal is defined continuously for any value of an independent variable, itis called an analog
or continuous signal. Most of the signals encountered in science and engineering are analog in nature. When
the dependent variable of an analog signal is time, it is called a continuous time signal and it is denoted
as "x(t)".

When a signal is defined for discrete intervals of an independent variable, it is called a discrete
signal. When the dependent variable of a discrete signal is time, it is called discrete time signal and it is
denoted by "x(n)". Most of the discrete signals are either sampled versions of analog signals for processing
by digital systems or output of digital systems.

The quantized and coded version of the discrete time signals are called digital signals. In digital
signals the value of the signal for every discrete time "n" is represented in binary codes. The process of
conversion of a discrete time signal to digital signal involves quantization and coding.

Normally, for binary representation, a standard size of binary is chosen. In m-bit binary representation,
we can have 2™ binary codes. The possible range of values of the discrete time signals are usually divided
into 2™ steps called quantization levels, and a binary code is attached to each quantization level. The
values of the discrete time signals are approximated by rounding or truncation in order to match the nearest
quantization level.

1.3 Discrete Time System

Any process that exhibits cause and effect relation can be called a system. A system will have an
input signal and an output signal. The output signal will be a processed version of the input signal. A system
is either interconnection of hardware devices or software/algorithm.

A system which can process a discrete time signal is called a discrete time system, and so the input
and output signals of a discrete time system are discrete time signals.

A discrete time system is denoted by the letter H. The input of discrete time system is denoted as
"x(n)" and the output of discrete time system is denoted as "y(n)". The diagrammatic representation of a
discrete time system is shown in Fig 1.2.
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Fig 1.2: Representation of discrete time system.
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The operation performed by a discrete time system on input to produce output or response can be
expressed as,

Response, y(n) = H! {x(n)}
where, H denotes the system operation (also called system operator).

When a discrete time system satisfies the properties of linearity and time invariance then it is called
LTI (Linear Time Invariant) discrete time system .

The input-output relation of an LTI discrete time system is represented by constant coefficient
difference equation shown below:

y(n)=— Zi:lamy(n “m)+ Db, x(n-m)

m=0

where, N = Order of the system, and M <N.

The solution of the above difference equation is the response y(n) of the discrete time system, for
the input x(n).

1.4 Analysis of Discrete Time System

Mostly, the discrete time systems are designed for analysis of discrete time signals. Physically, the
discrete time systems are realized in time domain. In time domain, the discrete time systems are governed
by difference equations.

The analysis of discrete time signals and systems in time domain involves solution of difference
equations. The solution of difference equations are difficult due to assumption of a solution and then solving
the constants using initial conditions.

In order to simplify the task of analysis, the discrete time signals can be transformed to some other
domain, where the analysis may be easier. One such transform exists for discrete time signals is Z-transform.

The Z-transform, will transform a function of discrete time "n" into a function of complex variable
"z", where z =re’. Therefore, Z-transform of a discrete time signal will transform the time domain signal
into z-domain signal.

On taking Z-transform of the difference equation governing the discrete time system, it becomes
algebraic equation in "z" and the solution of algebraic equation will give the response of the system as a
function of "z" and it is called z-domain response.

The inverse Z-transform of the z-domain response, will give the time domain response of the discrete
time system. Also, the stability analysis of the discrete systems are much easier in z-domain.

The ratio of Z-transform of output and input is called transfer function of the discrete time system.
The inverse Z-transform of the system gives the impulse response of the system, which is used to study
the characteristics of a system.

Another important characteristic of any signal is frequency, and for most of the applications the
frequency content of the signal is an important criteria. The frequency range of some of the signals are
listed in Tables 1.1 and 1.2.
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Table 1.1: Frequency Range of some Electromagnetic Signals

Type of signal Wavelength (m) Frequency range (Hz)
Radio broadcast 10* to 10? 3x10 to 3x10°
Shortwave radio signals 10> to 107 3x10° to 3x10"
Radar/Space communications 1 to 102 3x108 to 3x10"
Common-carrier microwave 1 to 102 3x108 to 3x10"
Infrared 103 to 10° 3x10" to 3x 10"
Visible light 39x107to 8.1x107 3.7x 10" to 7.7 x 10"
Ultraviolet 107 to 1078 3x10% to 3x10'
Gamma rays and x-rays 10° to 107 3x107 to 3x10"

Table 1.2: Frequency Range of some Biological and Seismic Signals

Type of Signal Frequency Range (Hz)
Electroretinogram 0 to 20
Electronystagmogram 0 to 20
Pneumogram 0 to 40
Electrocardiogram (ECQ) 0 to 100
Electroencephalogram (EEG) 0 to 100
Electromyogram 10 to 200
Sphygmomanogram 0 to 200
Speech 100 to 4000
Wind noise 100 to 1000
Seismic exploration signals 10 to 100
Earthquake and nuclear explosion signals | 0.01 to 10
Seismic noise 0.1 to 1

The frequency contents of a discrete time signal can be studied by taking Fourier transform of the
discrete time signal. The Fourier transform of discrete time signal is a particular class of Z-transform in

which z = ¢, where "®" is the frequency of the discrete time signals.

