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SIMPLE STRESSES AND STRAINS

1.1 INTRODUCTION

At the outset let us discuss what is strength of materials. We know that matter is
made up of small particles called molecule. Molecules in solid are attached to eacll
other by the force of cohesion. When we apply external force, the distance between
the .molecules tend to increase which is resisted by the force of cohesion.

As the force (applied) is increased, the resisting force (due to cohesion) also increases
simultaneously till the maxiInum resistance is reached. This maximum resistance
offered by the material is called it's strength. For example wall of gunbarrel must
be able to resist pressure developed as a result of firillg; piston cylinder must be
able to resist press:ure developed as a result of combustion; the wall of water pipe,
steam pipe must be able to sustain pressure of fluid flowing through tIle pipe.
Strength of materials involves the analytical method of determining-strength,
stiffness and stability of load carrying component of machine.

In strength of material we consider that
- material is elastic
- deformation is small
- when machine member / structure is loaded these should neither

break nor deform excessively
Many structural member/ material like steel, Aluminium are perfectly elastic within
lilnits i.e. if the load is not exceeding much.
The strength of nlaterials depel1ds on -
- the type of loading
- temperature-
- Ll1temal structure of the nlaterial

Let us start with the term load.

External force applied on the body is called load denoted by 'pt. It's 51 unit is
Newton.

Since Nev;ton is small, force is expressed in Kilo-Ne\vton and Mega Newton.
1 kN =l03N
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1 Mega Newton = 106 N
1 Giga Newton = f09 N

1.2 CLASSIFICATION OF LOAD
Load may be in the form of
- Axial load (P)

(a) Tensile (Pt) (b) Compressive(Pc)

- Shear(t}
- Torque(T)
- Moment(M)
Or Combination of these.
Load which is applied to most components in engineering is a combination
(superposition) of these. For example, a rotating shaft which transmits power is
subjected not only to torsion but also to bending and to direct shear. We will
discuss these in details later.

Loads may also be classified on the basis of their variation with a respect to time as
static, quasi-static and dynamic. Static loads are those which do not change their
magnitude or direction or point of application with respect to time. Those loads
which vary at a very small rate so that inertial effects may be neglected are called
quasi-static. Loads of dynamic character change with time at a fast rate. The action
of such loads set up vibration, fatigue etc. in the body..

As an engineer, we study the various types of load and its effect on the elastic
bodies. We also analyze and design various machines and load bearing
structure. Analysis and design of a given structure involve determination of
stresses and deformations.
It has been observed that

(i) load may de)Telop 'stress' and 'strain' in a body simultaneously.
(ii) load may develop 'deflection' in a body Le. in beam; cantilever etc.

(iii) load may develop 'buckling' in the body Le. the case of column.
We will discuss the effect of load on the elastic bodies in various chapters of
this book.

1.3 STRESS OR ENGINEERING STRESS

When load is applied on an elastic body, internal resisting force is developed
inside the material to counter the effect of tIle external force.

The internal resisting force per unit area of the body is called stress or
enginneering stress and is denoted by the letter u .

Difference bet"'Ieen Stress and Pressure:

Stress is not same as pressure. Pressure is reserved for a specific stress state in
which there is no shear components and all tlle normal components are equal.

p
Stress (0-) = A· It represents the average value of stress over the cross-section

rather than the stress at a specific point of the cross-section.

So, if a body is loaded externally then internal forces are distributed throughout
the region of the body and stresses will be caused. For tIle defination of stress, we
intersect tlle body by a imaginary plane like shown in the Fig. 1.1 (a).
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(b)

1.3

Fig. 1.1

Both parts of the body then interact through forces of equal magnitude and
opposite in direction Fig. 1.1(b).

Let dP be the elementary load acting on an area dA of the cross-section then

( ::) is the average stress on this element.

The limit 0" =limit fJJJ = dP is called the stress* at a point of the cross-section.
M~O M dA

The Standard Unit (SI unit) for stress is Nlm2 lor' Pascal. Typical level ofstress
are several million Pascals, so the most covenient unit for stress is the
megapascal or MPa. The stress magnitude 1 MPa is equal to th~ pressure (p) at
a depth (z) of about 100 m in water or 37 in rock tlSing the relationship p = pgz,
where

p = density of material
g =acceleration due to gravity
1 N/mm2 =1 MPa (mega pascal); 1 Pa =1 N/m2

. Load P N
MathematIcally, Stress** (a) =--=--2

Area A m
Stress is a tensor*** entity. The stress tensor characterizes the stress state at a
point in the body. Stress is measured by photoelasticity technique (in this
book we will compute the stress and check with the permissible stress or design
stress for proper functioning of the machine member or structural member).

The stress at any point on a plane can be resolved into two components - one
along normal and the other perpendicular to the normal i.e. tangent to the plane.

The component of stress along the normal is called the normal stress (an) or
direct stress (a) and the component tangential to the plane is called the tangential
stress (a) or shear stress (t).

*Six components are required to describe the state of stress at a point in a body under
the most general loading condition which we will discuss in 3-D stress.
**Stress developed on the body due to application of load, should never exceed the
ultimate tensile strength for brittle materials and yield strength for ductile materials.
***A physical quantity is said to be tensor if it is neither a scalar nor a vector.
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(The con1plete set of stress components in a solid or fluid medium are written as t ij
which will be discussed in chapter 3-D stress).

m m m

I I !
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(a) (b)

Fig. 1.2

Let us consider a prismatic bar having cross-sectional area A subjected to load P,

then normal stress at any point of the bar = : .
The C0111pOnent of stress along x-axis and y-axis are \¥ritten as O'x and cry

respectively. \Vl1en an elastic body is subjected to stresses ax and O'y along x
and y-axes respectively then \ve call it biaxial stress system. Biaxial stress arises in
the analysis of pressure vessel (thin); beams; s11aft and many other structural
parts.

When the normal stress acts outwards from the plane then it is called tensile stress.

rrensile stress is considered positive (+).

SiInilarly, normal stress acting towards the plane is called 'compressive stress'
and it is considered negative (-).

A tensile stress tends to stretch the member (of machine part or structural part)
apart, whereas, a compressive stress tends to compress the material of the load
carrying member and shortens the member itself.

Shear Stress
I P(Transverse

When equal and opposite transverse loads P and P' of A cl t load) B
magnitude P are applied to a member AB, shearing I I I
stress t are created over any section located between ----f!
the points of application of two loads as shown in p"

Fig. 1.3. Fig. 1.3

In practice shearing stress act sin1ulta11eously with Fig 1.3

Ilornlal stress. However, .. there are cases where th~·

shear stresses are considerably larger thall the normal stresses and as such the
normal streses are igt10red in the analysis.

Riveted, bolted and welded joints are examples of simple shear.

Let us consider a rectaIlgular block fixed at the lo\ver surface and subjected to load
P parallel to its surface as in Fig. 1.3(a).

By alJplication of load P (vvhich is tal1genital), the plane gets distorted.

If A = l\rea of top or bottoln of the block.
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A A' B B'
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Area
(A)

3 - 0 Figure

Fig 1.3(a)

p
Then shear stress (t) = A' The value obtained is an average vallIe of shearing

stress over the entire section.

Practical application shear stress are given below:

Fig 1.4

In this figure there is only one critical section of the rivet where the failure by shear
can take place. This is called a case of single shear (Fig. 1.4).

P

P/2

P/2

Fig 1.5

111 the same manner, there is a case of double shear \vhere the tendency of failure
occurs at two sections as sho\t\Tn in Fig. 1.5.

Here, average shear stress ('t) = [ P~2 ] = [~ J
The other example of shear is punching operation by which small hole or slot can
be made on the metal plates.

f---~~

-(fl. -t}-
/ I

Fig. 1.6

Punch
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Principle of Shear Stress

It states that a shear stress across a plane is ahivays accompanied by a balancing or
complementary shear stress across the plane.

Dt'< C
't

~
J

't

A ;> t' B

Fig. 1.7

Let us consider a rectangular block ABeD sllbjected to shear stress 't on the face
AD and BC. Further, consider a unit thickness of the block. Therefore, force acting
on the face AD and CB,

P = L . AD = t . CB

Since these are equal and opposite forces so they will form a couple whose nloment
is equal to L x AD x AB.

If the block is in equilibrium then there must be a restoring force where ('ti and 'tJ,
will try to rotate clockwise) moment must be equal to this couple.

Let the shear stress on the face DC and AB be 1". Hence, force acting on the face AB
and CD are

P = t'AB = t'eD

These two forces (t'AB and t'eD) will also form a couple (CCW).

Equating these nvo Moments

t · AD · AB ='t'AB · AD

't = t'

As a result of shear forces which forms a couple, the diagonal BD ,viII be subjected
to tension whereas diagonal AC,will be subjected to compression.

If the material of the machine under study is poor is tension, it will fail due to
excessive tensile stress across diagonal BD. Similarly, if the material is poor in
compression, it will fail due to excessi,re compressive force across the diagonal
AC.

EXAMPLE 1: What force is required to punch a 20 mnt diameter hole is a plat that is 25
mm thick? The shear strength is 350 MN/ln2•

SOLUTION Given

d =20mm

t =25mm

't =350 MN/m2 =350 x l03kN/m2
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The resisting area is the shaded area along the perimeter and shearing force is
equal to the punching force P.

--,...-::,......,...,...,........-__---,."7-"'7'"I-{ 25 mm thick plate
~

Punched plate

Punched out --_.~ ~25mm
111111111

--20 mm -

Fig. 1.8

Shearing force (P) =Shearing stress x Resisting area

='tx1txdxt

= 350 X 103 x (1t X 2~ x ~)kN
10 10

22 20
= 350 x 7 x 20 X 103 kN

= 550kN Ans.

EXAMPLE 2 Two blocks ofwood 'lvidth 'b' and thickness' t' are glued together along the
joint inclined at the angle 8 as ShO'lV11 in thefigure. Using thefree body diagram show that

P sin 28
the shearing stress on the glued joint is 't = 2A "ivhere A is the cross sectional area.

SOLUTION Shear force (F5) = 't . Area of oblique plane

Fs = pcose

= 't . A cosec 8

Further

From I and II we have

't . A cosec 8 = P . cos e

...(1)

...(II)
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p

p

P-4---~ t-----.p

Fig. 1.9

P cos e p cos· sin 8
't= =----

A cDsecS A

2F Sill SCOS 8

2A

= ~sin28
2A

Proved

Bearing Stress «(JbT)

When one body rests on another and transfers a load nOffi1al to it then such form
of stress is called bearing stress.
Bearing stress is developed at the surface in contact.

. Applied load
Beanng stress (O'br) =---~.--­

Beanng Area

p
=-

\vhere Abr = Bearing Area.

For flat surfaces in contact, the bearing area is the area over which the load is
transferred from one member to other.

If two parts are having different area, then the smaller area is used.

Bearing stress is very important in design and in Bujlding Construction.

EXAMPLE 1 A rivet joint shown in figure has 110 min wide plate and 20 mm rivet
diameter. The allowable stresses are 120 MPa for bearing i11 the plate material and 60 MPa
for shearing ofthe rivet. Deterlnine
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(a) the 111ininul111 thickness ~feach plate and
(b) The largest average tensile stress in the plates.

d =20 mm

Fig. 1.10

SOLUTION Given
d=20mm

O'bearing = 120 MFa = 120 N/mm2

r = 60 MFa = 60 N/n1ffi2

",\~1
~

Projected area of rivet hole

Pb

Fig. 1.11

(a) From shearing of rivet

P = r· Anvet

== 60 x ~ (20)2

=6000 1t Newton

From bearing of plate material

p =crbearing X Abearing

6000rr =120 x (20t)

t=( 60001t)mm _ _
120 x 20 - 7.849 - 7.85 nun

(b) Largest average tensile stress in the plate

P=cr·A

1.9

Ans.



1.10

6oo01t =[7.85 x (110 - 20)]

(
60001t )N/ 2 ~KD

(j = mm or lVU- a
7.85 x 90

=26.69 ?v1Pa :::: 26.7 MPa

STRENGTH OF MATERIALS

Ans.

Contact Stress

In the cas~ ofbearing stress, applied load is distributed over a relatively large area.
But when the load applied is over a very small area, contact stress comes in the
picture.
Examples of contact stress are:

(i) steel rail wheel on a rail
(ii) two convex curved surfaces such as gear teeth in contact.

.......
.::::::::~~tt}::::::::.

