Contents in Brief

1.	Simple Stresses and Strains	1.1–1.79
2.	Compound Stresses and Strains	2.1-2.64
3.	3-D Stress	3.1–3.20
4.	Centroid and Centre of Gravity	4.1-4.22
5.	Moment of Inertia	5.1-5.31
6.	Shearing Force and Bending Moment	6.1-6.42
7.	Bending Stress in Beam	7.1–7.23
8.	Combined Stresses	8.1-8.12
9.	Shear Stresses in Beams	9.1–9.24
10.	Deflection of Beams	10.1–10.62
11.	Indeterminate Beam (Fixed and Continuous Beam)	11.1–11.17
12.	Torsion	12.1–12.25
13.	Strain Energy and Its Applications	13.1–13.26
14.	Springs	14.1–14.40
15.	Theories of Failure	15.1–15.16
16.	Thin Cylindrical Vessels	16.1–16.41
17.	Thick Cylindrical Vessels	17.1–17.62
18.	Column and Strut	18.1–18.30
19.	Curved Beam	19.1–19.61
20.	Unsymmetrical Bending and Shear Centre	20.1–20.28
21.	Rotational Stresses	21.1–21.26
	Solved Questions — GATE and IES	Q.1-Q.18
	University Questions Chapterwise	Q.1-Q.18
	Solved University Questions 2009-10	Q.1-Q.11
	Solved University Questions 2010-11	Q.1-Q.15
	Solved University Questions (SEM III) 2011-12	Q.1-Q.14
	Solved University Questions (SEM III) 2013-14	Q.1-Q.9
	Solved University Questions (SEM III) 2014-15	Q.1-Q.7

Contents

Foreword	v
Preface to the Fourth Revised Edition	vii
Notations	xτ

1. SIMPLE STRESSES AND STRAINS

1.1 - 1.79

1.1 Introduction 1.1. 1.2 Classification of Load 1.2. 1.3 Stress or Engineering Stress 1.2: Shear Stress, Principle of Shear Stress, Bearing Stress (σ_{hr}), Contact Stress, True Stress. 1.4 Strain 1.11: Longitudinal strain (ε_1) , Shear strain $(\gamma \text{ or } \phi)$, Volumetric strain (ε_v) . 1.5 Measurement of Strain 1.12. 1.6 Poisson's Ratio (v)1.13. 1.7 Hook's Law 1.13. 1.8 Generalised Hook's Law (For Isotropic Materials) 1.14. 1.9 Stressstrain Curve for Mild Steel 1.15: Stress-Strain Diagram for Concrete. 1.10 Difference between Engineering Stress and True Stress 1.20, 1.11 Thermal Stress and Strain 1.20. 1.12 Thermal Stresses in Composite Bar 1.21. 1.13 Volumetric Strain of a Rectangular Bar 1.26. 1.14 Volumetric Strain of a Cylinderical Rod 1.27. 1.15 Volumetric Strain of a Rectangular Block Subjected to Normal Stresses 1.28. 1.16 Relation between Elastic Constants (E, K And G) 1.34. 1.17 Expression for the Elongation D of a Vertical Bar of Length L, Uniform Cross-sectional Area A, Under its Own Weight (W) 1.38. 1.18 Principle of Superposition 1.38. 1.19 Tension in Wires of a Hinged Bar Subjected to Axial Pull (P) 1.48. 1.20 Expression for the Total Extension of a Uniformly Tapering/Rectangular Bar Subjected to Axial Load P. 1.56. 1.21 Stresses in Composite Members 1.61. 1.22 Statically indeterminate Members 1.62. 1.23 Elongation Due to Rotation 1.70. Highlights 1.71. Problems for Practice (Theoretical) 1.75. (Numerical) 1.75. Objective Questions 1.77. Answers 1.79.