The Fourier transform, will transform a function of discrete time "n" into a function of frequency
"m". Therefore, Fourier transform of a discrete time signal will transform the discrete time signal into
frequency domain signal. The Fourier transform of the discrete time signal, is also called frequency
spectrum of the discrete time signal.

The Fourier transform of the impulse response of a system is called firequency response of the
system. The frequency spectrum is a complex function of "®" and so can be expressed as magnitude
spectrum and phase spectrum. The magnitude spectrum is used to study the various frequency components
of the discrete time signal.
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The frequency spectrum obtained via Fourier transform will be a continuous spectrum and so cannot
be computed by digital systems, Therefore, the samples of Fourier transform can be computed at sufficient
number of points by digital systems. The samples of Fourier transform can also be directly computed using
DFT (Discrete Fourier Transform).

The computation of DFT involves a large number of calculations. In order to reduce the computational
task of DFT, a number of methods/algorithms are developed which are collectively called FFT (Fast Fourier
Transform). The DFT of discrete time signal will give the discrete frequency spectrum of the signal.

1.5 Filters

The filters are frequency selective devices. The two major types of digital filters are FIR (Finite
Impulse Response) and IIR (Infinite Impulse Response) filters.

Generally, the filter specification will be a desired frequency response. The inverse Fourier transform
of'the frequency response will be the impulse response of the filter, and it will be an infinite duration signal.
The digital filters designed by choosing finite samples of impulse rseponse are called FIR filters, and the
filters designed by considering all the infinite samples are called ZIR filters.

Since, an FIR filter is designed from the finite samples of impluse response, the direct design of FIR filter
is possible in which the transfer function of the filter is obtained by taking Z-transform of impulse response.

| Note: Mathematically, the filter design is design of transfer function of the filter. |

Since, an IIR filter is designed by considering/preserving the infinite samples of impulse response,
the direct design of IR filter is not possible. Therefore, the IIR filter is designed via analog filter.

For designing IIR filter, first the specifications of IIR filter is transformed to specifications of analog
filter using bilinear or impulse-invariant transformation, then an analog filter transfer function is designed
using Butterworth or Chebychev approximation. Finally the analog filter transfer function is transfered to
digital filter transfer function using the transformation chosen for transforming the specifications.

1.6 Finite Word Length Effects

In digital representation the signals are represented as an array of binary numbers, and the digital

system employ a fixed size of binary called "word size or word length" for number representation. This finite
word size for number representation leads to errors in input signals, intermediate signals in computations
and in the final output signals.

In general, the various effects due to finite precision representation of numbers in digital systems
are called finite word length effects.

Some of the finite word length effects in digital systems are given below.
e Errors due to quantization of input data.

e Errors due to quantization of filter coefficients.

e Errors due to rounding the product in multiplication.

e FErrors due to overflow in addition.

Limit cycles in recursive computations.
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1.7 Multirate DSP

In many communication systems, the sampling rate conversion is a vital requirement. Some of the
systems that employ sampling rate conversion are video receivers that receive both NTSC and PAL signals,
audio systems that can play CDs recorded in different standards, etc.

The processing of discrete time signals at different sampling rates in different parts of a system is
called multirate DSP. In digital systems, the sampling rate conversion is achieved by either decimation
or interpolation. In decimation, the sampling rate is reduced, whereas in interpolation the sampling rate is
increased. The multirate DSP systems leads to reduction in computations, memory requirement and errors
due to finite word length effects.

1.8 Energy and Power Spectrum

There are many situations where the signals are corrupted by noise like sonar signals corrupted
by ambient ocean noise, speech signal from cockpit of an airplane corrupted by engine noise, etc. When
the signals are corrupted by noise, then the energy or power spectrum will be useful to identify the signal
from noise.

The energy spectrum can be computed for deterministic signals, and it is given by square of magnitude
of Fourier transform of the signal. Alternatively, the energy spectrum is given by Fourier transform of the
autocorrelation sequence of the signal.

The power spectrum can be estimated for nondeterministic signals or random process/signals. The
power spectrum estimation methods can be broadly classified into two groups, namely, nonparametric
methods and parametric methods.