Contact Stress

Rail wheel on rail
Fig. 1.12

Hydrostatic Stress*
This stress arises when body is subjected to equal external
pressure at all points on the body e.g. when the body is
immersed in a fluid at a large depth. Hydrostatic stress is P

compressive in nature and is equal to the pressure intensity
to which the body is subjected. It is denoted by letter p. jP

Fig. 1.12 (a)

-p

True Stress

True stress is equal to the load divided by the instantaneous cross-sectional area
through \vhich it acts. True stress occurs due to the change in cross-section that
occurs with changing load

p
(J = A.; where A j = instantaneous Cross-sectional Area

Besides these stresses discussed so far there are other types of stresses also.
These ar2:

Residual Stres~: Residual stresses are due to manufacturing process that leave a
stress in a material. Welding leaves residual stresses in the metal welded.

*In metal forming process also hydrostatic stress arises.
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Structural Stress: These stresses are produced in structural member because of
the weights they support. These stresses are found in building foundation and
framework as well as in machine parts. ,,-
Pressure Stress: Pressure stresses are induced in vessel containing pressurized
fluid.
Flow Stress: Flow stress occurs when a mass of flowing fluid induce a dynamic
pressure on a condtlit wall. .
Fatigue Stress: Fatigue stress arises due to cyclic loading. Rotation of shaft
continuously develops a fatigtle stress.
*These stresses are used in variolls engineering field.

1.4 STRAIN
The study of strain in a elastic body is the study of the displacement of points
in the body relative to another when the body is deformed.
A load carrying member deforms under the influence of load applied.
Common forms of deformation or distortion** are-
(i) elongation (ii) twisting

(iii) bending (iv) shearing
Strain is also called unit deformation and is found by dividing the total
deformation by the original length of bar.
Strain is denoted by letter epsilon (E)

S
. () Total deformation

tram E = -------
Original length

Strain may be longitudinal denoted by (c)
Strain may be shear denoted by (yor 4»
Strain may be volumetric denoted by (E

l
,)

t l = ~1, where 111 =total elongation; 1; =original length, If =final length
,

~I = (If-I)
~V

Similarly, Ev =V' where ~V =change in volume; V = original voilime.

~V= (Vf - V) p II~ 1, ~__ --~~~I ~
where Vf =final volume III • . ..

V; = initial volume -..----I
j
----. -~+i

Longitudinal strain (E,) Fig. 1.13

Longitudinal strain causes extension 'or' contraction in the body.

*Whether a machine member or structural member, stresses develop on these when
loads are applied but as a designer or engineer, our aim should be to limit the stress by
proper selection of material, factor of safety (FOS) and by suitable design in such a
manner that machine member or structural member should not fail on application of
loads. Unwanted stress leads to failure of the machine or structure.

**If the distortion disappears and the metal returns to its dimension upon removal of
the load, the strain is called elastic strain. If the distortion disappears and metal remains
distorted, the strain is called 'plastic strain'.



STRENGTH OF MATERIALS

]
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E
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Fig.1.14

1.12

Shear strain (y or cI> )

Shear strain is the strain produced under shear stress.

dJ

~

In the above figure

Shear sh"ain = tan 'Y = ~
I

Shear strain causes angular dis~ortionon the body.

Volumetric strain (£vJ 'OR' Elastic dialation:

When a body is subjected to hydrostatic stress, it causes a change in the volume.
~v

Et'=y-
Let a cuboid of sides x, y, and z are subjected to hydrostaic stress and as a result of
stress its sides change by dx, dy and dz respectively.

. . Change in volume = (x + dx) (y + dy) (z + dz) - xyz

=(xyz + xydz + yzdx + zxdy) - xyz

[
Neglecting smaller forms]
viz dx . dy, dy .dz etc.

=yzdx + zxdy + xydz

V I trio tr· ( ) yzdx + zxdy + xydzo ume c s aln E = ~------.;;........---.;.-

v xyz

dx dy dz
=-+-+-

X Y z

= Ex + Ey + Ez

This shows that volumetric strain is equal to the sum of linear strains in x, y and z
direction.

1.5 MEASUREMENT OF STRAIN

The instrument by \vhich strain is measured is called extensiometer. The most
commonly used extensiometer are the resistance wire electrical strain gauge whicll
is nlade of fine wire filament cemented on the surface of the body so that the wire
of the StTain gauge deforms as the surface of the body defonns. The operation of the
strain gauge is based on the principle that as the wire elongates or shrinks, it's
electrical resistaI1Ce changes ill proportion to the change of its length.
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1.6 POISSON'S RATIO (v)

When a body is subjected to a load, strain occurs in the lateral direction also which
is opposite in sign to that of the direction of load applied.
It 11as also been observed that lateral strain is always proportional to the
longitudinal strain.
If you take a rubber piece 11aving dia. 'd' and length I and if you apply a tensile load
you will find that the length of rubber piece h1creases ,vhereas the diameter
decreases.
We define POiSS011'S ratio as tl1e ratio of lateral strain to axial strain or longitudinal
strain. Poisson's ratio is denoted by letter v (nu).

Lateral strain -El
i.e. Poisson's ratio (v) = =-

Axial strain Ea

Mid

Nil

Change in dia. loriginal dia.

Change in lengthI original length

vvl1en the sample piece has circular section**.
The negative sign on the lateral strain is introduced to ensure that Poisson's Ratio
(v) is a positive ntlmber.
Most commonly used metallic materials have a Poisson's ratio value between 0.25
and 0.35. Poisson's ratio is an elastic property of the material. For steel, it's value is
apl-1roximately 0.3.
Elastomers alld rubber may have Poisson's ratios approaching 0.50.
Approximate value of POiSS011'S Ratio (v) of various material a~e given below:

Material Poisson's Ratio (v)

AltlminitUll
Brass
Cast Iron
*Concrete
Copper
Pllospher Bronze
Carbon and Alloy steel
Stainless steel (18-8)
Titanium

0.33
0.33
0.27
0.10-0.25 (dependingupongrade)
0.33
0.35
0.29
0.30
0.30

1.7 HOOK'S LAW

Hook's la\v states that\vithin elastic limit stress is proportional to strain.
tv1athematically (j oc £

or, cr = E . £ (wIlen strain occurs in only one direction)

*Concrete is graded according to it's compressive strength \vhich varies from 14 MPa to
48 ~/IPa. Tensile strength of concrete is extremly Io,,\'.
**Section may be rectaI';ular square elliptical or any sha11e
In tl1a t case,

Change in Cross Section Area/Original Cross Section Area
Poisson's ratio (v) = ---------------------

Change in length/original length
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Fig. 1.17

Steel (E =210 GPa)

Titanium (E =114 GPa)

Aluminium (E =69 GPa)

Magnesium (E = 45 GPa)

This constant of proportionality (E) is called modulus of elasticity of the material.
E is a measure of the stiffness of a material. E is determined by the slope of
straight line portion of the stress-strain curve. A material having a steeper slope
on the strain-strain curve will be stiffer and will deform less under load than a
material having less steep slope (Fig. 1.16).

Fig. 1.16 illustrates the concept by showing (/)
the straight line portion of the stress-strain ~

curve for steel, titanium, aluminium and Ci5

magnesium. i
Further, shear stress (t) oc shear strain (y)

or, 't =G . Y

G = ~ ----+Strain
.. y Fig. 1.16

The constant of proportionality (G) is called the ~modulusof rigidity'.
Hook's law is obeyed within certain limit by most ferrous alloys and other
engineering materials such as concrete; timber and non-ferrous alloys with
reasonable accuracy.
Poisson's ratio permits us to extend Hook's law of uniaxial stress to the biaxial
and triaxial stresses also. Body subjected to (J and (J or (J and a or (J and a

x y y % = x
only are called biaxial stress and a body subjected to 3 stresses i.e. ax; ayand
a are called 3-D stresses. Biaxial stresses and triaxial stresses arise in the

z

analysis of pressure vessels, beams, shaft and any other structure parts.
If an element is subjected to tensile stresses in the x and y direction then the

. a
strain in the x direction due to tensile stress ax is i.
Similtaneously, the tensile stress O'y will produce lateral

cr ax
contraction in the x-direction of amout (-)v· ;.50/ the

resultant strain in the x-direction will be
a cry

£, =_X- v .-
x E E

Similarly, total strain in the y-direction will be
all (J

£, = -'-v._x

y E E
Poisson's ratio (v) are 0.25 to 0.30 for steel, approximately 0.33 for most other
metals, 0.20 and 0.5 for concrete and rubber, respectively.

1.8 GENERALISED HOOK'S LAW (for Linear Elastic and Isotropic Materials)

Let an element of an elastic body is subjected to three dimensional stress
O'x' O'y alld a z along x, y and z axes, respectively.

Strain due to a. is £, = ax (longitudinal)
x x E

and lateral strain £, =£, =- V .a x (lateral)
y z E
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x

1.15

Fig. 1.18
(J

Similarly, stress O"y applied along y-axis produces longitudinal strain lOy = ;
(J

and lateral strain Ex = 10= = - v. ; and stress 0"= applied along z-axis produces
a a

longitudinal strain c = -Ez
and lateral strain c =c =- v . --2.

z x Y E
Therefore, total strain

along x-axis

along y-axis
a y (j~ ax

c = --y.~ -y.-
Y E E E

along z-axis
a z ax ay

c = --y.- -y.-
z E E E

a cr~

c + cy + Cz = i (1 - 2v) + E(1 - 2v)

Volumetric strain (c) = (c + c + £ ) =(ax +a
y+az

) (1-2v)
v x y z E

also known as Generalised Hook's law.

1.9 STRESS-STRAIN CURVE

The behaviour of ductile materials such as steel* which is subjected to tensile
load is studied by a testing specimen in a tensile testing maclline. Steel refers to
alloy of iron and carbon and in many cases, other elements. Steels are classified
as carbon steels, alloy steel and stainless steel.
The result of tensile test are expressed by means of stress-strain relationship
and plotted in the form of a graph as shown in Fig. 1.18(a).
Stress-strain curve generated from tensile test result help engineers to know
constitutive relationship between stress and strain for a particular material.
The typical region in stress-strain curve are-
(a) elastic region (b) yielding (c) strain hardening (d) necking and failure

*According to American Iron and Steel Institute (AISI), a steel is considered to be carbon
steel when carbon percentage is 0.16-0.29% (also called mild steel).
Density of mild steel = 7.85 g/cm3, E = 210 X 103 MPa
Carbon steel is also called as plain carbon steel.
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(i)
Specimen after

ultimate load

Universal testing machine

(ii)
Ductile material specimen

after fracture

t
i

t Brittle material
after fracture

/

i
(iv) (v)

Fig. 1.18(a)
(vi)

In the following graph:
P denotes proportional limit
Y1 denotes upper yield point
U denotes ultimate strength

y u

E denotes elastic limit
Y

2
denotes lower yield point

F denotes fracture point

S'
.,.,~True stress-strain curve......

F(rupture)

x
oB C

Strain hardening Nec.kingt
(Stress)cr

----+ E (strain)

(i) (ii)

Stress-Strain Curve for Mild Steel
Fig. 1.18(b)

When the loads are increased gradually, the strain (E) is proportional to load or
stress up to point (P). So, P is called proportional limit. Hook's law is applicable
in this region.

N.B.: Yield criterion often expressed as yield surface or yield locus, is an hypothesis
concerning the limit of elasticity under any combination of stresses.
Lower carbon steels suffer from yield point runout where the material has two yield
points. The first yield point (Y

1
) is higher than second yield (Y2) and yield drops

dramatically (Y
2

) after upper yield power (Y
1
). If a low carbon steel is only stressed to

some point between the upper and lower yield point then the surface may develop
LUDER BANDS. A luder band is a localized band of plastic deformation which occurs
in certain materials before fracture.
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Even if the specimen is beyond P and up to E it \vill regain its initial size and shape
when the load is removed..~rhis indicates that the material is in elastic range upto
point E. Therefore, E is called the elastic limit. Elastic limit of the material is
defined as the maximum stress without any pennanent deformation.
The proportional limit and elastic limit* are very close to each ot11er and it is
difficult to distingllish between points P and E on the stress-strain diagram.
Many a times these two are taken to be equal. When the specimen is stressed
beyond E, plastic deformation occurs and material starts yielding. During this
stage, it is not possible to recover the initial size and sh6lpe of the specimen on the
removal of load.

.Beyond E, the strain increases at a faster rate IIp to point Y1 i.e., there is an
appreciable increase in strain without much increase in stress.
In the case of mild stress (M.S.) there is small reduction in load and the curve drops
down to point Y2 immediately after yielding starts.

