SIMPLE STRESSES AND STRAINS

1.1 INTRODUCTION

At the outset let us discuss what is strength of materials. We know that matter is
made up of small particles called molecule. Molecules in solid are attached to each
other by the force of cohesion. When we apply external force, the distance between
the molecules tend to increase which is resisted by the force of cohesion.

As the force (applied) is increased, the resisting force (due to cohesion) also increases
simultaneously till the maximum resistance is reached. This maximum resistance
offered by the material is called it’s strength. For example wall of gunbarrel must
be able to resist pressure developed as a result of firing; piston cylinder must be
able to resist pressure developed as a result of combustion; the wall of water pipe,
steam pipe must be able to sustain pressure of fluid flowing through the pipe.
Strength of materials involves the analytical method of determining-strength,
stiffness and stability of load carrying component of machine.

In strength of material we consider that

— muaterial is elastic

— deformation is small

— when machine member/structure is loaded these should neither
break nor deform excessively

Many structural member/material like steel, Aluminium are perfectly elastic within

limits i.e. if the load is not exceeding much.

The strength of materials depends on —

— the type of loading

— temperature

— internal structure of the material
Let us start with the term load.

External force applied on the body is called load denoted by 'P'. It's SI unit is
Newton.

Since Newton is small, force is expressed in Kilo-Newton and Mega Newton.
1kN=10’N
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1 Mega Newton = 106 N
1 Giga Newton = 10° N

1.2 CLASSIFICATION OF LOAD
Load may be in the form of
— Axialload (P)
(a) Tensile (P,) (b) Compressive (P,)
— Shear (1)
— Torque (T)
— Moment (M)
Or Combination of these.

Load which is applied to most components in engineering is a combination
(superposition) of these. For example, a rotating shaft which transmits power is
subjected not only to torsion but also to bending and to direct shear. We will
discuss these in details later.

Loads may also be classified on the basis of their variation with a respect to time as
static, quasi-static and dynamic. Static loads are those which do not change their
magnitude or direction or point of application with respect to time. Those loads
which vary at a very small rate so that inertial effects may be neglected are called
quasi-static. Loads of dynamic character change with time at a fast rate. The action
of such loads set up vibration, fatigue etc. in the body.

As an engineer, we study the various types of load and its effect on the elastic
bodies. We also analyze and design various machines and load bearing
structure. Analysis and design of a given structure involve determination of
stresses and deformations.
It has been observed that
(i) load may develop ‘stress’ and ‘strain’ in a body simultaneously.

(1) load may develop ‘deflection’ in a body i.e. in beam; cantilever etc.

(iii) load may develop ‘buckling’ in the body i.e. the case of column.
We will discuss the efgzct of load on the elastic bodies in various chapters of
this book.

1.3 STRESS OR ENGINEERING STRESS

When load is applied on an elastic body, internal resisting force is developed
inside the material to counter the effect of the external force.

The internal resisting force per unit area of the body is called stress or
enginneering stress and is denoted by the letter ¢ .

Difference between Stress and Pressure:

Stress is not same as pressure. Pressure is reserved for a specific stress state in

which there is no shear components and all the normal components are equal.
P

Stress (0) = a1 It represents the average value of stress over the cross-section

rather than the stress at a specific point of the cross-section.

So, if a body is loaded externally then internal forces are distributed throughout
the region of the body and stresses will be caused. For the defination of stress, we
intersect the body by a imaginary plane like shown in the Fig. 1.1 (a).
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Both parts of the body then interact through forces of equal magnitude and
opposite in direction Fig. 1.1(b).

Let dP be the elementary load acting on an area dA of the cross-section then

(Z—E) is the average stress on this element.

The limit o = limit AP _dP is called the stress* at a point of the cross-section.
a0 AA dA

The Standard Unit (SI unit) for stress is Nlm* ‘or’ Pascal. Typical level of stress
are several million Pascals, so the most covenient unit for stress is the
megapascal or MPa. The stress magnitude 1 MPa is equal to the pressure (p) at
adepth (z) of about 100 m in water or 37 in rock using the relationship p = pgz,
where

p = density of material

g = acceleration due to gravity

1 N/mm? = 1 MPa (mega pascal); 1 Pa =1 N/m?
Load P N
Area A m?
Stress is a tensor*** entity. The stress tensor characterizes the stress state ata
point in the body. Stress is measured by photoelasticity technique (in this
book we will compute the stress and check with the permissible stress or design
stress for proper functioning of the machine member or structural member).

The stress at any point on a plane can be resolved into two components — one
along normal and the other perpendicular to the normal i.e. tangent to the plane.

The component of stress along the normal is called the normal stress (c,) or
direct stress (6) and the component tangential to the plane is called the tangentlal
stress (6 ) or shear stress (7).

Mathematically, Stress** (o) =

*Six components are required to describe the state of stress at a point in a body under
the most general loading condition which we will discuss in 3-D stress.

**Stress developed on the body due to application of load, should never exceed the
ultimate tensile strength for brittle materials and yield strength for ductile materials.
***A physical quantity is said to be tensor if it is neither a scalar nor a vector.
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(The complete set of stress components in a solid or fluid medium are written as 1;
which will be discussed in chapter 3-D stress).
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Let us consider a prismatic bar having cross-sectional area A subjected to load P,
then normal stress at any point of the bar = % .

The component of stress along x-axis and y-axis are written as O, and G,
respectively. When an elastic body is subjected to stresses Oy and 6, along x
and y-axes respectively then we call it biaxial stress system. Biaxial stress arises in
the analysis of pressure vessel (thin); beams; shaft and many other structural
parts.

When the normal stress acts outwards from the plane then it is called tensile stress.
Tensile stress is considered positive (+).

Similarly, normal stress acting towards the plane is called ‘compressive stress’
and it is considered negative (-).

A tensile stress tends to stretch the member (of machine part or structural part)
apart, whereas, a compressive stress tends to compress the material of the load
carrying member and shortens the member itself.

Shear Stress

When equal and opposite transverse loads P and P’ of Ci fmﬁ,';?f';e
magnitude P are applied to a member AB, shearing i

stress T are created over any section located between L H

the points of application of two loads as shown in pi

Fig. 1.3. Fig. 1.3

In practice shearing stress act simultaneously with Fig 1.3

normal stress. However,.there are cases where th:-
shear stresses are considerably larger than the normal stresses and as such the
normal streses are ignored in the analysis.

Riveted, bolted and welded joints are examples of simple shear.

Let us consider a rectangular block fixed at the lower surface and subjected to load
P parallel to its surface as in Fig. 1.3(a).

By application of load P (which is tangenital), the plane gets distorted.
If A = Area of top or bottom of the block.



SIMPLE STRESSES AND STRAINS 1.5

A A B B’
—— ‘\. (A) . s /
v = - Y. Y/
Y- - ~ ~
FAVRETRRIRAIRTTRV TR TR TR LA D J C ,
3 - D Figure ATLEVTTRRRVL ARV
Fig 1.3(a)

P
Then shear stress (7) = 1 The value obtained is an average value of shearing

stress over the entire section.
Practical application shear stress are given below:
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In this figure there is only one critical section of the rivet where the failure by shear
can take place. This is called a case of single shear (Fig. 1.4).
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In the same manner, there is a case of double shear where the tendency of failure
occurs at two sections as shown in Fig. 1.5.

P/2 ’
Here, average shear stress (1) = [ i ] = [%J

The other example of shear is punching operation by which small hole or slot can

be made on the metal plates.
( 4— Punch
7 A
/ :

/

Fig. 1.6
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Principle of Shear Stress

It states that a shear stress across a plane is always accompanied by a balancing or
complementary shear stress across the plane.
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T

Fig. 1.7
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Let us consider a rectangular block ABCD subjected to shear stress t on the face
AD and BC. Further, consider a unit thickness of the block. Therefore, force acting
on the face AD and CB,

P=1.-AD=1-CB
Since these are equal and opposite forces so they will form a couple whose moment
isequal to Tx AD ¥ AB.
If the block is in equilibrium then there must be a restoring force where (tTand &
will try to rotate clockwise) moment must be equal to this couple.
Let the shear stress on the face DC and ABbe 1’. Hence, force acting on the face AB
and CD are

P =1AB=1CD
These two forces (1’AB and t’CD) will also form a couple (CCW).
Equating these two Moments

t-AD- AB = T’AB- AD

=1

As aresult of shear forces which forms a couple, the diagonal BD will be subjected
to tension whereas diagonal AC will be subjected to compression.

If the material of the machine under study is poor is tension, it will fail due to
excessive tensile stress across diagonal BD. Similarly, if the material is poor in
compression, it will fail due to excessive compressive force across the diagonal
AC.

EXAMPLE 1: What force is required to punch a 20 mm diameter hole is a plat that is 25
mm thick? The shear strength is 350 MN/m?2.
SOLUTION Given

d =20mm

t =25mm

T =350 MN/m2 = 350 x 10° kN/m?
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The resisting area is the shaded area along the perimeter and shearing force is
equal to the punching force P.

25 mm thick plate

[ |
7////% g///
Punched plate %@/
I

Punched out ——*’w 25 mm
--20 mm —

Fig. 1.8

Shearing force (P) = Shearing stress x Resisting area

=txnxdxt
=350x103x(nx—2%—x—2—55)kN
10° 10

=350x—22x20><2—0kN
7 10°

= 550 kN Ans.

EXAMPLE2 Two blocks of wood width b’ and thickness '’ are glued together along the
joint inclined at the angle © as shown in the figure. Using the free body diagram show that

the shearing stress on the glued jointis T = P szir;l 20 where A is the cross sectional area.
SOLUTION Shear force (Fs) = 1 - Area of oblique plane

=1-Acosec8 ...(D
Further Fg =PcosB ...(D
FromIand IIwehave

T-Acosec® = P-cosB
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T = Pcos6 _ Pcos-sin®
" Acosec® A
_ 2FsitBcos O
2A
P
= A sin 20 Proved

Bearing Stress (o},

When one body rests on another and transfers a load normal to it then such form
of stress is called bearing stress.

Bearing stress is developed at the surface in contact.

Applied load

Bearing stress (6,,) =
8 ) Bearing Area

p
Abr

where A,, = Bearing Area.

For flat surfaces in contact, the bearing area is the area over which the load is
transferred from one member to other.

If two parts are having different area, then the smaller area is used.

Bearing stress is very important in design and in Building Construction.

EXAMPLE 1 A rivet joint shown in figure has 110 mim wide plate and 20 mm rivet
diameter. The allowable stresses are 120 MPa for bearing in the plate material and 60 MPa
for shearing of the rivet. Determine



SIMPLE STRESSES AND STRAINS

(a) theminimum thickness of each plate and
(b) The largest average tensile stress in the plates.

TT d=20mm
Pb*——ﬂolmm C:g Py
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Fig. 1.10

SOLUTION Given
d=20mm

Obearing = 120 MPa = 120 N/mm?

T = 60 MPa = 60 N/mm>

(a) From shearing of rivet

P=T'Arivet
T 2
=60x — (20
4( )

= 6000 = Newton
From bearing of plate material
P = obearing X Abearing

60007 =120 x (20¢t)

t—( 6000 7t

120 % 20) mm = 7.849 = 7.85 mm

(b) Largest average tensile stress in the plate
P=¢g.A
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6000 7 =[7.85 x (110 — 20)]

= (ﬂOﬂ_) N/mm? or MPa
7.85 % 90
= 26.69 MPa = 26.7 MPa Ans.

Contact Stress
In the case of bearing stress, applied load is distributed over a relatively large area.
But when the load applied is over a very small area, contact stress comes in the
picture.
Examples of contact stress are:
(i) steel rail wheel on a rail
(i) two convex curved surfaces such as gear teeth in contact.