In nonparametric methods, first an estimate of autocorrelation of the random process is determined
which represents the average behaviour of the signal, then the Fourier transform of estimated autocorrelation
is determined, which is the power spectrum estimate of the random process.

In parametric methods, first an appropriate model is selected for the given random process, then the
parameters of the model are computed using the available data of the random process. Finally, the power
spectrum is estimated from the constructed model.

1.9 Digital Signal Processors

The digital signal processors are specially designed microprocessors/microcontrollers for DSP
applications.

The importance of special purpose processors for signal processing applications were realised in 1980s,
and many companies started releasing special processors for DSP applications. The pioneers among them
are Texas Instruments and Analog Devices. The Texas Instruments has released a large variety of processors
in the family name TMS320Cxx and Analog Devices has released processors in the family name ADSPxx.

Some of the special features of digital signal processors are given below.

e Modified Harvard architecture with two or more internal buses for simultaneous access of code
and one or two data.

e Specialized addressing modes like circular addressing and bit reversed addressing suitable for
computations like convolution, correlation and FFT.
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MAC unit for performing multiply-accumulate computations involved in convolution, correlation
and FFT in single clock cycle.

Larger size ALU and accumulators with guard bits to accommodate the overflow in computation.
Pipelining of instructions to execute different phases of four or six instructions in parallel.
VLIW architecture to fetch and execute multiple instructions in parallel.

Multiprocessor architecture by integrating multiple processors on a single piece of silicon for
parallel processing.

1.10 Importance of Digital Signal Processing

The technology advancement in programmable digital signal processors, helps to implement more
and more real time applications in digital systems.

The digital processing of signal plays a vital role in almost every field of Science and Engineering. Some
of the applications of digital processing of signals in various field of Science and Engineering are listed here.

1. Biomedical

ECG is used to predict heart diseases.

EEG is used to study normal and abnormal behaviour of the brain.
EMG is used to study the condition of muscles.

X-ray images are used to predict the bone fractures and tuberculosis.

Ultrasonic scan images of kidney and gall bladder is used to predict stones.

. Ultrasonic scan images of foetus is used to predict abnormalities in a baby.

MRI scan is used to study minute inner details of any part of the human body.

2. Speech Processing

Speech compression and decompression to reduce memory requirement of storage systems.
Speech compression and decompression for effective use of transmission channels.

Speech recognization for voice operated systems and voice based security systems.

Speech recognization for conversion of voice to text.

Speech synthesis for various voice based warnings or annoucements.

3. Audio and Video Equipments

The analysis of audio signals will be useful to design systems for special effects in audio systems
like stereo, woofer, karoke, equalizer, attenuator, etc.

Music synthesis and composing using music keyboards.

Audio and video compression for storage in DVDs.

4. Communication

The spectrum analysis of modulated signals helps to identify the information bearing frequency
component that can be used for transmission.

The analysis of signals received from radars are used to detect flying objects and thier velocity.
Generation and detection of DTMF signals in telephones.

Echo and noise cancellation in transmission channels.
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5. Power electronics

e The spectrum analysis of the output of coverters and inverters will reveal the harmonics present in
the output, which in turn helps to design suitable filter to eliminate the harmonics.

e The analysis of switching currents and voltages in power devices will help to reduce losses.

6. Image processing

e Image compression and decompression to reduce memory requirement of storage systems.
e Image compression and decompression for effective use of transmission channels.
e [mage recognition for security systems.

¢ Filtering operations on images to extract the features or hidden information.

7. Geology
e The seismic signals are used to determine the magnitude of earthquakes and volcanic eruptions.
e The seismic signals are also used to predict nuclear explosions.
e The seismic noises are also used to predict the movement of earth layers (tectonic plates).

8. Astronomy

e The analysis of light received from a star is used to determine the condition of the star.

e The analysis of images of various celestial bodies gives vital information about them.

1.11 Use of MATLAB in Digital Signal Processing

MATLAB (MATrix LABoratory) is a software developed by The MathWork Inc, USA, which can
run on any windows platform in a PC (Personal Computer). This software has a number of tools for the
study of various engineering subjects. It includes various tools for digital signal processing also. Using
these tools, a wide variety of studies can be made on discrete time signals and systems. Some of the analysis
that is relevant to this particular textbook are given below.

e Sketch or plot of discrete time signals as a function of independent variable.
e Spectrum analysis of discrete time signals.

e Solution of LTI discrete time systems.

e Perform convolution and deconvolution operations on discrete time signals.

e Perform various transforms on discrete time signals like Fourier transform, Z-transform, Fast Fourier
Transform (FFT), etc.

e Design and frequency response analysis of FIR and IIR filters.
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