Y1 is the upper yield point
and Y2 is the lo\ver yield point

tIpper and lower yield points can be obtained only in a carefully controlled test,
otherwise the region from E a11d Y1 to Y2 merges in to one curve nearIy horizontal
apparently an increase of strain from 0.120/0 to 2% at a constant rate from Y1 to Y2'
is an l.lnstable region and the curve may show many peaks and valley as shown in
Figure 1.18 (b). The onset of plastic deformation is called yielding of material. The
lower value is called yield stress.

The yield strength is defined as the maximum stress at which a marked increase
in elongation occurs without increases in tIle load.

After the yield point, if the load is increased further then the stress curve rises 'llpto
point U. The stress corresponding to P9int" U is called ttltimate stress of the
specimen.

Increasing stress after yield point shows that .p1aterial is beconling stronger as it
deforms. This is kno\vn as **work hardening or strain hardening.

After point U, necking of specimen starts and at point F, fracture of test specimen
occurs so F is called fracture point. The stress corresponding to point F is called
'Breaking stress'~

Dotted line in the curve sho\vs the actual or true stress-strain diagram.

The structural steel that contains 0.2% carbon as an alloy is classified as IOv\T
carbon steel. With increase in carbon content, steel become~less ductile but has
higher yield stress and higher ultimate stress.

For many ductile materials other than mild steel e.g., aluminium, copper etc. no
definite yield point is obtained. For such materials the shape of curve on stress­
strain diagram is shown in Figure 1.18 (c).

In this case, at\arbitrary yield stress may be determined by offset method.

*lvlost of engineering structure are designed to function within their eiastic range only.
**To remove strain hardening we use heat treatment process commonly known as
annealing. After proper annealing the material returns to its original state.
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In this method a line MN is dra\vn parallel to initial slope line OA on the stress­
strain curve but is offset by some standard amount of strain such as 0.002 (or
0.2%). The intersection of line and the stress-strain curve defines the yield stress
(Y). The yield stress determined in this ,vay is c~l1ed Proof stress.

High tensile steels, aluminium alloys, copper fall in this category.

The actual or true stress-strain curve is shown by dotted line in Fig. 1.18 (a) for
mild steel and in Fig 1,18(c) for aluminium/copper.

Steel and aluminium alloy specimen exhibit ductile behaviour and a fracture occurs
only after a considerable'amount of deformation.

20/0
Yield stress ,,,,,,,

I
I,

I
I,,,

I,,
I

/M

t
Engineering stress

o 0.002 -----.E

(c)

Fig. 1.18 ~c)

The failure of steel and aluminium occur primarily due to shear strain along the
plane forming 45° angle with the axis of the rod.

A typical 'cup and cone' fracture may be detected to steel and aluminium
specimen. ~ut the failure of cast iron occurs suddenly exhibiting a square fracture
across the cross-section (See Figs.l.tS (e) and (f».

In the above discussion load was applied gradually. But under rapid or impact
loading* two additional material parameters have relevance and these are­
resilience and toughness,

Resilence defines the ability of material to absorb energy without suffering plastic
strain.

Toughness defines the ability of material to absorb energy prior to fracture.

While using equation 0' = Eo' E; it does not matter if we are loading or unloading
o the specimen, the stress-strain response is a straight line of slope E.

A material having proportional limit close to elastic limit such as steel is termed a
linear, elastic material. For stress value below the elastic limit, the loading and
unloading response follow the same path. All materials do not behave as that of
steel.

*We will discuss 'impact loading' in the chapter-stram energy and its application.
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(f

1

E (Breaking point)

1.19

(d)
Fig. 1.18 (d)

Brittle materials do not exhibit the yield point. Materials that fail in tension at
relatively low values of strains are classified as brittle materials. Examples are
concrete, stone, cast iron, glass, ceramic material and many common alloys.
N.B. Stress-strain diagrams of various materials vary widely and different tensile
tests conducted on the same material may yield different result depending upon
the ~emperatureof the specimen and the speed of the loading.

Stress-Strain Diagram for Concrete~

For a given steel, the yield strength is. the·same in both tension and compression.

For most 'brittle materials', ultimate strength in compression is much larger than
the ultimate strength in tension. This is due to the presence of flaws such as
microscopic cracks or Cavities which tend to weaken the material in tension.
Properties in tension an,d compression of concrete is shown in Fig. 1.18(e).

0'u(tension) Rupture in tension

0u(compression)

E(GPa)

Fig. 1.18 (e) Stress-strain diagram for concrete

Value of E for common materials:

Material
Steel
Copper
Aluminium
Bronze
Cast iron

"'Concrete is an anisotropic material.

200-210
120

70
83

100
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1.10 DIFFERENCE BETWEEN ENGINEERING STRESS AND TRUE STRESS

[MTU-2011-12 (2nd Semester)]

Particular Engineering stress

P
1. Stress formula Engg. Stress (cr) = A

Here, A is tl1e original area
of cross-section.

2. Behaviour of
material on
application of
load

3. Uses

Ellgineering stress (0") is

directly proportional to the
load P, decreases with P
during necking phase up
to fracture point or breal'Jng
point of the specimen of
ductile rnaterial.

Elastic behaviour of a
deformable body is studied
by Engineering stress.

Tl1~e stress
p

True stress (crt) = A

Here, A is t11e deformed area of
cross-section after the load
application.

True stress (O't) is propor­

tional to P but also inversely
proportional to A. True stress
increases tlntil rupture of
the specimen occurs (See
Fig.l.18(a».

Plastic behaviour of a material
is studied by true stress.

1.11 THERMAL STRESS AND STRAIN
Owing to temperature variation in the material, stresses and strains are setup.
Metal expand on heating and contract on cooling.

Fig. 1.19

If their expansion or contraction is prevented as shown in Fig. 1.19, then thermal
stresses and strains are produced.
The increased length of the rod is given by

It = 10 (1 + a~T)

10 = initial length of the rod

where It =final length of the rod at increased temperature

ex = coefficient of thermal expansion
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8T = rise in temperature

where Tf = final temperature and T,. = initial temperature

1 -1
Thermal strain (C1) = _t__o

10

10 (1 + a.8T) -10=------
10

=a.8T

and Thermal stress (crthermal) = E· a· ~T .

1.21

1.12 THERMAL STRESSES IN COMPOSITE BAR (Fig. 1.20)

Let tIS consider a composite bar (rod-l and tube 2) as sho\\?n in Fig. 1.20.
If the rod '1' and tube '2' \\'ere not connected \vith each other then their expansion
would be L . CtI !1T and L . a2tiT respectively.

Ho"vever, as the hvo are connected at the ends so thermal stresses and strains \vill
be produced.

Coefficient of expansion (a) is different for different materials. Here aI is more
than 0.2 , so rod 1 "vill expand more than tube 2.

Fig. 1.20

Since there is no external force applied to the above composite bar, the sum of
forces due to thermal stresses \vill be zero.

i.e. P2 - PI = a
or, P2 = PI =P (Assume)

No"v, ~Ll +~L2 =L·a1 ·dT-L·a2 ·dT

=L~T (al - Ct2 )

Also,
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and,

or,

STRENGTH OF lv1ATERIA.LS

Fig. 1.21

p = (a1 - el2 ) ~T

(A:E1 + A:EJ
Therefore, thermal stress in the rod

P (a1 -(2)~T

0'2 = A2 = (A2 •~ + ~)
Al E1 E2

EXAMPLE 1 A steel rod is stretched between two rigid walls and carries a tensile load of
5000 N at 20°C~ If the allowable stress is not to exceed 130 MPa at - 200 e, what is the
minimum diameter ofthe rod? Assume a = 11.7 Jl1n/m-oC and E =200 CPa.

SOLUTION Actual expansing of steel rod =Free expansion of steel rod
+ Expansion due to tensile load.

i.e. °=0thermal +°tensile load
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~===---L-===-------~

Fig. 1.22

(j·L P·L-- = L·a·~T+--
E A·E

E PL E
(j = L a ~T x - + - x -

L AE L

(j =aE~T + p
A

5000
130 =11.7 x 10-6 x 2 X 105

X 40 +--
A

1.23

=>

Of,

A =(5000)
36.4

d = 5000x4
36.4 x 1t

Fig. 1.23

o=3mm
r-I---------------------~I:::::::::::;
I.. 10 m .1.. 3 mm .1

=13.22 nun Ans.

EXAMPLE 2 Steel railroad rails 10 m long are laid with aclearance of3 mm at atemperature
at 15°C. At lvhat temperature will the rails just touch? What stress would be induced in the
rails? At that temperature ifthere were no initial clearance? Assemed a = 11.7 Ilm/moC

and E = 200 CPa.
SOLUTION T1 = ? and T2 =.}5°C

bT = L· ex· ~T

=aL(T1 - T2 )

3 = 11.7 X 10-6 x 1000 X (T1 -15)

T1 = 40.64°

Required stress (Jth = a . E . (T1 - T2 )

= 11.7 x 10-6 x 200 X 103 (40.64 -15)
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Fig. 1.24

~

~ L=_3m-ill

= 11.7 X 10-6 X 25.64

= 59.99

::::: 60MPa Ans.

EXAMPLE 3 A bronze bar 3 n1 long 'loith a cross-sectional area of 320 111n12 is placed
between tzoo rigid 'lvaUs as shown in figure. At a temperature of - 20°C, the gap
~ =2.5 111n1. Find the tenlperature at 'lvhich the conzpressive stress in the bar will be 35
MPa. (Use a =18 x 1D-6 nllm °C and E =80 CPa) .

SOLUTION Here 8thermal = 0 + ~

crL
a . L . ~T = - + 2.5

E

18 x 10-6 x 3000 x tiT = 35 x 30~0 + 2.5
80 x 10

~T = 3.8125 = 70.600 C
18 x 10-6 x 3000

T = 70.60 - 20 = 50.60°C Ans.
EXAMPLE 4 A rigid bar of negligible 'loeight is supported as shown in Fig. 1.25. If
W =80 kN. COlnpute the temperature change that will cause the stress in the steel rod to be
55 MPa.
Assun1e the coefficient Oflinear expansion are 11.7 JlmllnoCfor steel and 18.9 JlmlnzoC
for bronze.

Steel
L = 1.5 m

1----1 A =320 mm2

1m E=200GPa

A

"'---2.5 m--.......1---

Fig. 1.25

SOLUTION LMA = 0 gives

4Pbr + Pst = 2.5 x 80,000

4crbr X 1300 + 55 x 320 = 2.5 x 80,000

Bronze
L=3m
A = 1300 mm2

E =83 GPa

-~.....--1.5m
A~-~-------+--------f 0

Or(br) + 0br
F

Fig. 1.26
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a = 2.5 x 80,000 - 55 x 320 = 35.08 NtPa
br 4 x 1300

From similar triangles, ABC and ADF

8T (st) + 8sr 8r (br) + 8br

1 4

0r(st) + 8sr = 0.25 [8 r (br) + 8br ]

(a L~T)st + ( (J~Lt =0.25 [ (aL~T)br ( (J~L)br ]

11.7 X 10-6 x 1500 ilT + 5S x 1500
2000

= 0.25 [18.9 x 10-6 x 3000 ~T + 35.08 x 3000]
83000

~T = 28.3°C
A temperature drop of 28.3°C is needed to stress the steel to 55 MPa..
EXAMPLE 5 At a temperature ofBODC, 'a steel tyre 12 mnl thick and 90 mm wide that is to
be shrunk on to a loconlotive driving 'lvheel22 m in diameter justfits over the wheel, 'lvhich
is at a temperature of25°C.
Detennine the contact pressure between-the- tyre and wheel after the assembly cools to
25°C. Negle~t the deform.ation of the wheel cqused by the pr~ssure of the tyre.
ASSul1te a = 11.7 Jlrn/rnoC and E = 200 CPa.

.A...~-12m

Half of the tyre
(semicircular)

Tyre shrunk (In wheel

~+-- Locomotive wheel

2m

Fig. 1.27

SOLUTION We have

8 = 8r

P·L = L.a.~T
A·E
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==> P = AE a ~T

= (90 x 12) x 200 x 103
X 11.7 X 10-6 x (80 - 25)

= 1080 x 200 x 103
X 11.7 x 55

= 128996 Newton

Now Fprojected = 2P

p·D·L=2P

P(2000) (90) = 2 x 138996

P = 1.544MPa

1.13 VOLUMETRIC STRAIN OF A RECTANGULAR BAR WHEN
SUBJECTED TO UNIAXIAL LOAD P

Let a rectangular bar is subjected to load P along x-axis.