2. COMPOUND STRESSES AND STRAINS

2.1 - 2.64

2.1 Introduction 2.1. 2.2 Stress at a Point on Inclined Plane due to Uniaxial Load 2.2. 2.3 Two Dimensional Stress System 2.4. 2.4 Position of Principal Plane 2.7. 2.5 Maximum Shear Stress 2.9: Examples on Analytical method, Alternative Method (from First Principle). 2.6 Mohr's Circle (Construction) for Plane Stress 2.32: Summary of Procedure for Detalied Construction of Mohr's Circle, Examples on Mohr's Circle. 2.7 Strain Analysis 2.50. 2.8 Shear Strain 2.51. 2.9 Biaxial Strains 2.52. 2.10 Ellipse of Stress 2.58.

X CONTENTS

Highlights 2.60. Problems for Practice (Theoretical) 2.62. (Numerical) 2.62. Answers 2.63. Objective Questions 2.63. Answers 2.64.

3. 3-D STRESS 3.1 – 3.20

3.1 Introduction—Cauchy Stress Tensor 3.1. 3.2 Normal Strain 3.3. 3.3 Shear Strain 3.4. 3.4 Normal and Shear Stresses 3.6. 3.5 Principal Stresses 3.8. 3.6 Principal Direction 3.9: Solved Problems. 3.7 Differential Equations of Equilibrium 3.13. 3.8 Compatibility 3.15. 3.9 Airy's Stress Function 3.16. Problems for Practice 3.19. Answers 3.20.

4. CENTROID AND CENTRE OF GRAVITY

4.1 - 4.22

4.1 Centre of Area 'or' Centroid 4.1. 4.2 Centre of Gravity 4.1. 4.3 Application of Centre of Gravity and Centroid 4.1. 4.4 Determination of C.G. 4.2. 4.5 Centroid of Plane Area 4.2: Centroid of Length of a Curve 'or' Line. 4.6 Method of Finding Centroid of a Composite Figure 4.4. 4.7 Centroid for Plane Lamina 4.5. 4.8 C.G. for Solid Bodies 4.7. 4.9 Centroid of a Section with 'Cut Out' 4.13. Highlights 4.19. Problems for Practice (Theoretical) 4.20. (Numerical) 4.20. Answers 4.22. Objective Questions 4.22. Answers 4.22.

5. MOMENT OF INERTIA

5.1 - 5.31

5.1 Introduction 5.1. 5.2 Defintion of Moment of Inertia 5.1. 5.3 Polar Moment of Inertia of a Plane Area 5.2. 5.4 Radius of Gyration of an Area 5.2. 5.5 Parallel Axis Theorem 5.3. 5.6 Theorem of the Perpendicular Axis 5.5. 5.7 Moment of Inertia of Plane Figures 5.6: Product Of Inertia, Rotation of Axes; Principal Axes and Principal Moments of Inertia. 5.8 Moment of Inertia of Mass (Rigid Body) 5.18, 5.9 Parallel Axis Theorem 5.19: Mass Moment of Inertia of Various Bodies. Highlights 5.27. Problems for Practice (Theoretical) 5.27. (Numerical) 5.28. Answers 5.29. Objective Questions 5.30. Answers 5.31.

6. SHEARING FORCE AND BENDING MOMENT

6.1 - 6.42

6.1 What is beam? 6.1. 6.2 Types of load 6.3. 6.3 Bending Moment 6.4. 6.4 Shearing Force 6.5. 6.5 Procedure for drawing SFD and BMD 6.5. 6.6 Sign Convention 6.5. 6.7 Relation between W, F and M 6.6. 6.8 Examples on Concentrated load 6.7: B.M.D., S.F.D. 6.9 Beam with Inclined loading 6.22. 6.10 Table for Maximum 'Shear Force' and 'Bending Moment' in Standard Case 6.25: Cantilever with Several Point Load. Highlights 6.37. Problems for Practice 6.38 Answers 6.40. Objective Questions 6.40. Answers 6.42.