(L
( :’ Contact Stress

Contact Stress

Rail wheel on rail

Fig. 1.12
Hydrostatic Stress* LN P
This stress arises when body is subjected to equal external ‘
pressure at all points on the body e.g. when the body is —p
immersed in a fluid at a large depth. Hydrostatic stress is ‘
compressive in nature and is equal to the pressure intensity P
to which the body is subjected. It is denoted by letter p. . i1p1 >

ig. 1.12 (a

True Stress

True stress is equal to the load divided by the instantaneous cross-sectional area
through which it acts. True stress occurs due to the change in cross-section that
occurs with changing load

P
6= ‘A:' where A; = instantaneous Cross-sectional Area

Besides these stresses discussed so far there are other types of stresses also.
These arz:

Residual Stress: Residual stresses are due to manufacturing process that leave a
stress in a material. Welding leaves residual stresses in the metal welded.

*In metal forming process also hydrostatic stress arises.
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Structural Stress: These stresses are produced in structural member because of
the weights they support. These stresses are found in building foundation and
framework as well as in machine parts. 'S
Pressure Stress: Pressure stresses are induced in vessel containing pressurized
fluid.

Flow Stress: Flow stress occurs when a mass of flowing fluid induce a dynamic
pressure on a conduit wall. '

Fatigue Stress: Fatigue stress arises due to cyclic loading. Rotation of shaft
continuously develops a fatigue stress.

*These stresses are used in various engineering field.

1.4 STRAIN

The study of strain in a elastic body is the study of the displacement of points
in the body relative to another when the body is deformed.
A load carrying member deforms under the influence of load applied.
Common forms of deformation or distortion** are —

(i) elongation (i) twisting
(iii) bending (iv) shearing
Strain is also called unit deformation and is found by dividing the total
deformation by the original length of bar.
Strain is denoted by letter epsilon (€)

Strain (€) = Total deformation

Original length
Strain may be longitudinal denoted by (g)
Strain may be shear denoted by (y or ¢)
Strain may be volumetric denoted by (g

g = —?—l, where Al = total elongation; /, = original length, I = final length

i

Al= (I-1)
o AV . .
Similarly, € = Vv where AV = change in volume; V = original volume.
AV= (V,-V) le I >
where V, = final volume DU S
V, = initial volume [i— Ve~
Longitudinal strain () Fig. 1.13

Longitudinal strain causes extension ‘or’ contraction in the body.

*Whether a machine member or structural member, stresses develop on these when
loads are applied but as a designer or engineer, our aim should be to limit the stress by
proper selection of material, factor of safety (FOS) and by suitable design in such a
manner that machine member or structural member should not fail on application of
loads. Unwanted stress leads to failure of the machine or structure.

*If the distortion disappears and the metal returns to its dimension upon removal of
the load, the strain is called elastic strain. If the distortion disappears and metal remains
distorted, the strain is called ‘plastic strain’.
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Shear strain (Yor¢)
Shear strain is the strain produced under shear stress.
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In the above figure
Shear strain = tan y = %l-

Shear strain causes angular distortion on the body.

Volumetric strain (g,) 'OR' Elastic dialation:

When a body is subjected to hydrostatic stress, it causes a change in the volume.
_av

SV

Let a cuboid of sides x, y, and z are subjected to hydrostaic stress and as a result of
stress its sides change by dx, dy and dz respectively.

Change in volume = (x + dx) (y + dy) (z + dz) — xyz

€,

= (xyz + xydz + yzdx + zxdy) — xyz

Neglecting smaller forms
vizdx - dy, dy - dz etc.

= yzdx + zxdy + xydz

[}
Volumetric strain (g,) = yzdx + zxdy + xydz |
xXyz !|/
dx dy dz ‘
= —d4 — 4+ —
X Yy z I\?ﬂ<——- X —»
Fig.1.15
=& +&, +E,

This shows that volumetric strain is equal to the sum of linear strains in x, y and z
direction.

1.5 MEASUREMENT OF STRAIN

The instrument by which strain is measured is called extensiometer. The most
commonly used extensiometer are the resistance wire electrical strain gauge which
is made of fine wire filament cemented on the surface of the body so that the wire
of the sirain gauge deforms as the surface of the body déforms. The operation of the
strain gauge is based on the principle that as the wire elongates or shrinks, it's
electrical resistance changes in proportion to the change of its length.
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1.6 POISSON'S RATIO (v)
When abody is subjected to a load, strain occurs in the lateral direction also which
is opposite in sign to that of the direction of load applied.
It has also been observed that lateral strain is always proportional to the
longitudinal strain.
If you take a rubber piece having dia. 'd' and length / and if you apply a tensile load
you will find that the length of rubber piece increases whereas the diameter
decreases.
We define Poisson's ratio as the ratio of lateral strain to axial strain or longitudinal
strain. Poisson's ratio is denoted by letter v (nu).

Lateral strain _ —¢g

ie. Poisson's ratio (V) = ————— =
Axial strain €,

_ Changeindia./originaldia. ~_ Ad/d

" Change in length/original length ~ Al/l
when the sample piece has circular section**.
The negative sign on the lateral strain is introduced to ensure that Poisson's Ratio
(v) is a positive number. '
Most commonly used metallic materials have a Poisson's ratio value between 0.25
and 0.35. Poisson's ratio is an elastic property of the material. For steel, it's value is
approximately 0.3.
Elastomers and rubber may have Poisson's ratios approaching 0.50.
Approximate value of Poisson's Ratio {v) of various material are given below:

Material Poisson’s Ratio (v)

Aluminium 0.33

Brass 0.33

CastIron 0.27

*Concrete 0.10-0.25 (depending upon grade)
Copper 0.33

Phospher Bronze 0.35

Carbon and Alloy steel 0.29

Stainless steel (18-8) 0.30

Titanium 0.30

1.7 HOOK'S LAW

Hook's law states that within elastic limit stress is proportional to strain.
Mathematically ¢ < &

or, o = E - £ (when strain occurs in only one direction)

*Concrete is graded according to it's compressive strength which varies from 14 MPa to
48 MPa. Tensile strength of concrete is extremly low.
**Section may be rectarular square elliptical or any shape

In that case, . . .
Change in Cross Section Area/Original Cross Section Area

Poisson's ratio (v) =
) Change in length/original length
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This constant of proportionality (E) is called modulus of elasticity of the material.
E is a measure of the stiffness of a material. E is determined by the slope of
straight line portion of the stress—strain curve. A material having a steeper slope
on the strain—strain curve will be stiffer and will deform less under load than a
material having less steep slope (Fig. 1.16).

Steel (E = 210 GPa)
Titanium (E = 114 GPa)
Aluminium (E = 69 GPa)
Magnesium (E = 45 GPa)

Fig. 1.16 illustrates the concept by showing
the straight line portion of the stress-strain
curve for steel, titanium, aluminium and
magnesium.

— Stress

Further, shear stress (7) « shear strain ()
or, =Gy '
G-= T — Strain

-y Fig. 1.16

The constant of proportionality (G) is called the ‘modulus of rigidity’.
Hook’s law is obeyed within certain limit by most ferrous alloys and other
engineering materials such as concrete; timber and non-ferrous alloys with
reasonable accuracy.

Poisson’s ratio permits us to extend Hook’s law of uniaxial stress to the biaxial
and triaxial stresses also. Body subjected to 6,and 6, or 6, and 6, 0r6_and o,
only are called biaxial stress and a body subjected to 3 stresses i.e. 6, ; 6, and
o, are called 3-D stresses. Biaxial stresses and triaxial stresses arise in the
analysis of pressure vessels, beams, shaft and any other structure parts.

If an element is subjected to tensile stresses in the x and y direction then the

: c
strain in the x direction due to tensile stress 6_is —-. T“v
Similtaneously, the tensile stress 6, will produce lateral

o o,

x

Gl
contraction in the x-direction of amout (-)v - —*. So, the & I

resultant strain in the x-direction will be

e—o_x_v ﬁ l
x T . o
E E y

Similarly, total strain in the y-direction will be Fig. 1.17
Gy 0x
g = —=—-v.—=
¥ E E
Poisson’s ratio (v) are 0.25 to 0.30 for steel, approximately 0.33 for most other

metals, 0.20 and 0.5 for concrete and rubber, respectively.

1.8 GENERALISED HOOK’S LAW (for Linear Elastic and Isotropic Materials)

Let an element of an elastic body is subjected to three dimensional stress
0,,0,and ¢, along x, y and z axes, respectively.

Straindue too ise = % (longitudinal)

and lateral strain g, =g =-V .% (lateral)
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x 1
\\

Fig. 1.18
cl
Similarly, stress o, applied along y-axis produces longitudinal strain ¢ = f/
c
and lateral straing =¢ =-V. Ey and stress 6,applied along z-axis produces

° . o,
longitudinal strain €, = f and lateral straing, =g =-V. -
Therefore, total strain

along x-axis € =

along y-axis € =

<

mlA m|9 m|2
l
<

m|Q Q@ m|3

|
<

along z-axis g = -V

9 mlA m|Q m|a

C,
g +E +E = 3 1-2v)+ f(l—ZV)

0, +0,+0

: zj(l—Zv)

Volumetric strain (g) = (¢, + g, +E, )= (
also known as Generalised Hook’s law.

1.9 STRESS-STRAIN CURVE

The behaviour of ductile materials such as steel* which is subjected to tensile
load is studied by a testing specimen in a tensile testing machine. Steel refers to
alloy of iron and carbon and in many cases, other elements. Steels are classified
as carbon steels, alloy steel and stainless steel.

The result of tensile test are expressed by means of stress—strain relationship
and plotted in the form of a graph as shown in Fig. 1.18(a).

Stress—strain curve generated from tensile test result help engineers to know
constitutive relationship between stress and strain for a particular material.
The typical region in stress—strain curve are—

(a) elastic region (b) yielding (c) strain hardening (d) necking and failure

*According to American Iron and Steel Institute (AISI), a steel is considered to be carbon
steel when carbon percentage is 0.16-0.29% (also called mild steel).

Density of mild steel = 7.85 g/cm?, E = 210 x 10° MPa

Carbon steel is also called as plain carbon steel.
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Specim d
_ Universal testing machine P &~ pteensnzr}::der
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P
(i) (i1) (iii)
Specimen after Ductile material specimen
ultimate load after fracture
Brittle material
after fracture
(iv) v (vi)
Fig. 1.18(a)
In the following graph:

P denotes proportional limit ~ E denotes elastic limit
Y, denotes upper yield point Y, denotes lower yield point
U denotes ultimate strength F denotes fracture point

F,
y U __.-<—True stress-strain curve
.‘\*F(rupture)
E_J:
/T 21
(Stress)o 5|
2
> ! : .
T ¢ Strain hardening | Necking £ Y
Y.
ok _la |s c D P :
—» ¢ (strain) X

Elastic range "
0} (ii)
Stress—Strain Curve for Mild Steel
Fig. 1.18(b)
When the loads are increased gradually, the strain (€) is proportional to load or
stress up to point (P). So, P is called proportional limit. Hook’s law is applicable
in this region.

N.B.: Yield criterion often expressed as yield surface or yield locus, is an hypothesis
concerning the limit of elasticity under any combination of stresses.

Lower carbon steels suffer from yield point runout where the material has two yield
points. The first yield point (Y,) is higher than second yield (Y,) and yield drops
dramatically (Y,) after upper yield power (Y)). If a low carbon steel is only stressed to
some point between the upper and lower yield point then the surface may develop
LUDER BANDS. A luder band is a localized band of plastic deformation which occurs
in certain materials before fracture.
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Even if the specimen is beyond P and up to E it will regain its initial size and shape
when the load is removed. This indicates that the material is in elastic range upto
point E. Therefore, E is called the elastic limit. Elastic limit of the material is
defined as the maximum stress without any permanent deformation.
The proportional limit and elastic limit* are very close to each other and it is
difficult to distinguish between points P and E on the stress-strain diagram.
Many a times these two are taken to be equal. When the specimen is stressed
beyond E, plastic deformation occurs and material starts yielding. During this
stage, it is not possible to recover the initial size and shape of the specimen on the
removal of load.
Beyond E, the strain increases at a faster rate up to point Y; i.e., there is an
appreciable increase in strain without much increase in stress.
In the case of mild stress (M.S.) there is small reduction in load and the curve drops
down to point Y, immediately after yielding starts.