Ans.

p

T
d

Let

Fig. 1.28

L=length of bar
b = width of bar

and d = depth of bar.
Let due to application of load,

Change in length ::: oL
Change in width = ob"

and Change in depth = od
Final dimensional of the bar will be

(L x oL) x (b + ob) x (d + od)

Final volume = (L + oL) (b + lib) (d + od)

(neglecting product of small qtlantities)

Change in volume (Bv ) = (vi - Vi)
=(Lbd + bdoL + Lbod + LdBd) - Ibd

= bdoL + Lb&l + Ldob

ov
Volumetric strain (Ev ) =V
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oL od Bb
t =-+-+-

v L d b

od Bbd and b are lateral strain.

tv =longitudinal strain + 2 x lateral strain

= longitudinal strain - 2 x v longitudinal strain

8L 8L
=--2xvx-

L L
Volumetric strain of rectangular bar subjected to uniaxial load P

oL
= T(l- 2v)

1.27

1.14 VOLUMETRIC STRAIN OF A CYLINDERICAL ROD

Let the initial length of rod = Land dia. of rod = d
After U11iaxialload P, let its length increases to (L + 8L) and diameter de.crease to
(d - 8d)

A

A'...---+------------

p.---+------------
d

B

B'

I----f---t-..--.. P

(d--&j)

I~~--- L~---"·I

t+------- L+oL-------~.I

Fig. 1.29

Change in volume (ov) = (VI - Vi)

= ~{(d - &1)2 · (L +i5L)}- {~d2L}

=~{pJi - 2dL&i + d2i5L - pJi}

=~ {d2i5L - 2dLOd}

8
Volumetric strain (lOt,) = ~

·_ i(d2i5L - 2dL· &I)

- i d2 L
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8L 28d
E of cvlinder rod = - - -

V J L d

={longitudinal strain- 2 x diametral strain}

1.15 VOLUrllETRIC STRAIN OF A RECTANGULAR BLOCK SUBJECTED TO
NORMAL STRESSES ON ALL ITS FACE

Let 11S consider a rectangular block having dimensions x x y x Z so tl1at
AB=x
BF = z and Be = y

Let tl1e block is subjected to stress ax' cry and O"z along x, y and z axes respectively.
i\S a result of stresses the block will be strained along x, y and z axes. Let strain
along x, y and z axes be Ex' Ey and Ez respectively.

y
Gy

-J------x

E F Gz

B
A -Iax ax

IjL --
." G

0

(J'z
C

Z
Gy

Fig. 1.30

ax O"y O"z
Hence, Ex =--v·_-v·-

E E E

cry ax crzE =--v·_-v·-
Y E E E

Now, volumetric strain (E ) =E + E + E = C1x (1- 2v) + C1y (1- 2v) + O'z (1- 2v)
v xy Z E E E

(
ax cry C1 J 2v (0' +0' +0) 2v= _+_+_z --(0' +cr +0' ) = x y z __ ( )
E E E E x y Z E E O'x +O'y +O'z

(O'x +O'y +O'z)
= E [1-2v]

If a body is st.Ibjected to uniform hydrostatic pressure p, then each of the stress
components 15 equal to - p, therefore volumetric strain

-p-p-p 3p
(E) = E (l-2V)=(-)T(l-2v)

EXAM~LE1 A speci~en ofa.ny given material is subjected to a unifonn triaxial stress.
Deternllne the theoretzcal maxImum value ofPoisson's ratio.
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z

y cr
y

;.---+--0--;-.-- X

1.29

...(II)

Fig. 1.31

SOLUTION Let the specimen (as shown in Figure) is subjected to ax' cry and crz
along X, y and z axes respectively.

1
Then Ex =E[crx - v(cry + crJ] ...(1)

1
lOy = E[cry - v(crx + crz)]

1
Ez = E[crz - v(crx + cry)]

Adding I, II, and III

O'x + CJy + CJz= . (1- 2v)
E

...(III)

... (IV)

For uniform triaxial stress w,~ have Ex = cy = Cz and crx = cry = O'z

Hence, eq. (IV) reduces to

30'
3E=-{1-2v}

E

CJ
E=-{1-2v}

E
Since E and cr must be of the same sign if follo\vs that (1- 2 v ) must be positive i.e.
1- 2v ~ a

=> Ans.

EXAMPLE 2 A solid cylinder ofdiatneter d has an axial load P. Show that it's change in

(4PV)
diameter is nEd .

SOLUTION The load can be considered tensile or compressive. Here/let us consider
tensile load P.
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P-E._._._._._-j-P Lx
~ ~

Fig. 1.32

.. lateral strain €y
POIsson ratio (v) = (-) 1 · dinal · = (-)-

ongltu stram Ex'

where Ey = diametral strain along y-axis

Ex =longitudinal strain along x-axis

~l
Ott = -y . d · E = -v . d · -

x I

=-Y.d.~
AE

'p
=.-y·d·--

!:.d2E
4

=(_) 4Pv
,nEd

(-) sign, since there is decrease in diameter when the cylinder is subjected to
tensile load along x-axis.

EXAMPLE 3 A rectantular block 1 m long, 0.4 m 'lvide and 20 n11n thick is subjected to

biaxial stresses crx and cry acting along length and width respectively. If the increase in
length is 0.6 mm and increases in width is 0.09 mmfind

(a) ax and cry

(b) change is thickness ofthe plate
(c) change is volUlne ofthe plate

SOLUTION Given 01= O.6mm; 0b = O.09mm; Oz = 0

1= 1m =1000mm
E =200 x 103 MPa or N/mm2

b = 0.4m = ·"f)0 mm

t=20mm
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/~y
/

20mn -------,.0'----------
t----/---;r'--1m---~

Gy

Fig. 1.33

(t"l) For biaxial system:

1
£ =-(a -y·a)x E x y

0.6 1 ( )
-10-0-0 = 200 x 103 <Jx - O.25<Jy

ax - 0.25 a y =120 •..(1)

1
£ =-(0' -Y·O')Y E y x

ob 1b = "E(<Jy -v· <fx )

0.9 1 ( )- = 3 cry - 0.25<1x400 200 x 10

...(ll)

Solving (I) and (II) O'x = 140 ?v1Pa and Oy = 80?v1Pa Ans.

(b) Change in thickness

ot 1
£t =- =- (0 - v · <1 - vcr )t F; Z x y

ot 1
20 = 200 X 103 (0 - 0.25 x 140 - 0.25 x 80)

=> ot =-0.0055 nun

(c) Volumetric strain

tv =(Ex + ~y + t~) .

Ans.



1.32 STRENGTH OF A1ATERIALS

81 8b St
=-+-+-

1 b ~

0.6 0.09 -0.0055
=--+-+---

1000 400 20

= 0.55 X 10-3

So, change in volume (dV) = Ev . V

=0.55 X 10-3 x (1000 x 400 x 20)

= 44OOmm3

Since value of dV is positive so there is increase in volume of the plate. Ans.

EXAMPLE 4 A circle ofdiameter d = 220 lnm is made on a unstressed aluminiuin plate
400 m111 x 400 mm and ofthickness t =20 111m. Forces acting on the plate cause norlnal

1
stresses O"x = 80MPa and 0y =140 MPa. For E = 70 CPa and v = "3 determine:

y

az=140 MPa

z

-~~----------.,.---x

ax =80 MPa

Fig. 1.34

(b) change in length ofdiameter CD
(d) change in t'olume ofthe plate

(a) change in length ofdiameter AB
(c) change in thickness ofthe plate
SOLUTION Given

Ox = 80 MPa = 80 x 106 N/m2

0z = 140 MPa = 140 x 106 N/m2

E = 70 X 109 N/m2

We know that by application of load stress and strain occurs in the material.

Let Ex' Ey and Ez are the strain along x, y and z axes.

Then,



SIA1PLESTRESSESANDSTRAINS

1=- [0' - V . 0' - V · 0.,]E x y if.

= 10
6

= [80_0._ 140 ]
70 x 109 ·3

=0.476 X 10-3

cry ax crz
Ey = E - v ·E - v ·E

=O-!x 00 ~!x 140
3 70 x 103 3 70 X 103

1
= 3 x 70 X 103 [SO +140]

= -1.047 x 10-3

O"z ax cry
Ez = --v·-"-v·-

E E E

= 140 _ .!. x 80 - 0
70 X 103 3 70 X 103

= 1 [140- 80]
70 x 103 3

= 1.62 X 10-3

Now,
(a) Change in length in diameter AB i.e.

BAB = Ex X d

=0.476 X 10-3 X 220

= O.1047mm

(b) Change in length in diameter CD i.e.

BCD = Ez X d

= 1.62 X 10-3 x 220

= 0.356mm

(c) Change in thickness of plate i.e.

Oy = Ey X t

= -1.047 X 10-3 x 20 mm

=-0.0209 rom (decreases in thickness)

1.33
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(d) Change in volume ( Ov )

= EV x original volume

= volumetric strain x original volume

Volumetric strain of aluminium plate is given- by

(0'x + (Jy + crz ) (1 - 2v)
tv = E

_ (80+0+140)(1-2X~)
- 70 x 109

1 1
= 220x-x---

3 70 x 109

= 220 X 10-9

210

Change in Volume (ov) = tv x V

= 22 X 10-9 x (400 x 400 x 20)mm3

21

= 22 x 10-9 x 32 X 105 mm3

21

= 22 x 32 X 10-4 mm3
21

= 33.523 x 10-4 mm3

= 3.352 x 10-3 mm3 Ans.

1.16 RELATION BETWEEN ELASTIC CONSTANTS (E, K AND G)

(a) Relation betlveen E and K:

L = side of the cube
and dL =change in length of cube

y
CJ

z

(j

~--+---+---x

CJ

Fig. 1.36
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... (i)

Let the element of elastic body in the form of etlbe is subjected to equal tensile stress
(cr) along x, y and z axes then total strain along x-axis.

dL (j cr cr
-=--v·--v·-
LEE E

(j

= E (1- 2v)

Initial volume of the cube

(V)" = L3

Now, differentiating both sides, dV = 3L2dL

.( dV) = 3L
2

x dL = 3dL
V L3 L

(dt)=(~)
From equation (i) and (iii)

dV (j

3V = E (1- 2v)

dV 30'
Y-=E(1-2v)

Bulk Modulus (K) = Stre~s.
VolumetrIc stram

(j
=----

3cr
£(1- 2v)

... (ii)

... (iii)

K= E
3 (1- 2v)

.. E=3K(1-2v) ...(iv)

(b) Relation between Eand G: Let the block of side'L' and thickness unity is subjected
to shear stresses~,at faces AB and CD, hence complementary shear stresses (~)

..will be developed on faces AD and EC, as a result the cube is distorted to ABC' D'.

N .. AC AC'-ACow, stram m =----
AC

C'H
=

AC

CC'cos 45°
=

ABJi
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ce' t c
=-- D D' C'

2AB I
I

I

=!x( CC') I
I

I

2 BC I
't I

I

1
y "=-1 I

2

= Y
2 A B

't'
't Fig. 1.37=- ...(1)

2G

Strain along AC = ~ and strairi along BD = (-) v· ~
E E

[ Shear strain (y) = ~J

... (3)

... (2)

Further Strain along diagonal AC = strain due to tensile stress in AC

- strain due to compressive stress along BD

.=[~ - (-v~ )] = [i + v . ; 1
So combined strain along AC = .!. [1 + v ]

E

~rom equation (1) and (2)

't t
2G = £(1 + v)

G= E
2 (1 + v)

where G = modulus of rigidity

E = modull1~ of elasticity.

Eliminating v from equ. (3) we get the relation between three elastic constants

9GK
which is E = ---

3K+G

EXAMPLE 1 A bar of30mm dia!71eter is subjected to a axial pull of60kN. The nleasured
extension on a gUfluge length of 200mm is 0.09 1nm and the change· is diameter is '­
O.0039nlm. Calculate the Poisson's ratio and the values ofthe three nloduli.
SOLUTION Diameter of the bar = 30mm

Area of the bar (A) = ~ x d2 =~ X (30)2 = 706.86 mm2

4 4

N.B.: If the direction of shear stress 't is reversed then also the same result ,vill occur.
In that case diagonal BD ,vill be elongated and AC will be compressed simultaneously.
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Tensile load = 60 kN =6000 N

6000 2
Tensile stress (0) = 706.86 N/mm =84.88 N/mm2

Change in length ( 0 ) = 0.09 mm

Longitudinal strain (Et ) = ~ = 0.09 = 0.00045
I. 200

Young's Modulus (E) = ~ = ( 84.88 ) = 18862N/mm2

£1 0.00045

L 1 · &l 0.0039 0 000atera stram = - = -- =. 13
d 30

latera! strain
Poisson's ratio (v) =1 ·tudinal tt ·ong! 5 am

0.00013 13
=---=-

0.00045 45

Let Gbe modulus of rigidity

We know that E = 2G (1 + v)

188622 = 2C( 1 + 13)
. 45

G = 188622 x 45
Zx58

= 73172.327 N/mm2

Let Kbe the bulk modulus

We know that E =3K (1 - 2v)

188622 =3K(1- ~~)

K = 188622 x 45
3x19

=148912.1 N/inm2

13
v = - = 0.28

45

,E = 188622 N/mm2

G = 73172.327 N/mm2

K = 148912.1 N/mm2

1.37
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1.17 EXPRESSION FOR THE ELONGATION D OF A VERTICAL BAR OF
LENGTH L, UNIFORM CROSS-SECTIONAL AREA A, SUPPORTED AT
ITS UPPER AND UNDER ITS OWN WEIGHT W

Let us consider an element of thickness dx at a distance x from the lower end of the
bar. Let p is the mass density ofbar material.

