
Analysis of Stress 

1.1 DEFINITION OF STRESS 

Consider an elastic body subjected to point forces, body forces, surface tractions, and 
thermal expansion. These external loads transmit their effects throughout the body 
and cause the body to deform. Now we will analyse quantitatively, the deformation 
and the mode of transmission of the external loads throughout the body. 

Figure 1.1 Body with a mathematical cut 

Suppose that we pass a hypothetical plane S through an elastic body as shown in 
Fig. 1.1. If we consider the free body diagram of part A shown in Fig. 1.2, we have to 
determine the force distribution that is transmitted from portion A of the body to the 
portion B, through the interface S. 
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Figure 1.2 Force vector Ll Ton area LlA at point P 
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Let P be the point on interface S with coordinates (x, y, z) as shown in Fig. 1.2. Let 
M be a small area surrounding point P with outward drawn normal n. The action of 
part B of the body on Mat P can be represented by the force vector !:!,.T. We assume 
that as M tends to zero the ratio 1:!,.T IM tends to a definite limit; and further the 
moment of the forces acting on area M about any point within the area vanishes in 
the limit. Expressed analytically 

lim !:!,.T
= dT = 

T 
M----,OM dA 

(1.1) 

where Tis called stress vector and represents force per unit area acting at point P on a 
plane with outward drawn normal n. 

In general, the stress vector Tat a point depends not only on the location of the 
point (identified by coordinates x, y, z) but also on the plane passing through the point 
(identified by direction cosines nx, ny

, n2) of the outward normal n. 
The stress vector T can be resolved into two components, one along the normal n 

called the normal stress denoted by cr and the other perpendicular to n called the 
tangential stress or shear stress denoted by 't. We have the relation 

I TI 
= (}"2 

+ 't2 (1.2) 
where I TI is the magnitude of the stress vector. 

The stress vector T can also be resolved into three components parallel to the x-, y-, 
z-axes denoted by Tx, Ty

, T
2

• We then have 
I T 1

2 = T/ + T/ + T} (1.3) 
It should be noticed that the definition of the stress is not restricted to solids only. 

They can apply to any continuous medium exhibiting viscosity or rigidity. 

1.2 STRESS NOTATION 

We shall concentrate on means of specifying stresses on an orthogonal set of interfaces 
at a point. Accordingly, consider interfaces at a point O parallel to the reference planes 
of an xyz reference, as shown in Fig. 1.3. Stresses on a plane with outward normal 
parallel to the x are denoted by O"w 'txy

, 'txz; on a plane with outward normal parallel to 
y are denoted by O"

yy
, 't

yx, 'tyz; and on a plane with outward normal parallel to the z are 
denoted by 0"

221 'tw 'tzy
· The stresses for the orthogonal interfaces are shown on the 

enlarged diagram in Fig. 1.4. 

z 

Figure 1.3 Orthogonal interfaces extracted from point O in a body 
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The nine stresses on three orthogonal interfaces at a point enable us to determine 
the stresses for any interface at the point. 
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Figure 1.4 Rectangular stress components 

We may consider the set of nine stresses parallel to the coordinate axes as 
rectangular components of a quantity which is called a second-order tensor; the stress 
tensor. 

(1.4) 

1.3 THE STATE OF STRESS AT A POINT 

Since an infinite number of planes can be drawn through a point, we get an infinite 
number of stress vectors acting at a given point, each stress vector associated with the 
plane on which it is acting. The totality of all stress vectors acting on every possible 
plane passing through the point is defined to be the state of stress at the point. 

1.4 STRESS ON AN ARBITRARY PLANE 

Figure 1.5 shows a tetrahedron at point P generating three orthogonal interfaces at 0 
and face ABC with arbitrary orientation. 

Let the orthogonal planes be the x, y and z planes and the arbitrary plane be 
identified by its outward drawn normal n whose direction cosines are nx, ny 

and n2
• 

Consider a small tetrahedron at point P as shown in Fig. 1.5. Leth be the perpendicular 
distance from P to the inclined face ABC. Let T be the resultant stress vector on face 
ABC. This can be resolved into components Tx, Ty

, Tz, parallel to the three axes x, y and 
z. Stress components CTxx, 'txy

, 'txz act on face PBC; Stress components cr
yy

, 't
yx, 'tyz act on

face PBC; stress components cr
22

, 'tzx, 'tzy 
act on face PBC. The area of faces BPC, CPA,

APB are Anx, An
y
, An

2 
where A is the area of inclined face ABC. For equilibrium of

the tetrahedron P ABC, the sum of forces in x, y and z directions must individually
vanish. The result is Cauchy's stress formula.