Y, is the upper yield point
and  Y,isthelower yield point
upper and lower yield points can be obtained only in a carefully controlled test,
otherwise the region from E and Y; to Y, merges in to one curve nearly horizontal
apparently an increase of strain from 0.12% to 2% at a constant rate from Y; to Y,,
is an unstable region and the curve may show many peaks and valley as shown in
Figure 1.18 (b). The onset of plastic deformation is called yielding of material. The
lower value is called yield stress.

The yield strength is defined as the maximum stress at which a marked increase
in elongation occurs without increases in the load.

After the yield point, if the load is increased further then the stress curve rises upto
point U. The stress corresponding to point U is called ultimate stress of the
specimen.

Increasing stress after yield point shows that material is becoming stronger as it
deforms. This is known as **work hardening or strain hardening.

After point U, necking of specimen starts and at point F, fracture of test specimen
occurs so F is called fracture point. The stress corresponding to point F is called
'Breaking stress’.

Dotted line in the curve shows the actual or true stress-strain diagram.

The structural steel that contains 0.2% carbon as an alloy is classified as low
carbon steel. With increase in carbon content, steel becomes less ductile but has
higher yield stress and higher ultimate stress.

For many ductile materials other than mild steel e.g., aluminium, copper etc. no
definite yield point is obtained. For such materials the shape of curve on stress-
strain diagram is shown in Figure 1.18 (c).

In this case, anarbitrary yield stress may be determined by offset method.

*Most of engineering structure are designed to function within their elastic range only.
**To remove strain hardening we use heat treatment process commonly known as
annealing. After proper annealing the material returns to its original state.
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In this method a line MN is drawn parallel to initial slope line OA on the stress-
strain curve but is offset by some standard amount of strain such as 0.002 (or
0.2%). The intersection of line and the stress-strain curve defines the yield stress
(Y). Theyield stress determined in this way is called Proof stress.

High tensile steels, aluminium alloys, copper fall in this category.

The actual or true stress-strain curve is shown by dotted line in Fig. 1.18 (a) for
- mild steel and in Fig 1.18(c) for aluminium/copper.

Steel and aluminium alloy specimen exhibit ductile behaviour and a fracture occurs
only after a considerableamount of deformation.

-
-

-7 A e S“e
N .- Tru
2% ;
Yield stress fr——eee—efa y t
1
/ Engineering stress
[ K
7
’
A /)
/
’
!
1
/
!
!
!
1
l
:II M
0O 0.002 —t
()
Fig. 1.18 (c)

The failure of steel and aluminium occur primarily due to shear strain along the
plane forming 45° angle with the axis of the rod.

A typical 'cup and cone' fracture may be detected to steel and aluminium
specimen. But the failure of cast iron occurs suddenly exhibiting a square fracture
across the cross-section (See Figs. 1.18 (e) and (f)).

In the above discussion load was applied gradually. But under rapid or impact
loading* two additional material parameters have relevance and these are—
resilience and toughness.

Resilence defines the ability of material to absorb energy without suffering plastic
strain.

Toughness defines the ability of material to absorb energy prior to fracture.
While using equation ¢ = ¢ - E; it does not matter if we are loading or unloading
~ the specimen, the stress-strain response is a straight line of slope E.

A material having proportional limit close to elastic limit such as steel is termed a
linear, elastic material. For stress value below the elastic limit, the loading and

unloading response follow the same path. All materials do not behave as that of
steel.

*We will discuss 'impact loading' in the chapter—strain energy and its application.
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E(Breaking point)
P
c
—_—t
(d)
Fig. 1.18 (d)

Brittle materials do not exhibit the yield point. Materials that fail in tension at
relatively low values of strains are classified as brittle materials. Examples are
concrete, stone, cast iron, glass, ceramic material and many common alloys.

N.B. Stress-strain diagrams of various materials vary widely and different tensile
tests conducted on the same material may yield different result depending upon
the temperature of the specimen and the speed of the loading.

Stress-Strain Diagram for Concrete*
For a given steel, the yield strength is the'same in both tension and compression.

For most 'brittle materials', ultimate strength in compression is much larger than
the ultimate strength in tension. This is due to the presence of flaws such as
microscopic cracks or Cavities which tend to weaken the material in tension.
Properties in tension and compression of concrete is shown in Fig. 1.18(e).

oy(tension) - ——~—— Rupture in tension

[

T

£ +—

: (o] ' —s
1

! l Liner elastic range
]

: (]

Rupture in comparison  )~————-
----------- oy(compression)

Fig. 1.18 (e) Stress-strain diagram for concrete
Value of E for common materials:

Material E(GPa)
Steel 200-210
Copper 120
Aluminium 70
Bronze 83
Cast iron 100

*Concrete is an anisotropic material.
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1.10 DIFFERENCE BETWEEN ENGINEERING STRESS AND TRUE STRESS
[MTU-2011-12 (2nd Semester)]

Particular

Engineering stress

True stress

1. Stress formula

2. Behaviour of
material on
application of
load

3. Uses

P
Engg. Stress (0) = 2

Here, A is the original area
of cross-section.

Engineering stress (o) is
directly proportional to the
load P, decreases with P
during necking phase up
to fracture point or breaking
point of the specimen of
ductile material.

Elastic behaviour of a
deformable body is studied
by Engineering stress.

True stress (O;) = —
(o A

Here, A is the deformed area of
cross-section after the load
application.

True stress (c,) is propor-

tional to P but also inversely
proportional to A. True stress
increases until rupture of
the specimen occurs (See
Fig.1.18(a)).

Plastic behaviour of a material
is stuaied by true stress.

1.11 THERMAL STRESS AND STRAIN

Owing to temperature variation in the material, stresses and strains are setup.
Metal expand on heating and contract on cooling.
é :

.

O%

N

Fig. 1.19

If their expansion or contraction is prevented as shown in Fig. 1.19, then thermal
stresses and strains are produced.
The increased length of the rod is given by

I, =1, 1+ aAT)
I, = initial length of the rod
I, =finallength of the rod at increased temperature

where

a = coefficient of thermal expansion
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AT = risein témperature
=T, - T)
where Ty = final temperature and T, = initial temperature

L -1
I

0
L, (1+0aAT) -,
- 1

[

Thermal strain (g;) =

o

= 0AT

and Thermal stress (Oyermar) = E -0t - AT .

1.12 THERMAL STRESSES IN COMPOSITE BAR (Fig. 1.20)

Let us consider a composite bar (rod-1 and tube 2) as shown in Fig. 1.20.
If the rod '1' and tube 2" were not connected with each other then their expansion
wouldbe L - ;AT and L - o, AT respectively.

However, as the two are connected at the ends so thermal stresses and strains will
be produced.

Coefficient of expansion (a) is different for different materials. Here o, is more
than @, , sorod 1 will expand more than tube 2.

—®
(LS S S
(1) rop
LSS eSS S

NNNNNNN\NN

AN NSNANNNNNNAN

N

Fig. 1.20

Since there is no external force applied to the above composite bar, the sum of
forces due to thermal stresses will be zero.

ie. P-P =0

or, P, =P =P (Assume)

Now, AL +AL,=L-0;-AT-L-0,-AT
= LAT (04 — a)

PL

AL, = ——
Also, 1 A E,
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® |rEhuiTH

—
110V
@
/11
4 l—_®
(AP,
0] —— P
4///////////[///‘—’:’2

\L.(XzAT

Fig. 1.21

PL

2 =2

1 1
AL, +AL, = PL +
ok [Alﬁl AZEZJ

AR AL

(0q —ap) AT

1 + 1
AE A

Therefore, thermal stress in the rod
P
A
(o4 —0y) AT
1 A 1
— + — —
E, A, E

and thermal stress in the tube

P=

Oy

a (& 1.1

A E
EXAMPLE 1 A steel rod is stretched between two rigid walls and carries a tensile load of
5000 N at 20°C. If the allowable stress is not to exceed 130 MPa at — 20°C, what is the
minimum diameter of the rod? Assume o = 11.7 u m/m—°C and E = 200 GPa.

SOLUTION Actual expansing of steel rod = Free expansion of steel rod
+ Expansion due to tensile load.

02=

ie. 3= 8tl'len'r\al + 8tensile load
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7 N
Z N
2 L N
/]
5000 N=—— L~ 5000N
L
7/
Fig. 1.22
SL_p.g.ar+ L
E A-E
cs=Lo¢AT><E+£I—‘xE
L AE L
c=ocEAT+£
A
13.o=11.7><10*><2><10-"><40+50700
5000
A=20
= (36.4)
m 2 _ 5000
oL 3% T 364
d= ’5000><4
“\364xm
=13.2mm Ans.

EXAMPLE2 Steel railroad rails 10 m long are laid with a clearance of 3 mm at a temperature
at 15°C. At what temperature will the rails just touch? What stress would be induced in the
rails? At that temperature if there were no initial clearance? Assemed o.=11.7 wm/m°C
and E = 200 GPa.

SOLUTION T; = ?and T, = 15°C 5 =3mm
T .. [ IR RS
O =L-o-AT L 10m J. 3mm |
=l -T) Fig. 1.23

3 =11.7 x 10 x 1000 x (T, - 15)
= T, = 40.64°
Required stress oy, = - E- (T} = T;)

=11.7 x 107 x 200 x 10> (40.64 — 15)
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=11.7x107° x 25.64
= 59.99
= 60 MPa Ans.

EXAMPLE 3 A bronze bar 3 m long with a cross-sectional area of 320 mm? is placed
between two rigid walls as shown in figure. At a temperature of — 20°C, the gap
A = 2.5 mm. Find the temperature at which the compressive stress in the bar will be 35
MPa. (Use o =18 x 10 m/m °C and E = 80 GPa) .

SOLUTION Here 8yma =8 + A P A
7
a-L-AT="L 425 ’ L=3m JlE
E Z
Fig. 1.24
18 x 107 x 3000 x AT = 2223900 5 °
80 x 10
= #— = 70.60°C
18 x 10™ x 3000
T = 70.60 - 20 = 50.60°C Ans.

EXAMPLE 4 A rigid bar of negligible weight is supported as shown in Fig. 1.25. If
W =80 kN. Compute the temperature change that will cause the stress in the steel rod to be
55 MPa.

Assume the coefficient of linear expansion are 11.7 pwm/m°C for steel and 18.9 pm/m°C
for bronze.

ANANNNNN
970774 Bronze
L=3m
Steel >
Lo1s A = 1300 mm
=om E=83GPa
A =320 mm? =
1m | E=200GPa
A 1
25m 1.5m—]
W |=80,000 N

SOLUTION M, =0 gives
4P, + P, = 2.5 x 80,000
40,, x 1300 + 55 x 320 = 2.5 x 80,000
P

st AI F’br
} 1.5m
Al 2.5m D

B

C\ 8W
8T(st) + 8st

Fig. 1.26

FST(br) + 8l':r
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o = 2.5 % 80,000 — 55 x 320
br 4 %1300
From similar triangles, ABC and ADF

dr(st) +8gr  Sp(br) +5,,

1 4
ST(St) + 851‘ = 025 [8T (br) + 8br]

= 35.08 MPa

( LAT),, + ( "_L) =025 [(aLAT)br(iﬁ) ]
E st E br
117 x 10 x 1500 AT + 22X 1200
2000
= 0.25 [18.9 x 107 x 3000 AT + w]
83000

AT = 28.3°C
A temperature drop of 28.3°C is needed to stress the steel to 55 MPa.
EXAMPLES5 Atatemperature of 80°C, a steel tyre 12 mm thick and 90 mm wide that is to
be shrunk on to a locomotive driving wheel 22 m in diameter just fits over the wheel, which
is at a temperature of 25°C.
Determine the contact pressure between thé tyre and wheel after the assembly cools to
25°C. Neglect the deformation of the wheel caused by the pressure of the tyre.
Assume o =11.7 um/m°C and E = 200 GPa.

12m

Half of the tyre
(semicircular)

Tyre shrunk an wheel

Locomotive wheel
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= P = AEo AT
= (90 x 12) x 200 x 10% x 11.7 x 107 x (80 — 25)

= 1080 x 200 x 10° x 11.7 x 55
= 128996 Newton

Now  Forgjected = 2P
p-D-L=2P
p (2000) (90) = 2 x 138996
p = 1.544 MPa Ans.