. For length X, Wx =P · g . A . x

As a result of this load portion of length dx "viII suffer small elongation do such
that

do = W ·dx
A·E

= P . g.. A · x · dx

A·E

Total elongation 0 = JoL do

=i L p. g ·~ . x dx
o ~.E

=pg i L
X dx

E 0

pgL2

=--
2E.

Weight ofbar (W) = p. g. A· L

W
p=---

.. A·L·g

Substituting the value of P in the above equation.we get,

L

Fig. 1.38

...(1)

1.18 PRINCIPLE OF SUPERPOSITION

When a number of loads are acting on a body then the resulting strain will be
algebraic sum. of the strain caused by individual loads.

While solving the problem by superposition principle, first the free body diagram
is drawn, afterwards the defo~ation(increase or decrease) of the each section is
obtained.

,. 8 and any computed value ofdimensions viz d; 1etc of the specimen should be expressed
in mm while solving the numerical problem.
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The stress in section 1,

The total deformation (Increase or decrease) of the body will then be equal to the
algebraic sum of the deformation of individual section.

Let us analyse bars of the varying sections:

Fig. 1.39

In the figure there are three stepped bars of different cross-section AI' A2 , A3 and

different length 11' 12 and 13 respectively.

Let P = axial load acting on the bar
and E = Young's modulus of the bar.

Although each section is subjected to the same axial load P, yet the stresses, strain
and change in lengt115 will be different.

P
0'1 =-

Al

The stress in section 2,

The stress in section 3,

The strain in section 1,

and,

P
0'3 =­

A3

0' P
E - 1 --­

I - E - AlE

P
Similarly, strain in section 2, £2 = A

2
E

P
E ---

3 - A
3

E

.. . . Change in length of portion 1
Also, stram m portion 1.= 0·· 11 th f · 1ngma eng 0 portion

011
£1 =-

11

Change in length of portion 1, 011 = £1 11

PI1=--
AlE
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Similarly, change in length of portion 2, 012 =!...J.L
A2 0E

and change in length of portion 3, 013 =~
A3 ·E

Total change in length of the bar

n=3

L 01 = 011 + 012 + 013
n=l

STRENGTH OF MATERIALS

= p [!.L + i + lL]
-E A} A2 A3

This expression is used in solving the problem when a round bar/stepped bar/
rectangular bar is subjected to axial load and the total change in length of the bar
is needed.

In general total change in length of bar

n=n P [ I I I ]L dl =- _l_+--L+ •.• +--!L
n=l E A1 A:2 A"

EXAMPLE 1 The loads acting on a3 mm diameter has 6 meter total length divided into
three segments as shown infigure. Find the total elongation ofthe bar (E = 210 GPa).

ABC 0

10kN--i B":PkN ~5kN
t+--2 m--+1 m -I- 3 m -I

Fig.1.40

SOLUTION For static equilibrium P + 2 + 5 = 10

P =3kN.

A B B C C 0

10~ :JorJ~~~ ~
......2 Rm=f6 KI t+-- 3 m ---+t

Fig. 1.41

Now, drawing FBD
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Total elongation ofbar

1 .
= EA [PAB x LAB +PBC X LBC + PCD x LcD]

1=---------
210 X 109

X 7.0714 X 10-6

[ (10 X 103 x 2) + (8 X 103 x 1) + (5 X 103 x 3)] m

= 10
3

[20 + 8 + 15]
210 x 7.0714 x 103

1.41

43
=----

210 x 7.0714

=0.0289 m =28.95 mm An~.

EXAMPLE2 A homogenous rod ofconstant cross-section is attached to unyielding supp~rts.

It carries an axial load 1) applied as shown infigure. Determine the reaction at A and B.

Fig. 1.42

SOLUTION Applying the condition of static equilibrium.

RA +RB = P

As the bar is fixed rigidly between supports.
Therefore, extension in portion AC = Contraction in portion CB.
Let us draw F.B.D. for portion~C and CB sepa!ately.

...(1)

A C

RA ---1 ~ RA

J.-a--.J
(a) (b)

Given

Fig. 1.43

a - RA • a. 0CB = RB • b
AC - A. E ' A· E

0AC =0CB·

F_A·a RB·b--=--
A-·E A·E
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Substituting the value of RA in eqn. (2)

b
-·RB +RB =P
a

P·b
R --­

A - (a + b)

STRENGTH OF MATERL4LS

...(2)

Ans.

Ans.

EXAMPLE 3 A 550 mm long round bar ofcopper has adiameter of30 mm over alength
of200 mm, diameter of20 mm over alength of200 mm and adiameter ofl0 mm over its
remaining length. Determine the stresses in each section and elongation ofthe rod u,hen it
is subjected to apull of30 leN. Assume E= 100 leN/mm2•

SOLUTION Axial pull (P) = 30 kN

= 30000 Newton

~=30mm.--J fI}=20mm fI}=10mm

30kN---:J : : r-- 30kN

A/-200 mm-f200 mm+150mm~ D

Fig. 1.44

Young's Modulus (E) =100 kN/mm2

=100 x 103 N/mm2

= 10? N/mm2

P
Stress in portion ABI aAB = AAB

AB
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where, PAB =load (Axial) in the portion AB

AAB =cross-sectional area in the portion AB

O'AB = 300 X 10
3

= 42.463 N/mm2

~(30)2
4

AAB = 706.5 mm2

ABC =~(d)2 =~ X (20)2

ABC =314.28 mm2

Simile 1 PBCary, aBC =-A
BC

= OOסס,30 = 95.54 N/mm2 Ans.
~x(20)2
4

AcD =~ X (10)2 mm2
4

= 78.57mm2

30,000
°CD =

:! (10)2
4

= 381.82N/mm2

Total elongation of the rod

(0) = P .( .!1. + .!1.. + L3 )
E .At A2 A3

--+----... 5 kN

20kN

30kN

./14--- 300 mm~200 mm-.r-1 00 mm-.j

Fig. 1.45

30000 (200 200 150 )
= (10)5 706.85 + 314.28 + 78.57

o=0.84 mm Ans.

EXAMPLE 4 A steel bar of25 mm diameter is loaded as shown in Fig. 1.45. Calculate the
stresses in each portion and the total elongation. Assume Esteel = 200 GPa.

ABC 0
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SOLUTION' Let us draw FBD of various portion of bar (starting from D for
convenience).

2~·-_·_·P~·-·~~·-·F
A B Bee 0

Fig. 1.46

c.s. area of the bar =~ x d2

4

= ~ X (25)2
4

Hence, A = 490.873 mm2

PAB 25 X 103

(JAS = -A- = -4-90-.8-7-3

= 50.93 :MPa

crBC = (-)P: (since load is compressive so negative signused)

= 490.873 x 200 x 1tr [25 x 103 x 300 - 5 X 10
3

X 200 + 15 X 10
3

x 100]

103

= 490.873 x 2 x 105 [25 X 300 - 5 x 200 + 15 x 100]

= (_) 5 X 10
3

= (_) 10.186 MPa
490.873

Total elongation

1
=AE LPn · In

1
= AE [PAB • LAB - PBC • LBC + PCD • Lev]

1

= 10
3

[7500 - 1000 + 1500]
490.873 x 2 x 105

103
X 8000

=------
490.873 x 2 x 105

80
=----

490.B73 x 2

= 0.08148 mm =0.0815 mm Ans.
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EXAJ.'1PLE 5 A single axial load P = 50 kN is applied at end C of the brass road ABC.
Knowing that E = 105 GPa, detennine the diameter d of tlte portion BC for u'hich the
deflection at point C will be 3 mm.
SOLUTION Applying formula

°total ::-: 0AB + 0BC

or

or,

or,

or,

Fig. 1.47

EAB =EBe = Ebrass = 105 GPa (given)

= 105 x 103 MPa

3 = 50 X 103
X 1 X 103 + 50 X 103 x 0.5 X 103

~ (30)2 x 105 x 1(f ~ (d)2 x 105 X 103

4 4

3 = 50 X 10
3

x Jff[_l_ + 0.5 ]
~ x 105 x Jff (30)2 (d)2
4

3 = 4 x 50 X 10
3

[_1_ + 0.5 ]
1t x 105 900 (d)2

(
3 x 1t x 105) 1 0.5

4 x 105 X 103 - 900- = d2

4.9455 X 10-3 - 1.111 X 10-3 = O.~
d

or,

=>

3.8345 0.5
lQ3=d2

d =11.42mm Ans.
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EXA.MPLE 6 111 the given figure AB and Be are made ofan
alunlinium for 'lvhich E = 70 CPa. Kno'loing that the
n1agnitude ofPis 4 kN. Determine

(a) the value ofQso that the deflection at A is zero
(b) the corresponding deflection at B.

SOLUTION (a) Given deflection at A =0 and P = 4 kN

o= p. L _ (Q - P) . L
A·E A·E

STRENGTH OF A1ATERIAL5

0.4 m 20 mm dia

B

=>
P·L (Q - P)· L
--=
A·E· A·E O.5m

Q 60 mm dia

=>
P x 9.4 X 103 (Q - P) x 0.5 X 103

=------
~ (20)2 X E ~ (60)2 X E
4 4

PxO.4 (Q - P) x 5
=

400 9

p , (O-P)

A B

0.4m 0.5m

B
C

c

Fig. 1.48

I

p

Fig. 1.49

=> 36P = 5Q - SP

=> 41P = 5Q

Q= ( 41) P = 41 x 4 = 164
555

IQ = 32.8kNl

.(0 - P)

Ans.

(b)
~ _ (32.8 - 4) x 103

X 500 x 28
UBC -

22 x 3600 x 70 x 103

14.4
=-

198

= O.0727mm

EXAMPLE 7 The specimen shown in Figure is madefrom a 25 mm diameter cylindrical
steel rod with two 38 mm sleeves bonded to the rod as sho'lvn in figure. Knolving that
E =200 CPa, determine
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(a) the load P so that the total deformtio11 is 0.05 lnm.
(b) the corresponding deformation ofthe central part BC.

A r 38mm <cIl) B ,25mm<=cIl) C r38mm=lPo

p. [~~~~~~~~~I [~~~~~~~~J~.p

r--50mm --+--75mm --+-somm--.j

Fig. 1.50

SOLUTION Given 5total = 0.05 mm; E =200 GPa =200 x 103 MPa.

(a) 5total = 5AB + 0BC + oeD' by superposition theorem

0.05 = p. LAB + P 0 LBC + p. Lev
. AAB 0 E ABC· E AcD· E

0.05 = !:. [LAB + LBe + LcQ...]
E AAB ABe AcD

O05 = . P [50 75 50]· 3 + +
200 x 10 ~ (38)2 ~ (25)2 ~ (38)2

444

(
0005) P [2X50 75]
-1- = 2 x 105 X .?: (38)2 + (25i

4

0.05 4P [100 75]
-1- = 21t x 105 (38)2 + (25)2

1.47

0.05 X 21t x 10
5 =P X [ 100 +~J....

4 (38)2 (25)2

5 X 21t X 10
3

=P x (0.069252 + 0.12)
4

P=41479N

= 41.479kN

IF = 41.5kNl

(b) Corresponding to P = 41.5 kN, the central part BC

41.5 x 103
X 75

Deformationi.e. 0Be = ------
~ (25)2 X 200 X 103

4

Ans.
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41.5 X 103
X 75 X 4 X 7

=--------
22 X 625 x 2 X 105

= O.03169mm

IOBC = 0.0317 mml Ans.