7. BENDING STRESS IN BEAM

7.1-7.23

7.1 Introduction 7.1. 7.2 Pure Bending 7.1. 7.3 Assumption made in Simple

CONTENTS xi

Bending 7.2. 7.4 Bending Equation 7.2. 7.5 Section Modulus 7.4. 7.6 Section Modulus for Various Beam Section 7.5. Evaluation of Bending Stress for Unsymmetrical Section. 7.7 Composite Beam (Flitched Beam) 7.12. 7.8 Strength of a Section 7.16. 7.9 Beam of Uniform Strength 7.16. 7.10 Design of Beam for Bending Stress 7.19. Highlights 7.20. Problems for Practice (Theo) 7.20. (Numerical) 7.21. Answers 7.22. Objective Questions 7.22. Answers 7.24.

8. COMBINED STRESSES

8.1-8.12

8.1 Introduction 8.1. 8.2 Column Subjected to Eccentric Load 8.2. 8.3 Generalised Eccentric Loading 8.3. 8.4 Rectangular Section 8.3. 8.5 Circular Section 8.5. Highlights 8.10. Problems for Practice 8.11. Objective Questions 8.11. Answers 8.12.

9. SHEAR STRESSES IN BEAMS

9.1-9.24

9.1 Introduction 9.1. 9.2 Shear Stress Distribution 9.1. 9.3 Shear Stress Distribution for Rectangular Section 9.3. 9.4 Stress Distribution in I-section 9.7. 9.5 (a) Shear Stress Distribution in the Flange 9.7. (b) Shear Stress Distribution in the Web 9.9. 9.6 Shear Stresses in Circular Section 9.12. 9.7 Shear Stresses Triangular Section 9.13. 9.8 Stresses in Wide Range Beam 9.22. Highlights 9.23. Objective Questions 9.23. Answers 9.24.

10. DEFLECTION OF BEAMS

10.1 - 10.62

10.1 Introduction 10.1. 10.2 Differential Equation of the Deflected Beam 10.2. 10.3 Deflection of a Simply Supported Beam Carrying a Point Load at the Centre 10.4. 10.4 Expression for Slope and Deflection for a Cantilever Beam Carrying Uniformly Distributed Load (w) Per Unit Length over the Entire Span 10.6: Expression for Slope and Deflection 'or' for a Cantilever Beam Carrying Concentrated Load w at the Free End. 10.5 Deflection of a Simply Supported Beam Subjected to U.D.L. w over the Entire Span L 10.11. 10.6 Macaulay's Method 10.13. 10.7 Deflection of Beam by Moment Area Method 10.43. 10.8 Superposition Method 10.54. Problems for Practice 10.58. Answers 10.60. Objective Questions 10.60. Answers 10.62.

11. INDETERMINATE_BEAM (Fixed and Continuous Beam) 11.1 – 11.17

11.1 Introduction 11.1.11.2 Expression for Slope and Deflection for a Fixed Beam Carrying a Point Load at the Centre 11.1: Advantages of Fixed Beam. 11.3 Slope and Deflection for a Fixed Beam Carrying a Uniformly Distributed Load over the Entire Length 11.9: Alternative Method. 11.4 Continuous Beam 11.11. 11.5 Clapeyron's Equation 11.12. Highlights 11.16. Objective Questions 11.16. Answers 11.17.

12. TORSION 12.1 – 12.25

12.1 Introduction 12.1. 12.2 What is Shaft? 12.1. 12.3 Torsion Equation for a Shaft 12.1. 12.4 Polar Modulus 12.3. 12.5 Strength of a Shaft 12.4.

xii CONTENTS

12.6 Torsional Rigidity 12.4. **12.7** Shaft in Series 12.5. **12.8** Shaft in Parallel 12.6. **12.9** Combined Bending and Torsion 12.15. **12.10** Effect of End Thrust on Shaft 12.17. Highlights 12.20. Problems for Practice (Theoretical) 12.22. (Numerical) 12.22. Answers 12.23. Objective Questions 12.23. Answers 12.25.