1.13 VOLUMETRIC STRAIN OF A RECTANGULAR BAR WHEN
SUBJECTED TO UNIAXIAL LOAD P

Let arectangular bar is subjected to load P along x-axis.

Fig. 1.28
Let L =length of bar
b=width of bar
and  d=depthofbar.
Let due to application of load,
Change in length = §L
Change in width = 5b
and  Changeindepth = §4
. Final dimensional of the bar will be
(L x8L)x (b + 8b) x (d + dd)

Final volume = (L + 8L) (b + 8b) (d + &d)

(neglecting product of small quantities)

Change in volume ;) = (V; - V})
= (Lbd + bdSL + Lbdd + Lddd) — Ibd
= bdSL + Lbdd + LdSb

SV
Volumetric strain (€,) = a
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SL 51 &b
€ = — +—+ —

L 4 %
%and— lateral strai
d b are laterai strain.

g, =longitudinal strain + 2 x lateral strain
= longitudinal strain - 2 x v longitudinal strain

Volumetric strain of rectangular bar subjected to uniaxial load P

=§L£(1—2V)

1.14 VOLUMETRIC STRAIN OF A CYLINDERICAL ROD

Let the initial length of rod = L and dia. of rod = d

After uniaxial load P, let its length increases to (L + 8L) and diameter decrease to
(d - &d)

AI B/

(d—5d)

L+6L

Fig. 1.29

Change in volume (8,) = (Vy = V})

- g{(d - 8d)? - (L +8L)} - {g dzL}
= g{d}f—zdLﬁd+d26L—;1}f}

= %{dz& - 2dL5d }

)
Volumetric strain (€,) = *‘%

Z (d*8L - 2dL - 8d)

}f d’L
A
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8L 284

¢, of cylinderrod = T

= {longitudinal strain— 2 x diametral strain }

1.15 VOLUMETRIC STRAIN OF A RECTANGULAR BLOCK SUBJECTED TO
NORMAL STRESSES ON ALL ITS FACE

Let us consider a rectangular block having dimensions x x y x z so that

AB=x

BF=zand BC=y
Let the block is subjected to stress Oy, 0y, and o, along x, y and z axes respectively.
As a result of stresses the block will be strained along x, y and z axes. Let strain
along x, y and z axes be £, €, and €, respectively.

y
Oy
E c.
E P
A ' B /
Ox 4—] Hl —1— Ox
oL
- G
D ,‘;
z 0z l ¢
Oy
Fig. 1.30
c o o,
Hence, €, =EX'—V'—Ei—\"—E;

c o o
£, =2 _y.X_y. XL
* E E E
Now, volumetric strain (&)=¢+ € +€= CI,SI 1-2v)+ %’- (1—2v)+% (1-2v)
2|82, 0% 0. 2v (0, +0,+0,) 2v
= ( Bt E E) f(ox+cy+oz) = -—*—E’ —F(G,+oy+o,)
(0, +0,+0,
= E” )[1—2v]

If a body is subjected to uniform hydrostatic pressure p, then each of th
; , ¢
components is equal to — p, therefore volumelzric strain 4 ot the stress

__P-pP-p
€)=—"7

EXAMPLE 1 A specimen of any given material is subjected to a uniform triaxial stress.
Determine the theoretical maximum value of Poisson’s ratio.

(1—2v>=(—>1—”<1—2v)
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o]

Fig. 1.31

SOLUTION Let the specimen (as shown in Figure) is subjected to O, 6, and o,
along x, y and z axes respectively.

1
Then & = [0, - V(o, +0.)] D
1
g, = E[Gy -v(o, +0,)] ...
1
e; = £[0. - v(o, + )]
AddingI,II, and III
1 2v
€ +E, tHE, =E(Gx+cy+cz)—-E—(0'x +0,+0;)
c,+0,+0
=—1—7%——ia—2w ..(IV)

For uniform triaxial stress we have & =€, =¢, and Oy = o, =0,
Hence, eq. (IV) reduces to
30
3e = —{1-2v}
E

o
=—{1-2
€ E{ v}

Since € and 6 mustbe of the same sign if follows that (1-2 v ) must be positive ie.
1-2v>0

= v< (%) Ans.

EXAMPLE 2 A solid cylinder of diameter d has an axial load P. Show that it's change in
. . ( 4Pv)

diameter is TEd)"

SOLUTION Theload can be considered tensile or compressive. Here, let us consider
tensile load P.
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y
P P
X
le ! N|
N 2l
Fig. 1.32
lateral strain €y
Poisson ratio (V) = (- Py P A
V) =( )longxtudmal strain ( )sx.
€, =-V-&

where €, = diametral strain along y-axis

¢, = longitudinal strain along x-axis

(5)--ve
d - X

(-) sign, since there is decrease in diameter when the cylinder is subjected to
tensile load along x-axis.
EXAMPLE 3 A rectantular block 1 m long, 0.4 m wide and 20 mm thick is subjected to

biaxial stresses 6, and Oy acting along length and width respectively. If the increase in
length is 0.6 mm and increases in width is 0.09 mm find

(@) o, and O,

(b) change is thickness of the plate

(c) change is volume of the plate

SOLUTION Given §,; = 0.6mm; §,=0.09mm; §,=0
I'=1m =1000mm
E =200 x 10 MPa or N/mm?
b=0.4m = *90 mm
t =20mm
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20mm [
| / 1m
Oy
Fig. 1.33
(a) Forbiaxial system:

1

& =£(0,-v-0,)

ol 1

T=E(O'x -—V"O'y)

0.6 1
= o, - 0.250
1000 200 x 10° (0 y)
o, -0250, =120 (D

1

g, =-E(oy -V-0,)

&b 1

'b— =E(Gy 'V'Gx)

0.9 1

— = ——+—(0, - 0.250

400 200x10° (o )

02506, +0, =45 ...

Solving (I) and (1) o, = 140 MPa and o, =80MPa Ans.
(b) Change in thickness

& 1
& =T=E(Gz -V-0, —Vvo,)

Yl (0-025x140-025x80)
20 200x 10
= 8t = —0.0055 mm Ans.

(c) Volumetric strain
&y = (g, +¢, +&)
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!
0.6 009 —0.0055
= + +
1000 400 20
=0.55x 107

3 &b Ot
—_— —
b

So, change in volume (dV) = &y, -V
= 0.55 % 1073 x (1000 x 400 x 20)
= 4400 mm’>

Since value of dV is positive so there is increase in volume of the plate. Ans.

EXAMPLE 4 A circle of diameter d = 220 mm is made on a unstressed aluminiuin plate
400 mm x 400 mm and of thickness t = 20 mm. Forces acting on the plate cause normal

1
stresses 6, = 80MPa and O, =140 MPa. For E=70 GPaand v= 3 determine:

y
o, =140 MPa

f=- 400 mm >/

X

A @ B o, =80 MPa
400 mm

/| /, 1/ 120 mm

Ox

z

GZ
Fig. 1.34
(a) change in length of diameter AB (b) changein length of diameter CD
(c) change in thickness of the plate (d) change in volume of the plate

SOLUTION Given
o, = 80 MPa = 80 x 10° N/m?

o, = 140 MPa = 140 x 10° N/m?

E =70 x10° N/m®
We know that by application of load stress and strain occurs in the material.

Let &, €, and €; are the strain along x, y and z axes.

Then, & =—7-V:-—~-V-—
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_1
—E[cr,-wcy-—v-oz]
6
- [s0-0-12]
70 x 10 -3
= 0476 x 107
Gy Oy o,

1 80 1 140
— =X — - =X
3 70x10° 3 70x10°

. ,
=———— _[80+140
3x70x103[ ]

=-1.047 x 1073

c
ez=g§-v‘%‘-~—v-—%
140 1 80
= 3——)(' 3"‘0
70x10° 3 70x10

=___1._§.[140_@]
70 x 10 3

=1.62x107
Now,
(@) Change in length in diameter ABi.e.

SAB = Ex X d
0.476 x 10~ x 220
= 0.1047 mm
(b) Change in length in diameter CD i.e.
8CD = 82 xXd
=1.62x107% x 220
= 0.356 mm
(¢) Changein thickness of platei.e.

8y=eyxt

= -1.047 x 10 x 20 mm

= —0.0209 mm (decreases in thickness)

133
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(d) Change in volume (8;,)

= gy, X original volume

= volumetric strain x original volume
Volumetric strain of aluminium plate is given by

_ (o, +0, +0,)(1-2V)

€
v E
1
(80+0+140)(1—2><§)
- 70 x 10°
1 1
=220X =X ——
3 70%x10°
=@><10'9
210

Change in Volume (3) = g, xV

=-22%x10'9x(400x400x20)mm3

=-§%x10‘9 x 32 x 10° mm?>

22x 32
==—x
21

=33.523%x 10 mm®

107 mm3

=3352x10> mm>  Ans.

1.16 RELATION BETWEEN ELASTIC CONSTANTS (E, K AND G)

(a) Relation between E and K:
L = side of the cube
and  dL=change in length of cube

y

—+=q
Q

< 1
(o]
Fig. 1.36
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Let the element of elastic body in the form of cube is subjected to equal tensile stress
(o) along x, y and z axes then total strain along x-axis.

dL o o c
—_—=——\ i ——V . —
L E E E
=%(1—-2v) ()
Initial volume of the cube
=1 ...(ii)

Now, differentiating both sides, dV = 3I%dL

(d_V)_stde=ﬂ
\v) P L

(#)-()

From equation (i) and (iii)

dV o
22 _-21-2
v gl
ﬂ/. = §2 (1 —_ 2v)
14 E
Bulk Modulus (K) = Stress _
Volumetric strain
=%
30
—(1-2
T (1-2v)
E
K=——"—
3(1-2v)
E=3K(1-2v) .(iv)

(b) Relation between Eand G: Let the block of side 'L’ and thickness unity is subjected
to shear stresses 7, at faces AB and CD, hence complementary shear stresses (1)
-will be developed on faces AD and 5C, as a result the cube is distorted to ABC" D"
AC’ - AC

AC
C'H
AC
_ CC’cos 45°

AB\2

Now, strainin AC =
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n
a

]

N
>
o

cC’

X
—
o]
0
~—

T

<

T
Fig. 1.37

|

...(1)

N
0]

. T
Strain along AC = %and strain along BD = (=) v - % [Shear strain (y) = ra ]

Further Strain along diagonal AC = strain due to tensile stress in AC

— strain due to compressive stress along BD

L]

E
So combined strain along AC = %[1 +v] ...(2
From equation (1)and (2)
T

= =-2a
26" E1Y

_E

T 2(1+V) -G

where G =modulus of rigidity
E = modulus of elasticity.
Eliminating v from equ. (3) we get the relation between three elastic constants

9GK
3K+G

EXAMPLE 1 A bar of 30mm diameter is subjected to a axial pull of 60kN. The measured
extension on a guauge length of 200mm is 0.09 mm and the change is diameter is *
0.0039mm. Calculate the Poisson'’s ratio and the values of the three moduli.

SOLUTION Diameter of the bar = 30mm

whichis E =

Area of the bar (4) = g x d* = 7145 x (30)* = 706.86 mm>

N.B.: If the direction of shear stress t is reversed then also the same result will occur.
In that case diagonal BD will be elongated and AC will be compressed simultaneously.
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Tensile load = 60 kN = 6000 N

6000
Tensile stress (0) = mN/mz = 84.88 N/mm?
Change in length (§ ) = 0.09 mm

Longitudinal strain (g;) = -?— = (;_&9_ = 0.00045

(o) 84.88 2
Y 'sModulus (E) = — =| ———= | = 18862 N
oung's Modulus (E) . (0‘ ) /mm

Lateral strain = %ﬂ = 00039 _ 4 00013

30

lateral strain
longitudinal strain

Poisson's ratio (V) =
000013 _ 13

Let G be modulus of rigidity
Weknowthat E=2G(1+vV)

: 13

188622 = 2G(1+—)
. 45

G= 188622 x 45
2% 58

= 73172.327 N/mm*
Let Kbe the bulk modulus
Weknowthat E=3K(1-2v)

188622 = 31<(1—2—6)
45
_ 188622x 45

3x19

= 148912.1 N/mm?