1.19 TENSION IN WIRES OF A HINGED BAR SUBJECTED TO AXIAL
PULL (P)

EXAMPLE 1 In the figure OABC is a rigid bar which is hinged at 0 .and supported in a
horizontal position by two identical steel wires. A vertical load P is applied at C. Find the
tension T1 and T2 in the steel wires.

o

Given

Fig. 1.51

SOLUTION The 11 + T2 + Fy =P

Fy

Fig. 1.52 Free body diagram

From~s GA'A and GB'B

0A = 08 = T1

a b T2

0A a 11-=-=-
0B b T2

Taking moment about 0 and equating it to zero

Tia+T2 ·b=P·l

a T1-=-
b Tz

p

.p(l)

...(2)

...(3)
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or

or (Adding 1 both sides)

or
a2 + b2

_ a1i + bT2

b2 - bT
2

T, bY. _ T2 (a
2 +b

2
)

a 1+ 2- b

Equation (3) reduces to

P·b·J
:. 2 2 = T2

(a + b )
P·a ·1

Similarly Ii = 2-2­
(a + b )

P=30kN

c

c'

..----1-- I --+----.t

o

o

N.B: This can be used as a fQrmula when P. a, b, 1are given.

Let us confirmby the It>llowing example.

EXAMPLE 2 A rigid bar OABC is hinged at A and supported in ahorizontal position by
two identical steel wires as shown infigure. A vertical load of30 kN is applied at C. Find
the tensileforces T1 and T2 induced in these wires by the verticalload.

0/

Fig. 1.53

SOLUTION By formula

p. a·l
T1 =--­

(a2 + b2
)
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30 X 103
X 1 X 3

=------
(12 + 22

)

~= $ =18,000 Newton

=18kN

p. b·l
T2 =

(a2 + b2
)

6)0 X 103 X 2 x 3
=

$1

= 36kN Ans.

EXAMPLE 3 The rigid bar AB is attached to two vertical rods as shown in Fig. 1.54 is
horizontal before the load P is apoplied. Determine the vertical movement of P if it's
magnitude is 50 kN.

A~ C --t B

For Aluminium
L=3m
A=500 mm2

E=70 GPa

Aluminium .Steel
For Steel
L=4m
A= 300 mm2

E = 200 GPa

J.--3.5 m

SOLUTION For Aluminium

LMB = 0 gives

6PAI = 2.5 x 50

2.5 rn---.J
P=50kN

Fig. 1.54

At--- ----f B
3.5m 2.5m

P=50kN 50x103 N

C 8

1.785 mm

Fig. 1.55
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P _ 2.5 x 50
Al - 6

= 20.83 kN = 20.83 X 103 Newton

o _ p. L = 20.83 x 3 x (1000)2 nun
Al - A. E 500 x (70 X 103)

_ 20.83 x 3000 _ 1 '785- mm- ./, mm
500 x 70

For Steel

LMA =0 gives

O"Pst = 3.5 x 50

P
t

= 3.5 x 50 = 2916kN
s 6 ·

=19.16 X 103 N

P·L
0" ---

steel -.A.E

29.16 X 103
X (4 x 1000)

=--------
300 x 200 X 103

= 29.16 x 4000 = 1.943 nun
300 x 200

Now, from similar triangles AtC1C2 and AlBt~

1.51

=>

Y 1.943 -1.785
-=----
3.5 6

_ 3.5 x (1.943 -1.785) _ 0092
y- 6 -. mm

Now, vertical movement of P

:CC 2

= CC I + Y

=1.785 + 0.092

= 1.877mm Ans.
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EXAMPLE 4 The rigid bar AB and CD is shown in Fig. 1.56 are supported by pins A and
C and the two rods. Determine the maximum force P that can be applied if its vertical
movement is limited to 5 mm. Neglect the weights ofall members.

o
3m

3m

P
3m

3m
14---------- Aluminium

B L=2m
/1~~---_....I.-_-----"';;"""" A =500 mm2

Steel E =70 GPa
L=2m
A= 350 mm2
E=200GPa

Fig. 1.56

SOLUTION Let us start from partAB.

~A =0 gives

3Pal = 6Pst

• 3m H 3m B

A'~aa
H'

B'

Fig. 1.57

Now, from similar triangle~, ABB' and AHH' we get

BB' HH'-=--
6 3

08 0al-=-
6 3

08 =2oa1

=2[Pal· L ]
A·E

_i[ Pal X 2000 ] __1_ P
- 500 X 70 X 103 - 8750 al
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= _1_ x 2.P. 8750 st

1= 4375 �t is the movement of B
Part CD 

3m 3m 

p 

Q C-==-----t----------10

Fig. 1.58 

Movement of D
60 =Ost+ 6B 

= P·L +-1-P 
A·E 4375 st

= �t x iooo + _1_p 300 X 2 X 105 4375 st 
= 3.333 X 10-S �t 

+ 2.285 X 10-4 p
st 

= 2.618 X 10-4 �t 

™c= 0 for static equilibrium 
6�t = 3P 

1 
p

t
= -P s 2

By similar triangles CQQ' and CDD'

o
p 60 -=-
3 6 

1 6p = -o02 
(-5-) = .!_ X 2.618 pst X 10-4 1000 2 
p _ [ 0.005 X 2 Jst - 2.618 X 10-4 

S
D 

D' 

1.53 

[·:o
p = 5mm]
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or, !p =38.19
2

. . p'= 76.38 kN Ans.

EXAMPLE 5 Two vertical rods attached to the light bar in Fig. 1.59 are identical exceptfor
length. Before the load W was attached, the bar was horizontaiand the rods were stressfree.
Determine the load in each rod ifw = 6600 N.

L=6M
8 C

4m--+-4m--+2m

Rg.1.59

SOLUTION !Me = 0 gives

4PA + BPB =10 x 6600

PA + 2PB = 16500 ...(1)

4m

W=6600N
4m 4m C

o~~--..,...;:---------~

Diagram after deflection

Fig. 1.60

Now, from similar triangle OA4' and OBB'

PA . LA 1 PB . LB 1
--~x-= x-
AA · EA 4 AB • EB 8

Since rods are identical except le11gth

So AA = AB = A (let)

EA = EB =E (let)
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PA • 4 1 PB • 6 1
--x-=--x-
A·E 4 A·E 8

P
A

= 3PB

4

Substituting the value of PA in equation (I)

3PB + 2PB =16500
4

3PB + BPB = 16500 x 4

I1PB = 16500 x 4

PB =(~) =6000 Newton

PA = 16500 - 2PB

=165000 - 12000

= 4500 Newton

1.55

...(ll)

EXAMPLE 6 The blockofweight W hangsfrom the point flt A. The bars AB and AC are
pinned to the support at Band C. The C.S. area are 800 lnnl2for AB and 400 mm2for AC.
Neglecting the weight ofthe bars, determine the l11aximum safe value ofW if the stress in
AB is limited to 110 MPa and in AC to 120 MPa.

PAS. sin 40°

PAC. sin 60°

PAC

(b)

sin 40 = 0.642 ]
cos40 = 0.766

Fig. 1.61

SOLUTION Drawing F.B.D as in Fig. 1.50 (b) of joint A, we get

L Fx =0 gives

PAC x 0.5 - PAB x 0.766 = 0

L F. = 0 givesy

PAC X 0.866 + PAB x 0.642 - W = 0

Solving (1) and (2) \ve get

PAB = 0.508 W

and, PAC = 0.778 W

... (1)

... (2)
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The value of W that will cause tlle stress in each bar to equal its maximum safe
magnitude is determined as follows:

ForAB:

P=cr·A

O.508W =110 x 106 N/m2x 800 x 10-6 m 2

W = 173 X 103 Newton

= 173kN

ForAC:

P=cr·A

0.778 W = (120 X 106 N/m2
) x (400 x 10-6 m 2

)

W = 61.7 X 103 N

= 61.7kN

The maximum safe value of W is the smaller one.

61.7kN Ans.

1-l P

L ~ length of the bar
b= width of smaller end
t = thickness of bar

a
p

1.20 EXPRESSION FOR THE TOTAL EXTENSION OF A UNIFORMLY
TAPERING RECTANGULAR BAR WHEN SUBJECTED TO AXIAL
LOADP.

P = axial load on the bar
a=width of bigger end
E =Young's Modulus

t~

Let

Fig. 1.52

Width of the bar of sectio~ XX =a _ ( a~ b ) x

=a - Kx where ( a ~ b) = K (Constant)

Area at section XX = width x thickness

=(a - Kx) t

Stress at section XX,

P
0' ----

xx - (a - Kx) t"
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Extension of the small elemental length dx

=Strain x length dx

= Stress x dx
E

[(a-~)t ]
= xdx

E

P
= xdx

E (a - Kx) t

I
L P

Total extension of the bar (dL) = dx·
o E (a - Kx) t

P (L dx
= Et Jo (a - Kx)

=~ .IOge[a-kxnX(-~)

P
= -- [loge (a - KL) -loge a]

Et

1.57

Ans.PL (a)
= Et (a - b) · loge b

N.B. This may be treated as a formula.

EXAMPLE 1 Find out the total elongation caused by an axial load of100 kN applied to
aflat bar 20 mm thick, taperil1gfro",: awidth of120 mm to 40 mm in a length of10 m as
shown in Fig. 1.63. (Given E = 200 CPa.)

P = 100 kN '--r--+--t--

20~-~:r:----_44-__--!_~

Fig. 1.63

P=100kN
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SOLUTION From the question we find that cross-section is not constant so the
p

equation (J = A does not hold good in this problem.

However, it may be used to find the elongation on a differential length for which
cross-section is constant.

dx

p

I~
~10---""

Fig. 1.64

At mn-section, y - 20 = 60 - 20
x 10

.. y=(4x+20)mm

Area of the section (A) =20 x 2y = (160x + 800) mm2

At mn, in a differential length dx, the elongation

8 = P·L
AE

do = (100 X 10
3

) dx
(160x + 800) (10-6) (200 X 109 )

= [ 0.500 dx ]
160x + 800

rIO dx
Total elongation (8) = 0.500 JI

o 160x + 800

= 0.500 [In (160x + 800)] &0
160

8 = 3.4 mm Ans.

p

EXAMPLE 2 A solid truncated conical bar ofcircular cross-section tapers un~fornlly /or111
a diameter D 1 at large end to D2 at small end. The length of bar is L. Determine the
elongation due to axial force P applied at each end.

SOLUTION Let us consider an elemental length dx at a distance x from the bigger
end.
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Diameter of the bar at x distance from bigger end

(
D -D )=D1 - mx, where 1 L 2 =m

.. Sectional area at this section, Ax =~ (D1 - mx)2

Axial strain at this section,

1.59

Axial stress
Ex =--E--

PIAx=--
E

p
=------
~(Dl -mxl·E

Extension of the elemental length dx

= Ex X dx

= 4P .dx
1t (D1 - mx)2 E

Total extension of the bar

t 4Pdx
= 0 1t (D1 - nlx)2 E

4P JL 2= - (D1 - mx)- dx
1tE 0

4P [ 1 ]L
=nE m (D1 - m:t) 0

dx

P~~r---~--------I-~p

D2

~---L----"

Fig. 1.65

4P [1 1]
= 'ItEm (D1 - 11zL) - D1 - m x 0

4P [1 1]=-- ----
nEm D2 D1
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= 4P(D1 -D2 )

nEm D1 D2

STRENGTH OF MATERIALS

1

. 0 - 4FL I
.. - nED} D

2
, Ans.

EXAMPLE 3 Ifa tension bar is found to taper uniformly from (D - a) cm to diameter
(D +a) em. Prove that the error involved in using t~e mean diameter to calculate Young's

modulus is ( l~arpercent.

SOLUTION By formula extension (0) = 4PL
1t(D-a)(D+a)E

In case we are to calculate E on the basis ofmean diameter D, extension 0 being the
same

E · I I . 4PL 4PLrror m ca cu ating E = - --
1t (D2

- a2
) x n D 2x

and,
[

4PL _ 4PL ]100
n (D2

- a2
) x 1tD2x

Error in calculating E = =--------.-:=----­
4PL

=lOO(~1 =(10a)2
D2

) D Proved.
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1.21 STRESSES IN COMPOSITE MEMBERS

A composite member is composed of two or more different materials joined together
in such a way that the system is elongated or compressed as single unit.