T/ = nxcrxx + n
y
't

yx + nz'tzx 

T/ = nx'txy 
+ n

y
cr

yy 
+ n2

't
2y 

T/ = nz 'txz + n
y'tyz + nzCTzz

(1.5) 

(1.6) 

(1.7) 
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z 

y 

B 

A X 

Figure 1.5 Tetrahedron at P generating three orthogonal interfaces at 

P and face ABC with arbitrary orientation 

Equations (1.5)-(1.7) prove that the nine stress components at P will enable one to 
determine the stresses on any arbitrary plane through the point P. 

If r is the stress vector on plane ABC, 
I r 1 2 = (T/)2 

+ (T/)2 
+ (T/)2 (1.s) 

If <Jn and 'tn are the normal and shear stress components, we have 
I Tn 1 2 = cr/ + 't/ 

where 
(1.9) 

(1.10) 

1.5 TRANSFORMATION EQUATIONS FOR STRESSES 

Consider a point O somewhere inside a solid body. A reference xyz is shown at this 
point. Imagine an infinitesimal interface at O with a normal in the x direction. Consider 
stresses <Jw 'txy

, and 'txz on this interface. Now move the interface away from point 0 
along x-axis for convince viewing, as shown in Fig. 1.6. Do the same for interfaces in y 
and z directions as have been shown in the diagram. We can prove that if we know 
nine stresses at a point, we can determine normal and shear stresses on an interface at 
point O having any orientation relative to the axes xyz. 

Let us consider an inclined interface at point O having any orientation n relative 
to the axes xyz. We can determine normal and shear stresses on this interface using 
the following equations: 

2 2 

(Jnn = (Jxxanx + "Cxy
anxany + 'txzanxanz + 'tyxany

anx + <Jyy
any + 'tyzany

anz +

where anx, any
, anz denote direction cosines of n. 

(1.11) 
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Figure 1.6 Stresses on orthogonal interfaces at the point 0 

We now proceed to calculate shear stress in some chosen directions on the inclined 
interface. The required equation is 

(1.12) 
where asx, asy

, a
52 

denote direction cosines of s.
Equations (1.11) and (1.12) thus permit us to calculate stresses on any given 

interface at a point provided that we know the nine stresses on an orthogonal setoff 
interfaces at that point. 

We can now proceed to compute nine stress components for a reference x'y'z'

rotated relative to xyz at a point O (Fig. 1.7). Instead of using n to denote the direction 
of an inclined interface, we shall use x'. Then Eq. (1.11) can be used to give the stress 
component erx'x' by replacing n by x' as follows 

2 2 er x 'x ' = er xxax 'x + 'txy
ax 'xax '

y 
+ 'txy

ax 'xax '
y 

+ 'txzax 'xax 'z + 't
yzax '

y
ax ' a + er

yy
ax '

y 
+

't
yzax '

y
ax 'z + 'tzxax 'zax 'x + 'tzy

ax 'zax '
y 

+ erzza;,z (1.13) 

where ax'x is the direction on cosine between the x' -axis and x-axis, and so on. By 
repeating this procedure, we can determine other normal stresses ery

'
y
' and er2,2,. 

Equation (1.13) may be called the seminal equation for generating normal stress for 
orthogonal interfaces corresponding to a reference x'y'z' rotated relative to xyz at a 
point. 
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Figure 1.7 Reference coordinate axes 
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In a similar manner, the shear stress 'tx'y' can be found from Eq. (1.12) by replacing 
n by x' ands by y'. Thus we get 

'tx'y' = (Jxxax'xa
y
'x + 'txy

ax'xax'
y 

+ 'txzax'xax'z + 't
yxax'

y
a

y
'x + cr

yy
ax'

y
a

y
'
y 

+

't
yzax'

y
a

y
'z + 'tzxax'za

y
'x + 'tzy

ax'za
y
'
y 

+ crzzax'za
y
'z (1.14) 

We can calculate other shear stresses 'tx'z', 'ty
'x', 'ty

'z', 'tz'x', 'tz'y'· For orthogonal 
interfaces associated with axes x'y'z'.

Thus Eq. (1.14) is the parent equation for determining shear stresses for the 
reference x'y'z' rotated relative to xyz at a point. 

1.6 PRINCIPAL STRESSES 

There exist three orthogonal planes through a point on which only normal stresses 
exist and shear stresses are zero called principal planes. The direction cosines of 
outward normal on these planes define the principal axes. The magnitude of normal 
stresses on the principal planes are called principal stresses. Given the nine stress 
components at a point, our objective is to determine the principal stresses, and the 
direction cosines of principal axes. This is discussed in this section. 