13. STRAIN ENERGY AND ITS APPLICATIONS

13.1 - 13.26

13.1 Introduction 13.1. 13.1.1 Strain Energy in a Bar under Different Cases of Loading 13.2. 13.2 Strain Energy of a Bar (Including Its Weight) 13.3. 13.3 A Rectangular Block in Shear 13.3. 13.4 Strain Energy When the Shaft in Torsional Loading 13.4. 13.5 Strain Energy for Hollow Shaft 13.5. 13.6 Strain Energy due to Pure Bending of Bar 13.6. 13.7 Stress due to Impact Load 13.7. 13.8 Castigliano's Theorem 13.11. 13.9 Deflection and Rotation of Elastic Bodies under Various Type of Loading 13.13. 13.10 Maxwell's reciprocal Theorem 13.23. Highlights 13.29. Problems for Practice (Theoretical) 13.30. (Numerical) 13.30. Answers 13.31. Objective Questions 13.31. Answers 13.32.

14. SPRINGS 14.1 – 14.40

14.1 Introduction 14.1. 14.2 Single Leaf Spring 14.2: — Laminated or Leaf Spring (Semi-elliptical), — Quarter Elliptical Leaf Spring. 14.3 Helical Spring 14.7: — Close-coiled Helical Springs, Closed-coiled Spring Subjected to Axial Torque T, — Open-coiled Helical Spring Subjected to Axial Load W, Open Coiled Helical Spring Subjected to Axial Torque (T), Springs in Series, Springs in Parallel. 14.4 Concentric spring or Cluster Spring 14.29: 14.5 Flat Spiral Spring 14.32: Highlights 14.36. Problems for Practice (Theoretical) 14.37. (Numerical) 14.38. Answers 14.38. Objective Questions 14.38. Answers 14.40.

15. THEORIES OF FAILURE

15.1 - 15.16

15.1 Introduction 15.1: Maximum Principal Stress Theory (Rankine Theory), Maximum Shear Stress Theory (Guest or Tresca or Coulomb Theory), Maximum Principal Strain Theory or St. Venant's Theory, Total Strain Energy Theory (Haigh Theory), Shear Strain Energy Theory or (Distortion Theory) or (VON Mises Theory). 15.2 Graphical Representation of Theories of Failure for Two Dimensional Stress System 15.9. 15.3 Graphical Representation of Various Theories of Failure on the Same Diagram 15.13. Highlights 15.13. Problems for Practice (Theoretical) 15.14. (Numerical) 15.14. Answers 15.15. Objective Questions 15.15. Answers 15.16.

16. THIN CYLINDRICAL VESSELS

16.1-16.41

16.1 Introduction 16.1. 16.2 Derivation of Stresses in Thin Cylindrical Shell 16.2: Hoop Stress: When Thin Cylindrical Shell is Subjected to Internal Fluid Pressure, Longitudinal Stress (Sl.) When Thin Cylindrical

CONTENTS xiii

Vessel is Subjected to Internal Fluid Pressure, Maximum Shear Stress, Derivation of Stresses When Thin Cylindrical Vessel is Subjected to Internal 'Fluid Pressure' And 'Torque'. 16.3 Strain Produced in a Thin Cylindrical Shell 16.5. 16.4 Volumetric Strain in a Cylindrical Shell 16.6. 16.5 Stresses in Thin Spherical Shells 16.7. 16.6 Strain Produced in a Thin Spherical Shell 16.8. 16.7 Cylindrical Vessel with Hemispherical ends 16.26. 16.8 Vessel Subjected to Fluid Pressure 16.27. 16.9 Wire Wound Cylinder 16.32. Highlights 16.36. Problems for Practice (Theoretical) 16.38. (Numerical) 16.38. Answers 16.39. Objective Questions 16.39. Answers 16.41.