13
v=—=028
Hence, 5

2
E = 188622 N/mm Ans.
G = 73172.327 N/mm?
K = 148912.1 N/mm?

1.37
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1.17 EXPRESSION FOR THE ELONGATION D OF A VERTICAL BAR OF
LENGTH L, UNIFORM CROSS-SECTIONAL AREA A, SUPPORTED AT
ITS UPPER AND UNDER ITS OWN WEIGHT W

Let us consider an element of thickness dx at a distance x from the lower end of the
bar. Let p is the mass density of bar material.

ForlengthX, Wy =p-g-A-x

As a result of this load portion of length dx will suffer small elongation 48 such
that

LU

5 = W -dx
A-E
_p-g-A-x-dx
A-E
: 7 ¥
. L dx
Total elongation § = Io dd L /M
_(Lp-g-A-xdx
“Jo A-E X
=2E‘3- :xdx
_pgl? Fig. 1.38
=5F (1)
Weightofbar (W) =p-g-A-L
p=—L
A-L-g
Substituting the value of P in the above equation we get,
w  4FL
d=——xt—0
ALZd " 2E
Ts_ WL
_2AE

1.18 PRINCIPLE OF SUPERPOSITION

When a number of loads are acting on a body then the resulting strain will be
algebraic sum of the strain caused by individual loads.

While solving the problem by superposition principle, first the free body diagram
is drawn, afterwards the deformation (increase or decrease) of the each section is
obtained.

*$ and any computed value of dimensions viz d; ! etc of the specimen should be expressed
in mm while solving the numerical problem.
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The total deformation (Increase or decrease) of the body will then be equal to the
algebraic sum of the deformation of individual section.

Let us analyse bars of the varying sections:

®
® ®
P -——— A1l A2 A3 ———— P
12 173 ! 3 4
Fig. 1.39

In the figure there are three stepped bars of different cross-section A, A,, A; and
differentlength I;, I, and I; respectively.

Let P = axial load acting on the bar

and  E=Young's modulus of the bar.

Although each section is subjected to the same axial load P, yet the stresses, strain
and change in lengths will be different.

P
The stressinsection1, 0; = =
1
. . p
The stressinsection2, O = i
2

The stressin section3, %3 = 5~

Th tl' ini ﬁ 1 € = 21- = ———P
estraininsection, & =3 =77
P
Similarly, strain in section 2, & = ——=
AE
P
and, g = "
in length of portion 1
Also, strain in portion 1 = Cha.njgem ength o por. on
Original length of portion 1
51,

Changein length of portion1, 8, = ¢, |
_ Py
" AE
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Similarly, change in length of portion 2, 81, = j : le
5 -
. . P M 13
and change in length of portion 3, 8l; = A E
5 -

Total change in length of the bar

n=3
281 = 811 + 812 + 813

n=1

[Py, PIL, Pl
= + +
AE AE AE

Plh L, h
E|A A A
This expression is used in solving the problem when a round bar/stepped bar/

rectangular bar is subjected to axial load and the total change in length of the bar
isneeded.

In general total change in length of bar
n=n
2 dl = E[h_.pk.q.....}.l’!_:l
n=1 El4;, A4, A,

EXAMPLE1 The loads acting on a 3 mm diameter has 6 meter total length divided into
three segments as shown in figure. Find the total elongation of the bar (E = 210 GPa).

A B. c D

10 kN <— —>2kNl—4PkN — 5 kN
fe—2m fo-1 M-rfe- 3m —]
Fig.1.40
SOLUTION For static equilibrium P+ 2+ 5= 10
P =3kN.
A B B C c D
10kN (19-2)kN] (8=3)kN[ 5kN
OkN 8 kN
[e— 2 m— HF1m— =3 m
Fig. 1.41
Now, drawing FBD

LAF ]
A=70@) =70714x10° m?
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Total elongation of bar

1 )
a[PAB X Lag + Pge X Lpc + Pep X Lep]

1
T 210x 10° x 7.0714 x 10~

[(10x10° x 2) + (8 10° x 1) + (5 x 10° x3) |m

_ 10°
210% 7.0714 x 1

-8
210 x 7.0714

= 0.0289 m = 28.95 mm

S5 [20+8+15]

1.41

Ans.

EXAMPLE2 A homogenous rod of constant cross-section is attached to unyielding supports.
It carries an axial load P applied as shown in figure. Determine the reaction at A and B.

A C. B
Ra — P Rg
a - b
% L I
Fig. 1.42
SOLUTION Applying the condition of static equilibrium.

Ry+Rg =P
As thebar is fixed rigidly between supports.
Therefore, extension in portion AC = Contraction in portion CB.
Let us draw EB.D. for portion AC and CB separately.

A C Cc B
Ra —— Rj Rg —] Rg
le— 3 —>] le— b—>]
(a) (b)
Fig. 1.43
_ RA a _ RB ’b

Given § AC = SCB.

(1)
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Substituting the value of R4 ineqn. (2)

g-RB +Rg =P
RB(§+1)=P
R,,:f-}

and RA:('}]'(Z;«,;)
RA:(:;Z)

STRENGTH OF MATERIALS

..(2)

Ans.

EXAMPLE 3 A 550 mm long round bar of copper has a diameter of 30 mm over a length
of 200 mm, diameter of 20 mm over a length of 200 mm and a diameter of 10 mm over its
remaining length. Determine the stresses in each section and elongation of the rod when it
is subjected to a pull of 30 kN. Assume E = 100 kN/mm?2.

SOLUTION Axial pull (P) = 30 kN

= 30000 Newton

$=30 mm

$=20 mm

30 kN ~——
A )

Fig. 1.44

Young's Moduius (E) = 100 kN/mm?

=100 x 10°> N/mm?

= 10° N/mm?

P
Stress in portion AB, Gp = ;1&

'‘AB

——"—1 50 mm—»

+— 200 mm —+f«—200 mm

#=10 mm

!—-D—>30kN
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where, P, =load (Axial) in the portion AB
A,p = cross-sectional area in the portion AB

3
O = ?’?:J-@— = 42.463 N/mm?
<0y
4
Ayp = 706.5 mm>

T 2 T 2
Ap- = =(d)" = = x (2
BC 4() 4X(0)
Agc = 31428 mm’®

B
Similarly, opc = 71‘;%

_ 30,0000

- = 95.54 N/mm? Ans.
7> (20)?

Acp = gx(w)2 mm?

= 78.57 mm?
S 30,000
cD =
T 2
—(10
200

= 381.82 N/mm’
Total elongation of the rod

(8):2 h.’._ll.*.h
E\A A A

_30000( 200 + 200 + 150)
(10)° \ 706.85  314.28 78.57

8=0.84mm Ans.

EXAMPLE4 A steel bar of 25 mm diameter is loaded as shown in Fig. 1.45. Calculate the
stresses in each portion and the total elongation. Assume E,, = 200 GPa.

B Cc D

>

30 kN

20 kN

ANNNNNNNNN\N

PR | |
300 mm T 200 mm i 100mm—~|
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SOLUTION Let us draw FBD of various portion of bar (starting from D for
convenience).

25 kN 25kN  5kN 15 kN 15 kN
5kN
A B B c c D

Fig. 1.46

C.S. areaofthebar:—:;xd2
Y11 2
=—x(25
4 (25)

Hence, A = 490.873 mm?

5. < P _ 25x10°
4B A T 490.873
= 50.93 MPa

P
Opc = (")-ic- (since load is compressive so negative sign used)

5x10°
=(- = (-)10.186 MP
O 0873 = 4
Total elongation
1
= EZP,, -L,
1
='A—E[PAB'LA.B—PBC -Lgc + Fep - Lep]
1 3
= 290.873 x 200 x 10° [25 x 10% x 300 — 5 x 10 x 200 + 15 x 10> x 100]
10°

= = [25 x 300 — 5 x 200 + 15 x 100]

490.873 x 2 x 10

10°

= = [7500 - 1000 + 1500]

490.873 x 2 x 10
_10° x 8000

490.873 x 2 x 10°
-8

490.873 x 2

= 0.08148 mm = 0.0815 mm Ans.
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EXAMPLE 5 A single axial load P = 50 kN is applied at end C of the brass road ABC.
Knowing that E = 105 GPa, determine the diameter d of the portion BC for which the
deflection at point C will be 3 mm.

SOLUTION Applying formula
Srora1 = O4p + Spc

P"LAB + P'LBC
AppEap Apc - Epc

Fig. 1.47
EAB =EBC =Ebrass =105GPa(giVen)
=105 x 10° MPa
32 50 x 10% x 1 x 10° +50x103><0.5><103
-15(30)2><105><103 3;‘-(d)2x105><103
50x10°x %[ 1 05
or 3= = 5 +—
leOSx)ﬂ‘ 30" @
4x50x10°[ 1 05
or, 32— | o=+t 7
¢ nx105 | 900 (d)

(3xux105) 1 05

o axsaw) w0 2

or, 49455 %1073 - 1.111x 102 = 3_;5
38345 05

o 10° q2

= d =11.42 mm Ans.
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EXAMPLE 6 In the given figure AB and BC are made of an
aluminium for which E = 70 GPa. Knowing that the

magnitude of P is 4 kN. Determine e S—

I

(a) the value of Q so that the deflection at A is zero
(b) thecorresponding deflection at B. ' )
SOLUTION (a) GivendeflectionatA=0and P=4kN 04™M 20 mm dia
P-L (Q-P)-L
0= -
= AE  AE 2l
P-L (Q-P)-L l
= =
A-E- A-E 05m Q 60 mm dia
- Px94x10° (Q-P)x05x10°
T 2 B 4 2 c
7 Q0" xE 2 00 xE 7777777777777777
Fig. 1.48
Px04 _(Q-P)x5 9
= 400 9
P im-m
A B
0.4m 0.5m
B c
P T.(Q -P)
Fig. 1.49
= 36P = 5Q - 5P
= 41P = 50
41 41 164
= =|P=—=x4=—
= Q ( 5 ) 5 5
Q=328kN Ans.
) S = (32.8 - 4) x 10° x 500 x 28
B 2% 3600 x 70 X 10°
_ 144
198
= 0.0727 mm

EXAMPLE 7 The specimen shown in Figure is made from a 25 mm diameter cylindrical
steel rod with two 38 mm sleeves bonded to the rod as shown in figure. Knowing that

E = 200 GPa, determine
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_ 147
(a) the load P so that the total deformtion is 0.05 mm.

(b) the corresponding deformation of the central part BC.
A J—-SSmm(q’)B 25 mm (= ¢) c

'/-38 mm=¢D

Fig. 1.50

SOLUTION Given 8,,, = 0.05mm; E = 200 GPa = 200 x 103 MPa.
(@) S = 845 + Opc + 8¢p, by superposition theorem
005 =2 Las  Prlsc  Prlep
A Apg-E Apc-E Ap-E
0.05 = _}2[54;3_+L£+E2}
E|lAp  4Asc Ao

P 50 75 50
0.05 = 3| 7 + = t

(0.05)_ P [2><50+ 75 ]
1

2x10° x2 (387 (25

005 _ 4P [100 75]

= +
1 2mx10° | (38)* (25)
0.05x 21 x10° _ 100 75
4 @8 (5 J

5x 27 x 10°

1 = P x(0.069252 + 0.12)
P = 41479N
= 41.479 kN
P =415kN Ans.
(b) Corresponding to P =41.5 kN, the central part BC

415x10° x75
Deformationi.e. 85 = - s
1 (25)% x 200 x 10°
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_415x10° x75x 4x7
22 % 625 x 2 x 10°

= 0.03169 mm

|8pc = 0.0317 mm| Ans.

1.19 TENSION IN WIRES OF A HINGED BAR SUBJECTED TO AXIAL

PULL (P)
EXAMPLE 1 In the figure OABC is a rigid bar which is hinged at 0 and supported in a
horizontal position by two identical steel wires. A vertical load P is applied at C. Find the
tension T, and T, in the steel wires.