Let us assume that there is a plane n with direction cosines nx, n
y 

and n
2 

on which 
the stress vector r is wholly normal. Let cr be the magnitude of this stress vector. Then 
we have 

Tn = crn 

The components of along the x-, y- and z-axes are 

T; = crnx ; T; =a n
y

; T2n = crn
2 

Also, from Cauchy's formula 

Tz
n = 'txznx + 'tyzn

y 
+ (Jzznz 

Subtracting Eq. (1.17) from Eq. (1.16), we get 
(crxx -cr)nx +'t

xy
n

y 
+'t

xy
nz =0 

'txy
nx + ( <JYY -<J) ny + 'tyznz = 0 

(1.15) 

(1.16) 

(1.17) 

'txznx + 'tyzn
y + ( CTzz -(J ) nz = 0 (1.18) 

These are three simultaneous equations involving the unknowns nx, n
y
, and n

2
• For 

the existence of a nontrivial solution. 

(crxx-cr) 'txy 'tzz

'txy (cr
yy-cr) 'tyz =0 

'txz 'tyz (crzz-cr) 

On expanding, the above determinant leads to a cubic equation in cr as 
cr3 - I1 cr2 + I2 cr- I3 = 0 

(1.19) 

(1.20) 
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where, 11 = ( <Jxx + cryy + cr22) (1.21)
12 = ( (jxx(jyy + (jyy(jzz + (jzz(jxx-'tx/-'ty/-'tz}) (1.22)
/3 = ( (jxx (jyy (jzz + 2 'txy 'tyz (jxz-(jxx'ty/-cryy'tz}-crzz'tx/) (1.23)

The three real roots of the cubic equation designated as cr1, cr2, and cr3 are the
principal stresses.

Substituting any one of these (cr1 or cr2 or cr3) in Eq. (1.18), we can solve for the
corresponding entities nx, ny 

and n2 • In the sequel to avoid the trivial solution, the
condition

n 2 + n 2 + n 2 = 1 (1.24)
X y Z 

is used along with any two equations from the set of equations [Eq. (1.18)].
The planes on each of which the stress vector is wholly normal are called the

principal planes, and the corresponding stresses are the principal stresses. The normal
to a principal plane is called the principal stress axis.

The quantities Ii, 12 and 13 are known as the first, second and third invariants of
stress respectively. An invariant is one whose value does not change when the frame
of reference is changed.

In terms of the principal stresses, the invariants are
11 = <J1 + <J2 + <J3 

12 = <J1<J2 + <J2<J3 + <J3<J1 

13 = <J1<J2<J3 

(1.25)
(1.26)
(1.27)

1.7 OCTAHEDRAL STRESSES 

A plane that is equally inclined to the three axes x, y, z is called an octahedral plane. Such
a plane will have nx = n

y 
= n2 • Since n} + n/ + n/ = l, an octahedral plane will be

defined by nx = n
y 
= n2 = ± -1 · There are eight such planes.

The normal and shear stresses on these planes are called the octahedral normal stress
croct and octahedral shear stress 'toct · They are calculated by the following formulae.

or

(1.28)

'toe?= % [( (jxx -(j
yy )

2 

+ ( (jyy -(jzz )
2 

+ ( (jzz -(jxx )
2 

+ 6( 'tx/ + 'ty/ + 't2/}] (1.29)

They can also be expressed in terms of the principal stress and stress invariants as

'toe?= %[(cr1 -cr2)
2 

+(cr2 -cr3)
2 

+(cr3 -cr1)
2

]

,,. - Ji. (I 2 31 )1;2 0oct -
3 

1 - 2 

(1.30)

(1.31)

(1.32)

The octahedral normal stress cr0ct can be interpreted as the mean normal stress at a
given point in a body. If in state of stress, the first invariant 11 = (cr1 + cr2 + cr3) is zero,
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then the normal stresses on the octahedral planes will be zero and only the shear 
stresses will act. 

1.8 HYDROSTATIC AND PURE SHEAR STATES 

An arbitrary state of stress can be resolved into a hydrostatic state and a state of pure 
shear. Let the given state referred to a Cartesian system xyz be 

Let 1 1 
p= -(O"xx +O"yy +O"zz)= -I1 

3 3 

The given stress state can be resolved into two different states 

The pure shear state of stress is also known as the deviatoric state of stress.