P

Fig. 1.66

In the figure composite bar of different materials have been shown.
Let P =total load on composite bar

L =length of each bar.
For Bar 1 Bar 2

A1 = Area of cross-section

PI ~ load carried by it
EI = Young's Modulus

0'1 =Str~ss induced

Total load on composite bar,

P=l\+P2

~
The stress in bar 1, (1t = At

A2 .= Area of cross-section
P2 =load carried by it
E2 = Young's Modulus
a2 = Stress induced

....(1)

Similarly, P2 = "2 ·A2'

Substituting the' value of PI and P2 in equation (1)

P = a 1 Al + a2 A2

Strain in bar (1), Et = ~

Similarly, strain in bar (2), E2 = ~:

We know, strain in bar 1 =Strain in bar 2

I·.. ~=~I Ans.

...(2)

...(3)

...(4)
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1.22 STATICALLY INDETERMINATE MEMBERS

There are certain loaded members in which the equations of static equilibrium
are not sufficient for a solution. lhis condition exists in structure ',vhere the number
of unknown forces exceeds the number of equilibrium equations. Such cases
are called statically indeterminate and require the use of addition relations that
depend on the elastic deformation in the member and are knO\vn as compatability
equation.
A compound bar is a 'Case of an indeterminate system which is discussed below:

2

p 1 (Hollow) p

2

Fig. 1.67

Two bars of different materials (1 and 2) here make a composite bar or compound
bar is subjected to load P.
Our objective is to find the load shared by hollow tube 1 and solid ba= 2.
Applying condition of static equi.1ibrium

P = PI + P2 ··.(1)

Applying compatibility equation

i.e. 01 = 02 (i.e. deformation ofb~ is equal to tube)

IlL P2L
AIEl =A2~ (As the length of 1 and 2 are equal i.e. Lt =~ =L)

or, P
l

= P2Al Et
A2E2

Substituting 11 in (I) we get

P _ P2AtEI n---+r2
A2E2

= P2AIEt + P2A2E2

A2E2

=P2(AIEI + A2E2 )

A2E2

P
_ p. A2E2

2 -
AIEl + A2E2

...(II)

Similarly,
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EXAMPLE 1 A compound tube is made by shrinking athin sheet tube on athin brass tube.
As andAbare the sectionalareas ofthe steeland brass tubes and Esand Ebare the corresponding
values ofYoung's Modulus. Show thatfor any tensile load the extension ofthe compound
tube is equal to. that ofasingle tube ofthe same length and total cross sectional area but

. ( EsAs + EbAb )
having a Young's modulus of ~ + A

b
•

Steel tube Brass tube

Fig.1..S8

SOLUTION Let the load on the compound tube be P.
Area of steel tube = As .
Area ofbrass tube = Ab

Let the stresses in the steel tube and brass tube be crs and crb respectively therefore

or, (~:)=(~:)
Escrs = -. crb
Eb

Load on steel + load on brass = total load on compound tube

crs •~ + crb · A" =p

0b =[ Eb
]. P

Es~ + EbA"

Extension of the compound tube = dl ~ extension of steel or brass
tube

...(1)
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Let Ebe the Young's Modulus of the tube of area (As) carrying the same load and
undergoing the same extension.

=

dl - [ (As +PA,,) E]

From (I) and (II), we get

P·I P·I
(As + A,,) E Es • As + Eb • A"

...(ll)

.E == [EsAs + EbA,,]
.. As+A"

EXAMPLE 2 A load of2 MN is applied on ashort column ofconcrete 500 mm x 500 mm.
The column is reinforced withfour steel bars ofl0 mm diameter, one in each corner.
Find the stress in the concreteand steel bars. Take Efor ste~l as 2.1 x 105N/mm'l andfor
concrete 1.~ x 105 N/mm2 (UPTU-2004)
SOLUTION Given P = load applied = 2 MN

= 2 X 106 Newton

········.,··············T::.:::::::..::::::.~.:
:~:!!.~. ~.:.:.~. !~:~. ~.::-:.:~:.:.: .
:::::A..::::~.::::::IJ... 500 mm
••••••••• .L ~..•.....•.-....•....
.......................
_...-•....~ ....:~
...•.........-..............•-.-........................r-500 mm---1

Fig.1.69

Area of column = (500 x 500) mm2

=.250000 mm2

Area of4 steel bars (As) = I x ; (10)2

= 314.159 mm2

Area of concrete (Ac) =. (Area of column- Area of steel bars)

= 250000 - 314.159

= 249685.841 mm2

Now, ~train in steel = strain in concrete

Esteel = Econcrete
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Es0=0·­seE
c

2.1 X 105
=0 x---

c 1.4 X 104

= 15oc

Now,~y figure we have,
Load on steel + load on concrete = Total load

crs As + 0c Ac =P

1.65

...(1)

15 crc x 314.159 + 0c x 24%85.84 = 2000ooo

ICJc = 7.86 N/mm2 I Ans.

Putting the value of 0c in the above equation (1).

crs = 15 x 7.86 N/mm2

= 117.92 N/mm2 Ans.

EXAMPLE 3 A reinforced concrete column 200 mm in diameter is designed to carry an
axiarcompressive load of300 kN. Determine the required area ofthe reinforcing steel ifthe
allowable stresses are 6 MPa and 120 MPafor the concrete and steel respecti'l'ely.

Econcrete =14 GPa

Estee1 = 200 GPa
SOLUTION Given

O'co = 6MPa

and a st = 120 MPa

Ecc =14GPa

and Est = 200 GPa

Strain in column =Strain in steel

(JeD = (Jst

Eean Est

. OeD = ast

14 X 103 200 X 103

[.: 0 = E • E]
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1. P = 300 kN = 300><183 N

1
La

.....
......--1 oncrete ;::~:}:

Fig. 1.70 Sectional Plan

STRENGTH OF MATERIALS

or,

when

then

when

then

2oocreo = 140'st

1OOoco =7crst

0'st = 120 MPa

1OOoeo = 7 x 120 MPa

7x120
O'co = 100 =8.4 MPa > 6- MPa

creD = 6 MPa

100 x 6 = 7 x C1st

600
°st =7 = 85.71 < 120 MPa

Using oeD = 6 MPa and 0st = 85.71 MPa

Now. LF'y =0 gives Psteel + Pconcrete = 300

0st . Ast + oeD· AeD = 300 X 103

85.71 X Ast + 6 X [ ~ (200)2 - Ast ] = 3 X 105

79.71Ast + 6000n= 3 x 105

A _ 3 X 105
- 6000n

st - 79.71

= 1397.92

= 1398 mm2 Ans.
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EXAMPLE 4 Two brass rods and one steel rod together support a load as shown in
figure 1.71. Ifthe stresses in brass and steel are not to exceed 60 N/mm2 and 120 N/mm2,

find the safe load that can be supported.
Given, Esteel =2 x 105 N/mm2

Ebrass = 1X 105N/mm2

Cross-sectional area ofsteel rod = 1500 mm2

Cross-section area ofeach brass rod = 1000 mm2

SOLUTION We know that decrease in the length of steel rod, should be equal t~ the

decrease in length ofbrass rod i.e. °steel = 0brass •

~

b~"7"7"'l"""""~""

p

Steel Brass

Fig. 1.71

Now, 0steel =Strain in steel Rod x Length of steel r<?d

=Es X Ls

Similarly, 0brass = Eb X Lb

where Es and Eb are the strain in steel and brass rod respectively.

As

Now,

and,

Esteel ·~teel =Ebrass · Lbrass

0'steel = Esteel X Esteel

O'brass = Ebrass X Ebrass

0'steel Esteel X Esteel--=-----
O'brass Ebrass X Ebrass

100 2 X 105

=-x--......
170 1 x 105

= 1.176
Total load (P) = load on steel rod + load on brass rods

O'steel = 1.176
O'brass
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CJsteel = 1.176xO'brass

STRENGTH OF MATERIALS

= 1.176x60 (As abrass ~ 60 N/mm2 given)

= 70.56 N/mm2 < 120 N/mm2 of steel given hence accepted

Therefore, safe load (P) = (Js. As + 0'b •~

=7O.56x1500+6Ox(2x1000)=105840+120000 .

= 225840 Newton = 225.84 kN Ans.

EXAMPLE 5 A rigid block ofmass M is supported by three symmetrically spaced roads as
shown in Fig. 1.72. Each copper rod has an area of 900 mm2; E = 120 CPa and the
allowable stress is 70 MPa.· The steel rod has an area of1200m1J?2, E =200 GPa and the
allowable stress is 140 MPa.
Determine the largest mass M which can be supported.

M

T
160mm

I

Copper Steel Copper

Fig. 1.72

SOLUTION It is eviden~ that mass M causes the rods to deform equally

i.e. Oco = 0st

(~) =(~)
E co E st

(Jco x 160 _ (Jst X 240

120 x 103 - 200 X 103

(J = 240 x 120 x 10
3

(J =0 96
co 160 x 200 x 103 st . st

W=M.g

1
Peo Pst

Fig. 1.73

Peo
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when 0st = 140 MPa, then Oro = 0.9 x 140 MPa

=126 MPa > 70MPa Not OK

when Oro = 70 MPa

1.69

= 10 x 70MPa
9

= 77.78 MPa< 140MPa

Therefore using aco = 70 MPa

Hence OK

and 0st = 77.78 MPa

Now, applying LFy =0 gives

2Pco + Pst = W

2(aco x Aro ) + ast x ~t = M.g

2 (70 x 900) + 77.78 x 1200 =M x 9.81

M =2 x 70 x 900 + 77.78 x 1200
. 9.81

=126000 + 93336 =22358.4 ok
9.81 g Ans.

EXAMPLE 6 A rigid plateform shown in figure has negligible mass and rests on two steel
bars each 250 mm long. There centre bar is aluminium and 249.90 mm long. Compute the
stress in the aluminium bar after the centre load P =400 kN has been applied. For each steel
bar the cross sectional area is 1200 mm2and G = 200 GPa andfor the aluminium brass the
area is 2400 mm2 and E=70 GPa.

p

E
Q) ::J Qi·2
Q) ·e ~Ci)

::J
en

«

Fig. 1.74

SOLUTION Given Lstee1 = 250 mm
Laluminium = 249.90 nun
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Since applied load will deform rods equally so we have,

CJst = 0al + 0.10

(~) =(~) +0.10
E co E al

CJst X 250 = CJal X 249.90 X 0.10
2 X 105 70 X 103

1.25 X 10-3 CJst =3.57 X 10-3 0 al + 0.10

CJst =2.856 0"al + 80

LF'y = 0 gives

Pal + 2Pst = 4 X 105

CJai X Aa1 + 2CJst X Ast = 4 X 105

O"al X 2400 + 2 (2.856 CIal + 80) X 1200 = 4 X 105

2400O'al + 6854.4 0al + 192000 =4 X 105

9254.540'al + 192000 = 4 X 105

9254.46 CIal = 208000

(
208000)

CJal = 9254.46

= 22.475 :MFa

Pst Pal Pst

Fig. 1.75

...(1)

Ans.

1.23 ELONGATION DUE TO ROTATION

A uniform slender rod of length '1' and cross sectional area A is rotating in a
horizontal plane about a vertical axis through one end. If the unit mass of the rod
is p and it is rotating at a constant angular velocity of (0 rad/sec, show that the

(
pOO2Z3 )

total elongation of the rod is 3E ·
Proof: Let us consider a small element of thickness dx at a distance from origin O.

Jue to rotation, dP =Centrifugal force of differential mass

=dM · (l)2 X

=(pAdx) 002X

=pAro2xdx
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y

1.71

"--X

z
Fig. 1.76

Also, elemental deformation

do = (pAro
2
xdx)· x

A·E

fdo = p002 jx"ldx = p002 [
X31

E 0 E 3

pro2 13

O=-x-
E 3

pro2Z3
=--

3E

HIGHLIGHTS

Fig. 1.77

I
I

I
I

I
I

~
I

I
I

I
I

I
I

I

. P
1. Stress (cr) = A assuming uniform distribution over the cross-section. Stress

is a tensor. As long as the stress (0) is less than the yield strength (cry) the
material behaves elastically and obey's Hooke's law (J = EE. When cr reaches
the value cry , the material starts y

yielding and keeps deforming
plastically under a constant a t---__Y_-_M-----X Rupture
load. If load is removed, Y

unloading takes place along
line MN parallel to the initial
portion OY of the loading curve.
The segment ON of the 1
horizontal axis represents the (1

strain corresponding to the
. permanent set or plastic 0

deformation as a result from the
loading and unloading of the



1.72 STRENGTH OF MATERIALS

specimen. No material behaves exactly as shown in the Fig. 1.77, this stress­
strain diagram is useful in discussing plastic deformation of ductile material
such as mild steel.