JPPI SIS SIS IS
A
7 T T.
Z b :

O/ fe— Q -—> o}
— )
Za g P

Fig. 1.51

SOLUTION The T + T, + F, = P

T
T4 b —»] 2
le— 3 —» C
F, o A A ?/—>
A
\Aj% B
B {
F
y P
Fig. 1.52 Free body diagram
FromAs OA’A and OB’B
84 8 _T
a - b - T2 “'(l)
80 _a_T, .
83 - b - Tz 0--(2)
Taking moment about O and equating it to zero
Ta+T,-b=P-1 ...(3)
o 8_ 0
GlVeIl b T2
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@ _ah
o B2 bT,

2
or E_+1=aT1+bT2

” bT, (Adding 1 both sides)

@ +b® _ aTy +bT,
b? bT,

or

2, 12
aT, +bT, = Eﬁ-b*—b—)
Equation (3) reduces to

2 2
T_Z(Lb"'__b_)=p.1

. Pbl
v (a2+b2) 2
P-a-l
Similarly T} = ———
YA =25

N.B: This can be used as a formula when P. 4, b, l are given.
Let us confirm by the following example.

EXAMPLE2 A rigid bar OABC is hinged at A and supported in a horizontal position by
two identical steel wires as shown in figure. A vertical load of 30 kN is applied at C. Find
the tensile forces Ty and T, induced in these wires by the vertical load.

D E
% Ty T2
=
° 'Z, A B o

k1 m—t—1 m—f—1 m—Yy P=30kN

A B (o]
o 51 52
A\BL\C’
Fig. 1.53

SOLUTION By formula
P-a-l
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_30x10° x1x3
(12 +2%)

:

= 18,000 Newton

_ 630/ x10° x 2x 3
51
=36 kN Ans.

EXAMPLE 3 The rigid bar AB is attached to two vertical rods as shown in Fig. 1.54 is

horizontal before the load P is apoplied. Determine the vertical movement of P if it’s
magnitude is 50 kN.

ANANNNNY
—O—-JL—D-LE -r;\rlnml um Aluminium Steel A = 300 mm2
A =500 mm2 E =200 GPa
E= P:
70 GPa A c B .
—3.5m—p—2.5 m—]
P=50kN
Fig. 1.54
SOLUTION For Aluminium
IMg =0 gives
6P, =25x50
Par Pst
A B
35m 25m
P=50kNE50x10°N
C B
A
1.785 mm —* c
A, ;7 B1 |1.943 mm
C,
B,
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2.5x% 50
6

= 20.83 kN = 20.83 x 10> Newton

Py =

5. < P-L _20.83 x 3 x (1000)
AT AE 500%(70x10%)

_ 20.83 x 3000

mm = 1.785 mm
500 x 70

For Steel
M, =0 gives
oP, = 3.5x50

3.5x%x 50
P, =

= 29.16kN

=19.16x10° N
P-L
O = f

_29.16 x 10% x (4 x 1000)
300 x 200 x 10°

- 29.16 x 4000 = 1.943 mm
300 x 200

Now, from similar triangles A,C,C, and A, B, B,
y_ _B5

AG  AB

Yy _1943- 1.785
35 6
3.5 %(1.943 - 1.785)
y= 6
Now, vertical movement of P

=CC,
=CC,+y
=1.785 + 0.092
= 1.877 mm

=

= 0.092 mm

1.51

Ans.
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EXAMPLE4 Therigid bar AB and CD is shown in Fig. 1.56 are supported by pins A and
C and the two rods. Determine the maximum force P that can be applied if its vertical
movement is limited to 5 mm. Neglect the weights of all members.

ANAANNNY
- Aluminium
A 3m 3m B L=2m
@ D A = 500 mm?2
' Steel E=70GPa
L=2m
A = 350 mm?
E =200 GPa
©) )
¢ 3m l 3m D
P
Fig. 1.56
SOLUTION Let us start from part AB.
M, =0 gives
3P, = 6P,
B, =2F,
Pa
A 3m 3m B
©}
H
Pst
A. 3m H _ 3m B
HI
B’
Fig. 1.57
Now, from similar triangles, ABB’ and AHH’ we get
BB _ HH’
6 3
% _ %
6 3
88 = 28a1
P,-L
=2 al ]
A-E

|
[ P, x 2000 ]_ 1

= P
500x70x10° | 8750
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= X 2Py
8750
1 '
=375 ot s the movement of B
Part CD
> Par
Z
4.c 3m 3m
Za .
7 P
(o} @ D
\\SP\ g,
Q' DI
Fig. 1.58
Movement of D
8p =384 +08p
= P_.L + LPSI
A-E 4375
P, x 2000 1
= 5+ st
300x 2x10° 4375
=3.333x107P, +2.285x 107 P,
=2618 x107*P,
M= 0 for static equilibrium
6P, =3P
1
Py = EP
By similar triangles CQQ’ and CDD’
5% _ 5
3 6
1
dp ==8
P =5

(—5—) -lx2618 P, x10™*
1000) 2

~ [ 0.005 x 2 }
7 2.618x107

1.53

[ 8p = 5mm]
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1
-P =38.19
or, 2

P'=7638KkN Ans.

EXAMPLES5 Two vertical rods attached to the light bar in Fig. 1.59 are identical except for
length. Before the load W was attached, the bar was horizorital and the rods were stress free.
Determine the load in each rod if W = 6600 N.

L=4M L=6M
(0] A B C
4 m—'l'—4 m——'|<'2 m—
| W |= 6600 N
Fig. 1.59
SOLUTION 3IM, =0 gives
4P, + 8P, = 10 x 6600
P, + 2P, = 16500 oD
Pa Pg
4m 4m T 2m
W =6600 N
4m A 4m B 2m C
o 5
A 3g Diagram after deflection
BI
Fig. 1.60

Now, from similar triangle OAA’ and OBB’

% _ %
4 8
AA.EA 4 AB'EB 8

Since rods are identical exceptlength
So A, = Ag = A(let)
E, = Eg = E(let)
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P4 1_B-6 1

X

3PB +8PB =16500><4
11P; = 16500 x 4

66000
Py =(T) = 6000 Newton

P, =16500 — 2P,
= 165000 - 12000
= 4500 Newton

EXAMPLE 6 The block of weight W hangs from the point at A. The bars AB and AC are
pinned to the support at B and C. The C.S. area are 800 mm? for AB and 400 mm? for AC.
Neglecting the weight of the bars, determine the maximum safe value of W if the stress in
AB is limited to 110 MPa and in AC to 120 MPa.

Pag . sin 40°

B c Pac . sin 60°
Pac

Pac . cos 60°

40° 60°
Pag.cos40° A

FBD

() (b)
Fig. 1.61

SOLUTION Drawing F.B.D as in Fig. 1.50 (b) of joint A, we get
T F, =0 gives
Py X 0.5~ Py x0.766 = 0 ..Q)
SF, =0 gives
Pyc X 0.866 + Py x 0.642 — W = 0 Q)
Solving (1) and (2) we get

P,; = 0.508 W sin 40 = 0.642
cos 40 = 0.766

and, P, =0.778 W
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The value of W that will cause the stress in each bar to equal its maximum safe
magnitude is determined as follows:

For AB:
P=c-A
0.508 W = 110 x 10® N/m?x 800 x 10 m?
W =173 x 10 Newton
=173 kN
For AC:
P=c-A
0.778 W = (120 x 106 N/m?) x (400 x 10° m?)
W =617 x10°N
= 61.7 kN
The maximum safe value of W is the smaller one.
61.7 kN Ans.

1.20 EXPRESSION FOR THE TOTAL EXTENSION OF A UNIFORMLY
TAPERING RECTANGULAR BAR WHEN SUBJECTED TO AXIAL
LOAD P.

Let P =axialload onthebar L =length of thebar

a =width of bigger end b = width of smaller end
E =Young's Modulus t = thickness of bar

v
s
-

~ AW

Fig. 1.52

Width of the bar of section XX = a —( d z b )x

a-b
=a-Kx where( I ) =K (Constant)

Area at section XX = width x thickness
=(a-Kx)t
Stress at section XX,

P

Oxx = (a—Kx)t
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Extension of the small elemental length dx
= Strain x length dx

- Stress x dox

==
- (a— Kx)t w dx

E
= P x dx
E(a—Kx)t
) L p
Total extension of the bar (dL) = Io f_(;z_Kx)_t
_Pq dx
Et 70 (a-Kx)

P 1
- 5 loge [a=kelx ¢

P
= —¢; [l0g. (a - KL) - log, 4]

kb=

S Py (2)
Et(a-b) °\b Ans.
N.B. This may be treated as a formula.
EXAMPLE1 Find out the total elongation caused by an axial load of 100 kN applied to
a flat bar 20 mm thick, tapering from a width of 120 mm to 40 mm in a length of 10 m as
shown in Fig. 1.63. (Given E = 200 GPa.)

m

' | |

|
1y e YR S U S =
P =100 kN ’ﬁ' - | I j—b P =100 kN

¥ N‘\ 60 mm
10m) , -
fe-dx—

n
Fig. 1.63
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SOLUTION From the question we find that cross-section is not constant so the

P
equation O = " does not hold good in this problem.

However, it may be used to find the elongation on a differential length for which
cross-section is constant.

dx
/m
Pty — —- —i— - P
[¥20 i
! 1Y 0
n@j
X
10 —!
Fig. 1.64

y—20 60-20
x 10
y = (4x + 20) mm

At mn-section,

Area of the section (A) = 20 x 2y = (160x + 800) m m?

Atmn, in a differential length dx, the elongation
P-L

§=12
AE

_ (100 x 10%) dx
(160x + 800) (107%) (200 x 10%)

_[ 0.500 dx }

160 + 800
Total elongation (5) = 0.500 [ —2%
a n = V. _—
ot elongation 0 160x + 800
0.500
= e [In (160x + 800)] &

6=34mm Ans.

EXAMPLE 2 A solid truncated conical bar of circular cross-section tapers uniformly form
a diameter Dy at large end to D, at small end. The length of bar is L. Determine the
elongation due to axial force P applied at each end.

SOLUTION Let us consider an elemental length dx at a distance x from the bigger
end.
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Diameter of the bar at x distance from bigger end

x
Dy =D1—(D1"Dz)'z

=D, —m:c,where(D1 ;Dz) =m

1
Sectional area at this section, 4, = Z (D - mx)2
Axial strain at this section,
le— X dx )
ial
Sx = —————AXIa Stress T’\A%
E D,

P :rmp
_ P/A, : D,
E

P
-g(Dl -mx)? -E

Extension of the elemental length dx
=g, Xdx
= ’Lz' dx
n (D, —mx)°E
Total extension of the bar

e 4Pdx
0 m(D, —mx)*E

4P L -
= ;EIO (D, - mx)2dx

_ 4P

1 L
- E[m(Dl —mx)]0

ap [ 1 1
nEm| (D, -mL) Dy -mx0

_4p | 1 1 wmoPi=Ds
nEm | Dy (Dy - D,) Dy ' L

_4p 1 1
nEm| D, D,

]
—
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_4P(D, -D,)
nEm D] D2

4P (D, - D,)
nEDlDz(DIZDz)

§=_3PL
nED,D, | Ans.

EXAMPLE 3 If a tension bar is found to taper uniformly from (D — a) cm to diameter
(D + a) cm. Prove that the error involved in using the mean diameter to calculate Young's

22
modulus is (_D—) percent.

4PL
a(D-a)(D+a)E

SOLUTION By formula extension () =

- 4PL
n(D? -a%)$

In case we are to calculate E on the basis of mean diameter D, extension d being the
same

_ 4PL
" D%

4PL 4PL

Error in calculating E = -
8 n(Dz—az)x 7 D%x

4PL 4PL
2 _ 2. >- |100
n(D° -a‘)x nDx
4PL
Tl:(D2 -az)x

and, Errorin calculating E = [

1 1
_ [—Dz ‘F]“’O
- 1
D2 —a2

a’ 1022
=100 ( ﬁ) = (—D—) Proved.
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1.21 STRESSES IN COMPOSITE MEMBERS

A composite member is composed of two or more different materials joined together
in such a way that the system is elongated or compressed as single unit.
SIS I

ARAREARNY

JARRREANN

J-,
P
Fig. 1.66
In the figure composite bar of different materials have been shown.
Let P =total load on composite bar
L =length of each bar.