17. THICK CYLINDERS AND SPHERES

17.1 - 17.62

17.1 Introduction 17.1. 17.2 Stresses in Thick Cylinder 'or' Tube 17.1: Evaluation of Constants 'A' And 'B', General Case, Special Cases. 17:3 Longitudinal Stress 17.9: Change in Cylinder Dimensions, Effect of Thickness, Effect of Increasing the Cylinder Thickness, Strain in Thick Cylinder. 17.4 Thick Cylinder for High Pressure 17.16. 17.5 Derivation of Stresses in Compound Cylinders (Thick) 17.16. 17.6 Interference 17.19: Stresses due to Internal Fluid Pressure. 17.7 Initial Difference in Radii at the Junction of Compound Cylinder for Shrinkage 17.45. 17.8 Thick Spherical Shell 17.48: Thickness of Shell. Highlights 17.59. Problems for Practice (Theoretical) 17.60. (Numerical) 17.60. Answers 17.61. Objective Questions 17.61. Answers 17.62.

18. COLUMN AND STRUT

18.1 - 18.30

18.1 Strut 18.1. 18.2 Column 18.1. 18.3 Slenderness Ratio (*l/k*) 18.1. 18.4 Classification of Columns 18.1. 18.5 Buckling Load 'or' Crippling Load 'or' Critical Load 18.2: Euler's Theory of Buckling of Column. 18.6 End Condition for Column 18.2. 18.7 Sign Convention for Bending Moment (M) 18.2. 18.8 Columns with Both Ends Hinged 18.2. 18.9 Column Fixed at Both Ends 18.4. 18.10 Equivalent Length 'or' Effective Length 18.10. 18.11 Limitations of Euler's Formula 18.11. 18.12 Rankine Formula 18.12. 18.13 Eccentric Loading in Column 18.22. Highlights 18.25. Problems for Practice (Theoretical) 18.27. (Numerical) 18.27. Answers 18.28. Objective Questions 18.28. Answers 18.30.

19. CURVED BEAM

19.1 - 19.61

19.1 Introduction 19.1. 19.2 Winkler-Batch Theory 19.1. 19.3 Formulae to Solve the Problem of Curved Beam 19.5: Square Section, Trapezoidal Cross-section, Triangular Section, Circular Section, T-section, I-section, Solved Examples. 19.4 Determination of Bending Moment in a Ring 19.42. 19.5 Determination of Bending Moment in a Chain Link 19.49. Problems for Practice 19.57. Answers 19.60. Objective Questions 19.61 Answers 19.61.

XIV CONTENTS

20. UNSYMMERTICAL BENDING AND SHEAR CENTRE 20.1 – 20.28

20.1 Introduction 20.1. 20.2 Unsymmetrical Bending (for Symmetrical Body) 20.1. 20.3 Location of Neutral Axis 20.2. 20.4 Deflection 20.2. 20.5 Stresses in Beams due to Unsymmetrical Bending (for Unsymmetrical Body) 20.3. 20.6 Principal Moments of Inertia 20.4. 20.7 Procedure for Solving Problems on Unsymmetrical Bending for Symmetrical Body or Section 20.6. 20.8 Procedure for Solving Problem on 'Unsymmetrical Bending' for Unsymmetrical Body (i.e. L, T And Z Section) 20.6. 20.9 Shear Centre 20.22. Problems for Practice 20.26. Answers 20.28. Objective Questions 20.28. Answers 20.28.

21. ROTATIONAL STRESSES

21.1 - 21.26

21.1 Introduction 21.1. 21.2 Rotating Disc 21.2. 21.3 Solid Disc 21.5. 21.4 Disc with Central Hole 21.6. 21.5 Disc of Uniform Strength 21.11. 21.6 Rotating Cylinder 21.14. 21.7 Solid Cylinder 21.18. 21.8 Hollow Cylinder 21.19. Highlights 21.23. Problems for Practice (Theoretical) 21.25. (Numerical) 21.25. Answers 21.26. Objective Questions 21.26. Answers 21.26.

Solved Questions — GATE and IES	Q.1-Q.18
University Questions Chapterwise	Q.1-Q.18
Solved University Questions 2009-10	Q.1-Q.11
Solved University Questions 2010-11	Q.1-Q.15
Solved University Questions (SEM III) 2011-12	Q.1-Q.14
Solved University Questions (SEM III) 2013-14	Q.1-Q.9
Solved University Questions (SEM III) 2014-15	Q.1Q.7