1.9 EQUATIONS OF EQUILIBRIUM 

(1.33) 

(1.34) 

(1.35) 

A rectangular parallelepiped under the action of stress and body forces is shown 
in Fig. 1.8. We wish to establish with this element the requirement for the manner in 
which stresses must vary with position to guarantee equilibrium in a domain (i.e. we 
wish to derive the differential form of the equations of equilibrium). Summing forces 
in the x-direction, we get 

OO"xx O't
yx O'tzx B - 0--+--+--+ -

OX OY OZ X 
(1.36) 

Using the complementary property of shear stresses ('txy 
= 't

y
v 't

yz = 't
2
y, 'tzx = 't

2x) 
making similar computations in the y and z directions, we may give the equations of 
equilibrium at a point in the body as follows: 

OO"xx
O't

yx O'tzx B - 0--+--+--+ -

OX oy OZ X 

O't
yx 00" 

yy 
O't

yz --+--+-+B =0 
ax ay oz y 

o't zx o't zy oa zz B - 0--+--+--+ -

ax ay oz 
z 

where Bx, By
, B

2 
are the body forces components per unit volume. 

(1.37) 

(1.38) 

(1.39) 
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Figure 1.8 A rectangular parallelepiped under the action of stresses 

Notice that the equations of equilibrium now involve stresses and body forces are 
functions of position. These are so called field variables. Also; we have here a set of 
partial differential equations for these field variables. 

If in a given state of stress, there exists a coordinate system xyz such that 

<J22 = 0, 'txz = 0, 'tyz = 0, (1.40) 

then that it is said to be a plane stress state parallel to the xy plane. This stress state is 
also known as a two-dimensional state of stress. The differential equations of equilibrium 
for plane stress state (in the xy plane) become 

acr xx 
d't

yx B - 0 --+--+ -
dX dY 

x 

d't
yx d<Jyy --+--+B =0 

dX dY 
y 

(1.41) 

(1.42) 

1.10 EQUATIONS OF EQUILIBRIUM IN CYLINDRICAL COORDINATES 

Till now, we have used a Cartesian frame of reference for analysis of stress. Numerous 
problems exist where it is more convenient to use polar or cylindrical coordinates. 

Consider an elastic body of revolution as shown in Fig. 1.9, the axis of revolution 
is taken as the z-axis. The two other coordinates are rand e, where e is measured 
counterclockwise. 

The stress components at a point P (r, e, z) are crm cr00, cr2v 'tra, 'tav 't2,. These are 
shown acting on the faces of a radial element at point Pin Fig. 1.9. crm cr00, cr22 are called 
radial, circumferential and axial stress respectively. If the stresses vary from point to 
point, one can derive the differential equation of equilibrium. 

Let B" B0 and B2 denote the body force components per unit volume. For 
equilibrium of the element shown in Fig. 1.9, the sum of forces in r, e and z directions 
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must vanish individually. We can derive the differential equations of equilibrium 
expressed in polar coordinates as 

acr,, 1 crt,e crt,2 ( <Jrr - <Jee) B - o--+---+--+ + -
dr rd0 dZ r r 

X 

d't,z 1 d'tez d<Jzz 'tzz B --+---+--+-+ =0dr rd0 dz r z 

d't,e 1 d<Jee d'tez 2t,e B --+---+--+--+ e = 0 dr rd0 dz r 

z 

y 

'Oz 

Figure 1.9 Cylindrical coordinates (rez) and stresses on an element 

Axisymmetric Case 

(1.43) 

(1.44) 

(1.45) 

If a body of revolution is loaded symmetrically, the stress components do not depend 
on 0. Since the deformation are axisymmetric, 'tre at 'tez do not exist. Consequently, the 
above equations in the absence of body forces are reduced to 

d<Jrr + ( (Jrr - <Jee)+ d't,z = o
dr r dz 

d't,z + 
d<Jzz + 'trz = 0

dr dz r 

(1.46) 

(1.47) 

However, the state of stress is now characterized by the components cr,, (r, z), 
<Jee (r, z), cr

22 (r, z), and t,2 (r, z). 

Plane Stress Case 

If the state of stress is a two-dimensional plane stress, then only <J"' <Jee, t,e exist. The 
other components vanish. 



The equation of equilibrium reduced to 

1.11 SUMMARY 

dcrrr + ( cr,, - <Jee)+_! d't,e = 0 
dr r rd0 

d't,e + 2't,e + l. dcree = 0 
dr r r d0 

Analysis of Stress 11'1 

(1.48) 

(1.49) 

In this chapter, we have presented the concept of stress as a means of describing how 
an external force (point load, body force, surface traction, temperature change) 
distributes through an elastic body. In particular, we introduced notation for nine 
stress components. These form the rectangular components of a second order tensor. 
Not all nine components of the stresses are arbitrary. Using Newton's law, it was 
shown that shear stresses with reverse indices at a point are equal, i.e. the com­
plementing property of shear, so only six of the nine stress terms are independent at a 
point. Finally, for equilibrium, the six stress components had to vary with position in 
a certain manner established by the equations of equilibrium, a set of partial 
differential equations. We shall consider next how to measure the primary effects of 
the applied forces, namely the deformation of a body. 
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