For Barl Bar2
A, = Area of cross-section A, = Area of cross-section
P, = load carried by it P, =load carried by it
E, =Young's Modulus E, =Young's Modulus
0, =Stress induced 0, = Stress induced
Total load on composite bar,
P=P+P : (1)
3!
The stressinbar1, 01 = -
4
1’1 =°'1'A1 ...(2)
Similarly, Pz = 62 . Az' ...(3)
Substituting the value of P, and P, in equation (1)
P=01A1+02A2 ...(4)
o1

Straininbar (1), €; =

o
Similarly, strain in bar (2), €, = E}
2

We know, strain in bar 1 = Strain in bar 2

.01 _0;

. E, -1;:2- Ans.
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1.22 STATICALLY INDETERMINATE MEMBERS

There are certain loaded members in which the equations of static equilibrium
are not sufficient for a solution. This condition exists in structure where the number
of unknown forces exceeds the number of equilibrium equations. Such cases
are called statically indeterminate and require the use of addition relations that
depend on the elastic deformation in the member and are known as compatability
equation.

A compound bar is atase of an indeterminate system which is discussed below:

2
LLLLLLLLLL L L L

P 1 (Hollow) P

LLLLLLLL T L
2

Fig. 1.67

Two bars of different materials (1 and 2) here make a composite bar or compound
bar is subjected to load P.
Our objective is to find the load shared by hollow tube 1 and solid bax 2.

Applying condition of static equilibrium
P = Pl + PZ .o .(I)
Applying compatibility equation

ie. 8, =9, (i.e. deformation of bar is equal to tube)
BL _BL
AE, = AF, (Asthelengthof1and 2 areequalie. L, =L, = L)
PR, AE,
p =217
or, 1 AE, ...

Substituting P, in (I) we get

P = M + P2
AE,
_ BAE + BAE,
AE,
_ B(AE + AE)
AE,
_ P M A2E2
27 AE, + AE,

P-AFE

Similarly, B = m
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EXAMPLE1 A compound tube is made by shrinking a thin sheet tube on a thin brass tube.

A, and Ay are the sectional areas of the steel and brass tubes and E;and Ey, are the corresponding

values of Young's Modulus. Show that for any tensile load the extension of the compound

tube is equal to that of a single tube of the same length and total cross sectional area but
) , . EsAs + EbAb

having a Young's modulus of ( A + A, )

VL ez
EUEARETANENA R RN NN

Steel tube Brass tube

\

Fig. 1.68

SOLUTION Let the load on the compound tube be P.
Area of steel tube = A

Area of brass tube = 4,
Let the stresses in the steel tube and brass tube be o, and o, respectively therefore

& =&
O 1=
o% Es Eb
os = L. c
s Eb b
Load on steel +1oad on brass = total load on compound tube
O,-A;+0,- A, =P
koo, ‘A, =P
£ O A0y Ay =
b

E, ]
oy =|——"——|P
[ESAS + A,
Extension of the compound tube = dl = extension of steel or brass
tube
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Let E be the Young's Modulus of the tube of area (A;) carrying the same load and
undergoing the same extension.

P
dl=|—"
[(4 + A )E] ..M
From (I) and (1), we get

P-l _ pP.l
(A, +A)E E-A+E A

E= [ EsAs + EbAb ]
A+ 4
EXAMPLE2 A load of 2 MN is applied on a short column of concrete 500 mm x 500 mm.
The column is reinforced with four steel bars of 10 mm diameter, one in each corner.
Find the stress in the concrete and steel bars. Take E for steel as 2.1 x 10° N/mm* and for
concrete 1.4 x 10° N/mm? (UPTU-2004)
SOLUTION Given P =load applied =2 MN

= 2 x 10° Newton

Area of column = (500 x 500) mm?
= 250000 mm?

Area of 4 steel bars (As) = A x — (10)2

A
= 314.159 mm?>

Area of concrete (Ac) =.(Area of column- Area of steel bars)
= 250000 — 314.159

= 249685.841 mm?
Now, strain in steel = strain in concrete

Esteel = Econcrete
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=150, ...(1)
Now, by figure we have,
Load on steel + load on concrete = Total load

o, A, +0, A, =P
150, x 314.159 + o, x 249685.84 = 2000000

. = 7.86 N/mm? | Ans.

Putting the value of o, in the above equation (1).
o, = 15x 7.86 N/mm?

=117.92N/mm?® Ans.

EXAMPLE 3 A reinforced concrete column 200 mm in diameter is designed to carry an
axial compressive load of 300 kN. Determiné the required area of the reinforcing steel if the
allowable stresses are 6 MPa and 120 MPa for the concrete and steel respectively.

Eoncrete = 14 GPa
E . = 200 GPa
SOLUTION Given
G, = 6MPa
and o, = 120 MPa
E, =14GPa

and E, =200GPa

Strain in column = Strain in steel

ie. €, = €y
S 2 [ E]
‘OoO=€E-
ECO” ES!
O _ O

14x 10> 200x 103
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1.66
P =300 kN = 300x183 N
220l ;fff// y
Lt ! x
Steel ©
200
mm
Fig. 1.70 Sectional Plan
2006, = 140,
or, 1000, = 70,
when o, =120 MPa
then 1000,, = 7 x 120 MPa
7 x 120
Oy, = = 8. ]
0 100 8.4 MPa > 6 MPa
when G, = 6 MPa

then 100x 6 =7 X 04

600
Oy =~ = 8571<120MPa

Using 6,, = 6 MPaand o,, = 85.71 MPa
N0W~ ZFy =0 giVES Psteel + P::oncrete = 300

Oy - Ay + O, - Ay = 300 x 10°
85.71x A, +6 X E (200)% - A, ] =3x10°

79.71A, + 6000m = 3 x 10°

3x10° — 60007
A, =2
79.71
= 1397.92

= 1398 mm? Ans.
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EXAMPLE 4 Two brass rods and one steel rod together support a load as shown in
figure 1.71. If the stresses in brass and steel are not to exceed 60 N/mm? and 120 N/mm?2,
find the safe load that can be supported.
Given, E,, =2x10° N/mm?
Epass = 1x10° N/mm®
Cross-sectional area of steel rod = 1500 mm?
Cross-section area of each brass rod = 1000 mm?
SOLUTION We know that decrease in the length of steel rod, should be equal fo the

decrease in length of brass rod i.e. 8ee) = Sprags -

P
Brass ‘/Steel Brass

100 mm

70mm /1Y 7 V///]/////////
Y/
Fig. 1.71

Now, d,, = Strain in steel Rod x Length of steel rod
=g, XL,

Similarly, 8y, = €, XL,
where ¢; and ¢, are the strain in steel and brass rod respectively.
As Osreel = Obrass’

Esteel * Lsteel = Ebrass * Lirass

Esteel = Lbrass = 100

€brass Lsteel 170
Now,  Ogeel = Esteel X Esteel

and' Obrass = Ebrass X Ebrass

Osteel = Esteel X Esteel
Obrass Ehrass X Ebrass

100 2 x10°
=—X
170~ 1x10°

=1.176
Total load (P) = load on steel rod + load on brass rods

Sseel _1.176
Obrass
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Osteel = 1.176 X Oppaq
=1.176x60 (AS Oypss + 60 N/mm? given)
=70.56 N/mm? <120 N/mm? of steel given hence accepted

Therefore, safeload (P) = 6,. As + 6, - A,
=70.56x1500+ 60x(2x1000)=105840+120000

=225840 Newton =225.84 KN Ans.

EXAMPLE5 A rigid block of mass M is supported by three symmetrically spaced roads as
shown in Fig. 1.72. Each copper rod has an area of 900 mm?2; E = 120 GPa and the
allowable stress is 70 MPa. The steel rod has an area of 1200mm?, E = 200 GPa and the
allowable stress is 140 MPa.

Determine the largest mass M which can be supported.

M
Copper Steel Copper
160 mm
/777 {7/////// - ///// /177777777
80.mm 4 7
¥ '/ /
77777777777
Fig. 1.72

SOLUTION Itis evident that mass M causes the rods to deform equally

ie. 3, =3

(%), - (%)
E co E st
o, X160 _ o, x 240

120x10° 200 x 10
_ 240x120x 10°

6, = ———— 0, = 0.96
“ 7 160x200x10° *
Pco Pst Pco

Fig. 1.73
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when o, =140 MPa, then 6, =0.9 x 140 MPa

=126 MPa>70MPa NotOK
when o, =70MPa

10
then Oy =—9—xom

=19(—)x70MPa

= 77.78 MPa < 140 MPa Hence OK
Therefore using 6, = 70 MPa
and o, =77.78 MPa
Now, applying ZF, =0 gives
2P, +P, =W
2(0, X Ay)+ 0y X Ay = M.g
2(70 x 900) + 77.78 x 1200 = M x 9.81

o = 2X70% 900 +77.78 X 1200
981
=12600.%19-33-§=22358.4kg Ans.

EXAMPLE 6 A rigid plateform shown in figure has negligible mass and rests on two steel
bars each 250 mm long. There centre bar is aluminium and 249.90 mm long. Compute the
stress in the aluminium bar after the centre load P =400 kN has been applied. For each steel
bar the cross sectional area is 1200 mm? and G = 200 GPa and for the aluminium brass the
area is 2400 mm?2 and E = 70 GPa.

2

Steel
Aluminiuml
Steel

V7777777777777 77 /7777777777777
Fig. 1.74

SOLUTION Given L, =250 mm
L tuminium = 249.90 mm
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Since applied load will deform rods equally so we have,

0'5‘ = aal + 0.10
J P =400 kN
(G_L) - (2&) +0.10
O Lu _Gula 59 Py Pa Py
E; E, Fig. 1.75
Oy X 2§0 _GaX 249;90 % 0.10
2x10 70 x 10
1.25x10%0,, = 357 x 100, + 0.10
o, = 2.856 G, + 80 ...
2F, =0 gives
P, +2P, =4x10°
0, X Ay +204 X Ay = 4x10°
O X 2400 + 2(2.856 G, + 80) x 1200 = 4 x 10°
24000, + 6854.4 6, + 192000 = 4 x 10°
9254.54 6, + 192000 = 4 x 10°
9254.46 o,; = 208000
( 208000)
Gy =
9254.46
= 22.475 MPa Ans.

1.23 ELONGATION DUE TO ROTATION

A uniform slender rod of length 'I' and cross sectional area A is rotating in a
horizontal plane about a vertical axis through one end. If the unit mass of the rod

is p and it is rotating at a constant angular velocity of o rad/sec, show that the

pw?®
total elongation of the rod is ( 3E ) .
Proof: Letus consider a small element of thickness dx ata distance from origin O.
Nue torotation, dP = Centrifugal force of differential mass
= dM - 0*x
= (pAdx) m*x
= pAn2xdx
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Y

<= @

Also, elemental deformation

2 .
45 = (pAn“xdx) - x
A-E

HIGHLIGHTS

1. Stress (0) = &
. eSS A

1m

assuming uniform distribution over the cross-section. Stress

is a tensor. As long as the stress (0) is less than the yield strength (G;) the
material behaves elastically and obey's Hooke's law ¢ = Ee. When o reaches

the value O, , the material starts
yielding and keeps deforming
plastically under a constant
load. If load is removed,
unloading takes place along
line MN parallel to the initial
portion OY of theloading curve.
The segment ON of the
horizontal axis represents the
strain corresponding to the
. permanent set or plastic
deformation as a result from the
loading and unloading of the

i X Rupture
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7.