5 . () Change in dimension
2. tram E = ---------

Original dimension

Strain may be-

(a) Tensile strain (St)

(b) Compressive strain (Ec )

(c) Volumetricstrain (sv)

(d) Shear strain <P or y
3. Stress may be -

(a) Tensile stress (crt)

(b) Compressive stress (crc)
(c) Shear stress ('t)

4. Modulus of elasticity (E) = ~ with the limit of Hook's la\v
E

P/A P 1
= 0/1 == A x B

. . Change in dimension (linear) of uniform section i.e. prismatic bar

o=[~]A·E

. Ultimate stress
5. Factorofsafety(f.o.s) =-----

Working stress

6. Principle ofsuperpositi~n
Total change in length of a bar of different length and different diameter
when subjected to an axial load P ~s given by

P[L1 L2 L3 ]dL =- - + - + - + ... whenEissame
E Al A2 A3

P. L
In general dL = },: _n_n where n = number of bar

An En

= P [E~l + E~~2 + E~3 +. ·.] where E is different.

7. /The total deformation of a uniformly tapering circular rod of diameter D I
and D2 when the rod is subjected to an axial load P is given by

dL = _4_·_P_·L_
1tE D1 D2
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i.e.

8. Total elongation (deformation) of a uniformly tapering rectangular bar when
subjected to an axial load P is given by

dL = PL olOge(-b
Q

)
Et (a - b)

where L = t~tallength ofbar
t = thickness ofbar
b = width at smaller end

a = width at bigger end
E =Young's modulus.

9. Elongation of a bar due to its own weight is given by

dL= WL
2AE

where W =weight ofbar

L = length ofbar
A = Area of cross-section ofbar
E =modulus ofelasticity of bar material.

In composite bar ofequal length
(a) strain in each bar is equal

£1 =£2

0'1 =,0'2

E1 £2

(b) Total load on the composite bar is equal to the sum of loads carried by
each different material

i.e. P =PI +P2

The stress induceed in the body due to change in temperature when the body
is not allowed to expand or contract freely are known as thermal stress.

Thermal strain (Etemp ) = ex.. T

Thermal stress (crth) = E· ex· ~T
When a body is loaded axially it deforms longitudinally as well as
transversely at right angle to the longitudinal direction.
The strain occurring in the longitudinal direction is known as longitudinal
strain and ~at occurring in the transverse direction is known as lateral
strain.
Within elastic limit, the ratio of lateral strain to the longitudinal strain is

called Poisson's Ratio and is denoted by 1.or Jl or v 0

m

10.

12.

13.

.11.

14. Longitudinal strain (E/) == 01
I

0b 0d
Lateral strain (Eb or Ed) = b or d
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where 01 = change in length
ob = change in width
od = change in depth or diameter.

15. Volumetric strain (Ev) = Ov
• V

STRENGTH OF MATERIALS

Volumetric strain (tv) for a rectangular bar subjected to an axial load P is

given by

01
tt' = T (1 - 2v)

16. Vol~metric strain for a rectangular bar subjected to three mutually
perpendicular stresses is given by

1
Ev =E(crx + cry + crz ) (1- 2v)

where 0x,cry and Oz are the stresses iIi x, y and z direction respectively.

17. Principle of complementary shear stress states that a set of shear stresses
across a plane is always accompanied by a set of balancing shear stresses of
the sam.e magnitude across the plane and normal to· it.
i.e. ~ = ~'

18. When an element is subjected to simple shear stresses then:
(i) The planes of maximum normal stresses are perpendicular to each other.

(ii) The planes of maximum normal stresses are inclined at an angle of 450

to the plane of pure shear.
(iii) One of the maximum normal stress is tensile while the other maximum

normal stress is compressive.
(iv) The maximum normal stress are of the same magnitude are equal to the

shear stress on the plane of pure shear.
19. Volumetric strain of a cylindrical rod, subjected to an axial tensile load is

given by

£1' = longitudinal strain - 2 x strain of diameter

=Ol_2.<5d
1 d

20. The ratio of normal stress to the corresponding volumetric strain is called the
Bulk Modulus and denoted by K.

21. The relation between Young's modulus and bulk modulus is given by

E = 3K (1- 2v)
22. The relation between modulus of elasticity and modulus of rigidity is given

by

E = 2G (1 + v)

modulus of rigidity is also denoted by G.
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23. Relation between Young's modulus, Bulk modules and modulus of rigidity
is following

E = 9GK
3K+G

PROBLEMS FOR PRACTICE
(THEORETICAL)

1. Define the term --.;. stress; strain; elasticity; elastic limit; Young's modulus
and Modulus of rigidity.

2. State Hook's law.
3. Four section of a bar having different lengths and different diameter are

subjected to axial pull P.
Determine the total change in length of the bar. Assume Young's modulus of
different sections same.

4. Define modular ratio; thermal stresses; th.ermal strain and Poisson's ratio.
5. What do you mean by a bar of uniform strength?
6. Find an expression for the rotal elongation of a bar due to its own ,veight

when the bar is fixed at its upper end hanging freely at the lower end.

(NUMERICAL)

1. Find the maximum value of P in drawing if P » 140 MPa in steel and in
Aluminium 90 MPa or in Bro~eof 100 MPa.

Steel A = 500 mm2

~ I~Iuminium (A). = 400 mm
2

~ 4P-.. I=7p ~ 2P

L 2.5 m .1. 2m~ ~nZel(A) =200 mm2

I I ~1.5m=j

Fig. 1.78

2. Two blocks of wood widtll 'W aIld thickness t are glued together along the
joint inclined at an angle a as shown in Fig. 1.79. Using free body diagram
show that the shearing stress on the glued joint is

Pasin2 a
't=---

2A

p

p

Fig. 1.79
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3. A machine member is formed by connecting a steel bar to an aluminium bar
as shown in Fig. 1.BO. Assuming that the bars are prevented from buckling
sideways, calculate the magnitude of force P, that will cause the total length
of the member to decrease 0.30 mm. The values of elastic modulus for steel
and aluminimum are 2 x 105 N / mm2 and 6.5 x 104 N / mm2 respectively.

[Ans. 406.22 kN]

p

20 em 6 em x 6 em Steel Bar

30 em 10 em x 10 em Aluminium Bar

Fig. 1.80

4. Determine by taking into account the \veight ofbarI the displacenlent of the
free end ofbar shown in Fig.I.BI. If its cross-sectional area isA the modulus
of elasticity E and specific weight of material y.

p

T
a

t
b

[
Ans. Pb + Y(a + b)2 ]

AE 2E

Fig. 1.81

5. Determine the displacement of section xx of the bar as shown in figure if its
cross-section is A, modulus of elasticity E, and the specific weight of the .
material y.

x -a--x

t
b

~l
p

Fig. 1.82 [A
(P + YAb) a ya

2
]ns. +-

A·E 2E
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OBJECTIVE QUESTIONS

1. The factor of safety is the ratio of
(a) working load or stress to ultimate load or stress
(b) ultimate load or stress to yield load or stress
(c) ultimate load or stress to working load or stress
(d) yield load or stress to ultimate load or stress

2. Gauge length
(a) is the total length of the specimen rod
(b) is that part of the length over which measurement is made
(c) there is no such length .
(d) none of the above

3. A prismatic bar is a bar of
(a) maximum ultimate strength (b) maximum yield strength
(c) uniform cross-section (d) varying cross-section

4. The gauge length is usually taken to be
(a) 100mm (b) 7Smm
(c) 50mm (d) 25mm

5. The specimen rod under tension test has the following parameters
(a) gauge length = 50 mm; diameter = 10 mm
(b). gauge length =50 mm.; diameter =12.5 mm
(c) guage length = 25 mm; diameter = 25 mm
(d) none of the above

6. The failure criteria for ductile materials is based on the following factor
(a) ultimate strength (b) shear strength
(c) yield strength (d) limit ofproportionality

.7. Eand G are related by the equation

(a) E =2G (1 - v) (b) E =2G (1 + v)

(c) E = 3G (1 - v) (d) E = 3~ (1 + v)

8. E and K are related by the equation

(a) E =3K (1 + 2v) (b) E =3K (2 - v)

(c) E =3K (1- 2v) (d) E =3E (1 - 2v)
9. The material becomes harder due to strain hardening. 'Strain hardening in

case of structural steel occurs
(a) between yield strength and ultimate strength
(b) between limit ofproportionality and yield strength
(c) ~etween ultimate strength and fracture point
(d). none of the above

10. Structural steel forms neck before it breaks. Neck formation starts
(a) before limit of proportionality (b) after yield strength
(c) before ultimate strength (d) at ultiamte strength

11. Limiting values of Poission's ratio are
(a) 0 to (+) 0.5 (b) 0 to (-) 0.5
(c) 1 to (+) 0.5 (d) -1 to (+) 0.5
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12. For mild steel, the ratio of modulus of elasticity in tension and compression
(Etl Ec) is equal to
(a) 0.5 (b) 1 (c) 1.2 (d) 1.3

13. Ductile fracture generally takes place along planes on which the shear stress
is
(a) maximum (b) minimum (c) positive (d) negative

14. The property ofa material to undergo large unifonn elongationbefore fracture
(in tension) is known as
(a) super elasticity (b) super plasticity
(c) visco elasticity (d) visco plasticity

15. The percentage reduction in area during the tension test on a cast iron test"
pecimenis
(a) 5 - 10% (b) 10 - 15~~ (c) 0 - 3% (d) 0 - 5%

16. The phenomenon under which the strain in a material varies under constant
stress is called
(a) strain hardening (b) Bauschinger's effect
(c) creep (d) fatigue

17. The length, coefficient of thermal expansion and Young's Modulus ofbar 'A'
are twice that of bar 'B'. If the temperature of both bars is increased by the
same amount while preventing any expansion, then the ratio of stress
developed in bar A to that in bar B will be
(a) 2 (b) 4 (c) 8 (d) 16

18. In the figure shear stress is 't' and shear strain (c!» =( ; } then the diagonal

strain will be

<t>
(a) -

2
(b) !

4

<t>
(c) ­

6
(d) !

8
19. If all the dimensions of a prismatic bar of cross-section suspended freely

from the celing of a roof are doubled then the total elongation produced by its
own weight will increase
(a) eight times (b) four times (c) three times (d) two times

20. A soli.d bar of uniform diameter D and length 1is hu..~g vertically from a
ceiling. If the density of the material of the bar is p and the modttlus of
elasticity is E then the total elongation of the bar due to its own \veight is

pI p[2 pE pE
(a) 2E (b) 2E (c) 2l (d) 212

21. In terms of bulk modulus (K) and modulus of rigidity (G), the Poisson's ratio
can be expressed as

3K - 2G 3K + 4G 3K - 2G 3K + 2G
(a) 6K + 4G (b) 6K - 4G (c) 6K + 2G (d) 6K - 2G

22. A square section tepered bar of length I with sides 11 and 12 at its bigger and
smaller end respectively is subjected to an axial ptlll. Taking Eas the modulus
of elast:city of the bar material, the elongation of the bar will be
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2PZ P·I P·1 P·I
() - (b) -- (c) (d)
a ElI 12 2E11 12 2E( 11 + 12 ) E · 11 . 12

23. The elongation of conical bar of base diameter D hanging vertically, due to
its own· weight (when p = density of the material of the bar;
I = length and E=(modulus of elasticity of the bar material) will be

pZ2 pZ2 pZ2 p.Z2
(a) 2E (b) 3E (c) 4E (d) 6E

24. A prismatic bar fixed at both ends is loaded by an axial load plating at a

ctistance 'a' from I~e of til:S~Th:r:~tile supports will be

Fig. 1.83

Pb Pa
(a) a + b' a + b

2P 2P
(c) a (a + b)' b (a + b)

p p
(b) a (a + b)' b(a + b)

(d) none of the above

25. For an isotropic elastic material, the number of independent elastic constant
is .

WI ~2 ~3 ~4

26. For most metals, Poisson's ratio is approximately
(a) 0.3 . (b) 3 (c) 35
(d) none of the above

27. A material is called perfectly elastic if
(a) while loading or unloading, the deformation and recovery are

instantaneous
(b) the recovery is complete and immediate
(c) the load-deformation curve has the same shape while loading or

unloading
(d) All the above

ANSWERS

1. (c) 2. (b) 3. (c) 4. (c) 5. (b) 6. (a)
7. (b) 8. (c) 9. (a) 10. (d) 11. (d) 12. (b)

13. (a) 14. (b) 15. (c) 16. (a) 17. (b) 18. (a)
19. (b) 20. (a) 20. (a) 21. (c) 12. (d) 23. (d)

24. (a) 25. (b) 26. (a) 27. (d)

_.:..:.-
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