STRENGTH OF MATERIALS

specimen. No material behaves exactly as shown in the Fig. 1.77, this stress-
strain diagram is useful in discussing plastic deformation of ductile material
such as mild steel.
Change in dimension
Original dimension
Strain may be —
(a) Tensile strain (g,)
(b) Compressive strain (&)
(c) Volumetricstrain (g,)
(d) Shear strain dory
Stress may be —
(a) Tensile stress (o,)
(b) Compressivestress (o)
(c) Shear stress (1)

Strain (g) =

Modulus of elasticity (E) = % with the limit of Hook's law
A _P 1
& 4%

Change in dimension (linear) of uniform section i.e. prismatic bar
5= [_P_i]
A-E
Ultimate stress
Working stress
Principle of superposition
Total change in length of a bar of different length and different diameter
when subjected to an axial load P is given by

Factor of safety (f.0.s) =

P|L L, L
dL = E[A_11+A_Z+A_33+ ] when E is same
Pn LYI
In general dL = £ ——— where n = number of bar
A E,

=P[L,+L2+L3

+ - P
E A E,A;  EsAs ] where E is different.

/The total deformation of a uniformly tapering circular rod of diameter D,

and D, when the rod is subjected to an axial load P is given by
gL = 2 P-L
nED, D,
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8.

9.

Total elongation (deformation) of a uniformly tapering rectangular bar when
subjected to an axial load P is given by

PL a
dL = —— .log.| =
L=t - Og‘(b)

where L =total length of bar
t = thickness of bar
b =width at smaller end
a =width atbigger end
E =Young's modulus.

Elongation of abar due to its own weight is given by
dL = o=
2AE

where W =weight of bar
L =length of bar
A = Area of cross-section of bar
E =modulus of elasticity of bar material.

10. Incomposite bar of equal length

11,

12.

13.

14.

(a) strain in each bar is equal

§ =8
. S_%
1.e. El E2

(b) Total load on the composite bar is equal to the sum of loads carried by
each different material

ie. P=P +P,

The stress induceed in the body due to change in temperature when the body

is not allowed to expand or contract freely are known as thermal stress.

Thermal strain (Etemp) =0+ T

Thermal stress (0y,) = E- o - AT

When a body is loaded axially it deforms longitudinally as well as

transversely at right angle to the longitudinal direction.

The strain occurring in the longitudinal direction is known as longitudinal

strain and that occurring in the transverse direction is known as lateral

strain.

Within elastic limit, the ratio of lateral strain to the longitudinal strain is

called Poisson's Ratio and is denoted by 1 orporv.
m

Longitudinal strain (g;) = %
5 )
Lateral strain (€, or g;) = —bL’- or j’-
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16.

17.

18.

19.

20.

21.

22.

STRENGTH OF MATERIALS

where §] = changeinlength
8b = change in width
8d = change in depth or diameter.

. Volumetric strain (g,) = %’—

Volumetric strain (g,) for a rectangular bar subjected to an axial load P is
givenby '

sv=§l£(1—2v)

Volumetric strain for a rectangular bar subjected to three mutually
perpendicular stresses is given by

g, = %(crJr +0,+0;)(1-2v)

where 0,0, and 0, are the stresses in x, y and z direction respectively.

Principle of complementary shear stress states that a set of shear stresses

across a plane is always accompanied by a set of balancing shear stresses of

the same magnitude across the plane and normal to'it.

ie. =1

When an element is subjected to simple shear stresses then :

() The planes of maximum normal stresses are perpendicular to each other.

(ii) The planes of maximum normal stresses are inclined at an angle of 45°
to the plane of pure shear.

(iif) One of the maximum normal stress is tensile while the other maximum
normal stress is compressive.

(iv) The maximum normal stress are of the same magnitude are equal to the
shear stress on the plane of pure shear.

Volumetric strain of a cylindrical rod, subjected to an axial tensile load is

givenby

g, = longitudinal strain — 2 x strain of diameter
3l 8d

==-2.Z
I d
The ratio of normal stress to the corresponding volumetric strain is called the
Bulk Modulus and denoted by K.
The relation between Young's modulus and bulk modulus is given by
E=3K(1-2v)
The relation between modulus of elasticity and modulus of rigidity is given
by
E=2G(1+vV)
medulus of rigidity is also denoted by G.
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23.

N

Lol

Relation between Young's modulus, Bulk modules and modulus of rigidity
is following

_ 9GK

T 3K+G

PROBLEMS FOR PRACTICE

(THEORETICAL)
. Define the term — stress; strain; elasticity; elastic limit; Young's modulus
and Modulus of rigidity.
. State Hook's law.

. Four section of a bar having different lengths and different diameter are

subjected to axial pull P.

Determine the total change in length of the bar. Assume Young's modulus of
different sections same.

Define modular ratio; thermal stresses; thermal strain and Poisson's ratio.
What do you mean by a bar of uniform strength?

Find an expression for the rotal elongation of a bar due to its own weight
when the bar is fixed at its upper end hanging freely at the lower end.

(NUMERICAL)

. Find the maximum value of P in drawing if P + 140 MPa in steel and in

Aluminium 90 MPa or in Bronze of 100 MPa.

Steel A = 500 mm?
Aluminium (A) = 400 mm?2

4

4

4 4P— P 2P

/

7 N

e 25m om Bronze|(A) = 200 mm?
—1.5 m—
Fig. 1.78

Two blocks of wood width 'W' and thickness t are glued together along the
joint inclined at an angle o as shown in Fig. 1.79. Using free body diagram
show that the shearing stress on the glued joint is

Pasin® o
T T2A
— = -

/D

Fig. 1.79
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3. A machine member is formed by connecting a steel bar to an aluminium bar
as shown in Fig. 1.80. Assuming that the bars are prevented from buckling
sideways, calculate the magnitude of force P, that will cause the total length
of the member to decrease 0.30 mm. The values of elastic modulus for steel
and aluminimum are 2 x 10° N/mm? and 6.5 x 10* N/mm? respectively.

[Ans. 406.22 kN]
L
20cm /6 cm x 6 cm Steel Bar
30cm 10 cm x 10 cm Aluminium Bar
Fig. 1.80

4. Determine by taking into account the weight of bar, the displacement of the
free end of bar shown in Fig.1.81. If its cross-sectional area is A the modulus
of elasticity E and specific weight of material .

Pb  y(a+b)?
1 [Ans. AE + F :I
P b

7117777777777777

Fig. 1.81 _
5. Determine the displacement of section xx of the bar as shown in figure if its
cross-section is A, modulus of elasticity E, and the specific weight of the

material vy.
Y LLLLLLALLLL1LLL Y

P 2
Ans. —(P *yAb)a + e
Fig. 1.82 A-E 2E



SIMPLE STRESSES AND STRAINS 177

10.

11.

OBJECTIVE QUESTIONS

. The factor of safety is the ratio of

(a) workingload or stress to ultimate load or stress
(b) ultimate load or stress to yield load or stress
(c) ultimate load or stress to working load or stress
(d) yield load or stress to ultimate load or stress

. Gauge length

(a) is the total length of the specimen rod

(b) is that part of the length over which measurement is made
(c) thereisnosuchlength

(d) noneof theabove

. A prismaticbar is a bar of
(@) maximum ultimatestrength  (b) maximum yield strength
(¢) uniform cross-section (d) varying cross-section
The gauge length is usually taken to be
(a) 100mm ®) 75mm
(¢) 50mm (d) 25mm

. The specimen rod under tension test has the following parameters

(a) gaugelength =50 mm; diameter =10 mm

(b)- gauge length =50 mm; diameter =12.5 mm

(c) guagelength =25mm;diameter =25mm

(d) none of theabove

The failure criteria for ductile materials is based on the following factor

(a) ultimate strength (b) shearstrength

(c) yield strength (d) limit of proportionality
E and G arerelated by the equation

(@ E=2G(1-v) ) E=2G(1+vV)

(@ E=3G(1-v) (d E=3G(1+v)

E and K are related by the equation

(@ E=3K(1+2v) (b) E=3K(2-V)

(© E=3K(@1-2v) (d E=3E(1-2v)

The material becomes harder due to strain hardening. Strain hardening in
case of structural steel occurs

(@) between yield strength and ultimate strength

(b) between limit of proportionality and yield strength

(c) between ultimate strength and fracture point

(d) none of the above

Structural steel forms neck before it breaks. Neck formation starts

(a) beforelimit of proportionality (b) after yield strength

(c) before ultimate strength (d) atultiamte strength
Limiting values of Poission's ratio are
(@) Oto(+)0.5 () O0to (-) 0.5

© 1to(+)05 d) -1to(+)0.5
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13.

14.

15.

16.

17.
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. For mild steel, the ratio of modulus of elasticity in tension and compression
(E,/E,)isequalto

(@) 0.5 b1 (© 1.2 (d) 1.3

Ductile fracture generally takes place along planes on which the shear stress
is

(a) maximum () minimum (c) positive (d) negative

The property of a material to undergo large uniform elongation before fracture
(in tension) is known as

(@) super elasticity (b) super plasticity

(c) visco elasticity (d) visco plasticity

The percentage reduction in area during the tension test on a cast iron test
pecimen is
(@) 5-10% (b) 10-15% (c) 0-3% (d) 0-5%

The phenomenon under which the strain in a material varies under constant
stress is called

(@) strain hardening (b) Bauschinger's effect

(c) creep (d) fatigue

Thelength, coefficient of thermal expansion and Young's Modulus of bar'A’
are twice that of bar 'B'. If the temperature of both bars is increased by the
same amount while preventing any expansion, then the ratio of stress
developed inbar A to thatin bar B will be

(@ 2 b) 4 (© 8 (@ 16
18. In the figure shear stress is 't and shear strain (¢) = ( é ), then the diagonal
strain will be
[ [} ¢ ¢
@ ® - © % @ 3
19. If all the dimensions of a prismatic bar of cross-section suspended freely

20.

21.

22,

from the celing of a roof are doubled then the total elongation produced by its
own weight will increase

(a) eighttimes (b) fourtimes (c) threetimes (d) twotimes

A solid bar of uniform diameter D and length I is hung vertically from a
ceiling. If the density of the material of the bar is p and the modulus of
elasticity is E then the total elongation of the bar due to its own weight is

pl pl? pE PE

@ 5p ® o © 5 @ o7

In terms of bulk modulus (K) and modulus of rigidity (G), the Poisson's ratio
can be expressed as

3K -2G 3K + 4G 3K -2G 3K +2G
@ exrac  ® k-6 © sxrac @ sx-26
A square section tepered bar of length I with sides /; and [, at its bigger and

smaller end respectively is subjected to an axial pull. Taking E as the modulus
of elasticity of the bar material, the elongation of the bar will be
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24.

25.

26.

27.

13.
19.
24.

2PI Pl Pl Pl
@ Ep1 ® 215, © 2EG+h) @D Eq g
12 2 1

. The elongation of conical bar of base diameter D hanging vertically, due to

its own weight (when p = density of the material of the bar;
I =1ength and E = (modulus of elasticity of the bar material) will be

pl? pl? pl? NG
@ 2E ® 35 © g @ 6F

A pnsmahc bar fixed at both ends is loaded by an axial load plating at a
distance 'a' from one of the supports. The reaction at the supports will be
— P
a b
Fig. 1.83
Pb Pa p P
@ T35 a+p ® Z@+b) b@+b)
2P 2P
© 3 @+b) b(a+b) (d) none of theabove

For an isotropic elastic material, the number of independent elastic constant
is '

(@) 1 b) 2 () 3 (d) 4
For most metals, Poisson's ratio is approximately
(@ 0.3 ®) 3 (©) 35

(d) noneoftheabove

A material is called perfectly elastic if

(a) while loading or unloading, the deformation and recovery are
instantaneous

(b) therecoveryiscompleteand immediate

(¢) the load-deformation curve has the same shape while loading or
unloading

(d) Alltheabove

ANSWERS
(© 2. (b 3. (0 4. (o) 5. (b) 6. (a)
b)) 8. (0 9. (a) 10. (d) 11. (d) 12. (b)
(@) 14. ®) 15. () 16. (a) 17. (b) 18. (a)
(b) 20. (a) 20. (a) 21. (o) 22. (d) 23. (d)
(@ 25. (b) 26. (a) 27. (d)

00 o%
— 0.00" —
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