1.1 DEFINITION OF STRESS

Consider an elastic body subjected to point forces, body forces, surface tractions, and
thermal expansion. These external loads transmit their effects throughout the body
and cause the body to deform. Now we will analyse quantitatively, the deformation
and the mode of transmission of the external loads throughout the body.
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Figure 1.1 Body with a mathematical cut

Suppose that we pass a hypothetical plane S through an elastic body as shown in
Fig. 1.1. If we consider the free body diagram of part A shown in Fig. 1.2, we have to
determine the force distribution that is transmitted from portion A of the body to the
portion B, through the interface S.
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Figure 1.2 Force vector AT on area AA at point P
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Let P be the point on interface S with coordinates (x, y, z) as shown in Fig. 1.2. Let
AA be a small area surrounding point P with outward drawn normal n. The action of
part B of the body on AA at P can be represented by the force vector AT. We assume
that as AA tends to zero the ratio AT/AA tends to a definite limit; and further the
moment of the forces acting on area AA about any point within the area vanishes in
the limit. Expressed analytically

AT dT
im —=—=T
AM—0AA  dA
where T is called stress vector and represents force per unit area acting at point P on a
plane with outward drawn normal n.

In general, the stress vector T at a point depends not only on the location of the
point (identified by coordinates x, y, z) but also on the plane passing through the point
(identified by direction cosines n,, n,, 11,) of the outward normal n.

The stress vector T can be resolved into two components, one along the normal n
called the normal stress denoted by ¢ and the other perpendicular to n called the
tangential stress or shear stress denoted by t. We have the relation

|T| =0+ 1? (1.2)
where | T| is the magnitude of the stress vector.

The stress vector T can also be resolved into three components parallel to the x-, y-,
z-axes denoted by T,, T,, T,. We then have

|T|?=T2+ T} +T}? (1.3)

It should be noticed that the definition of the stress is not restricted to solids only.

They can apply to any continuous medium exhibiting viscosity or rigidity.

(1.1)

1.2 STRESS NOTATION

We shall concentrate on means of specifying stresses on an orthogonal set of interfaces
ata point. Accordingly, consider interfaces at a point O parallel to the reference planes
of an xyz reference, as shown in Fig. 1.3. Stresses on a plane with outward normal
parallel to the x are denoted by 6., T, T,.; on a plane with outward normal parallel to
y are denoted by (o PR, S, P and on a plane with outward normal parallel to the z are
denoted by ©.,, T.,, T, The stresses for the orthogonal interfaces are shown on the
enlarged diagram in Fig. 1.4.

Figure 1.3 Orthogonal interfaces extracted from point O in a body
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The nine stresses on three orthogonal interfaces at a point enable us to determine
the stresses for any interface at the point.
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Figure 1.4 Rectangular stress components

We may consider the set of nine stresses parallel to the coordinate axes as
rectangular components of a quantity which is called a second-order tensor; the stress
tensor.

vz (1.4)

1.3 THE STATE OF STRESS AT A POINT

Since an infinite number of planes can be drawn through a point, we get an infinite
number of stress vectors acting at a given point, each stress vector associated with the
plane on which it is acting. The totality of all stress vectors acting on every possible
plane passing through the point is defined to be the state of stress at the point.

1.4 STRESS ON AN ARBITRARY PLANE

Figure 1.5 shows a tetrahedron at point P generating three orthogonal interfaces at O
and face ABC with arbitrary orientation.

Let the orthogonal planes be the x, y and z planes and the arbitrary plane be
identified by its outward drawn normal n whose direction cosines are ., n, and n,.
Consider a small tetrahedron at point P as shown in Fig. 1.5. Let i be the perpendicular
distance from P to the inclined face ABC. Let T be the resultant stress vector on face
ABC. This can be resolved into components T, T\, T,, parallel to the three axes x, y and
z. Stress components G.,, Ty, T, act on face PBC; Stress components 6,,, T,., T,. act on
face PBC; stress components 6, T.,, T,, act on face PBC. The area of faces BPC, CPA,
APB are An,, An,, An, where A is the area of inclined face ABC. For equilibrium of
the tetrahedron PABC, the sum of forces in x, ¥ and z directions must individually
vanish. The result is Cauchy’s stress formula.

T, = 1,0y + 1,7, + 1T, (1.5)
T, =n.s,y +n,0,, +n,1, (1.6)
T," = n, +nT, + n,0, (1.7)
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Figure 1.5 Tetrahedron at P generating three orthogonal interfaces at
P and face ABC with arbitrary orientation
Equations (1.5)—-(1.7) prove that the nine stress components at P will enable one to
determine the stresses on any arbitrary plane through the point P.
If T" is the stress vector on plane ABC,

| T"|? = (T," + (T,")> + (T.")? (1.8)
If 6, and 1, are the normal and shear stress components, we have
| T" > =0, +1,° (1.9)
where
o, =nJT"+n,T" +nT" (1.10)

1.5 TRANSFORMATION EQUATIONS FOR STRESSES

Consider a point O somewhere inside a solid body. A reference xyz is shown at this
point. Imagine an infinitesimal interface at O with a normal in the x direction. Consider
stresses Oy, T,,, and T,, on this interface. Now move the interface away from point O
along x-axis for convince viewing, as shown in Fig. 1.6. Do the same for interfaces in y
and z directions as have been shown in the diagram. We can prove that if we know
nine stresses at a point, we can determine normal and shear stresses on an interface at
point O having any orientation relative to the axes xyz.

Let us consider an inclined interface at point O having any orientation n relative

to the axes xyz. We can determine normal and shear stresses on this interface using
the following equations:

2 4t a4 +

_ 2
Opnn = Oxxllyx + Txyanxany T Tz Anxlng + Tyxlny Ay + nyany yz'ny“nz

yxny“nx

2
TZX anzanx + szanzany + GZZ anx (1 ‘ 1 1 )

where a,,,, a,,, a,, denote direction cosines of n.
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Figure 1.6 Stresses on orthogonal interfaces at the point O

We now proceed to calculate shear stress in some chosen direction s on the inclined
interface. The required equation is

Tis = Oxllyyllsy + Txyanxasy T Tagpaflsy + Tyxanyasx + nyanyasy + Tyzanyasz +

Tz sy + Ty 8y + 020,05, (1.12)

where ay,, 4, a,, denote direction cosines of s.

Equations (1.11) and (1.12) thus permit us to calculate stresses on any given
interface at a point provided that we know the nine stresses on an orthogonal setoff
interfaces at that point.

We can now proceed to compute nine stress components for a reference x’y’z’
rotated relative to xyz at a point O (Fig. 1.7). Instead of using n to denote the direction
of an inclined interface, we shall use x". Then Eq. (1.11) can be used to give the stress
component G,,- by replacing n by x” as follows

Grar

2
Y

_ 2
Oy’ =Oxllyyx t Txyax’xax’y + Txyax'xax’y T Tagllyxyz T Tyzax’yax’a + nya

Ayry + Tyl g + Ty A, Ay +6,,a%, (1.13)

Tyt zy*x'z%x’y

yz*tx'y¥x'z

where a,, is the direction on cosine between the x’-axis and x-axis, and so on. By
repeating this procedure, we can determine other normal stresses 6, and 6.
Equation (1.13) may be called the seminal equation for generating normal stress for
orthogonal interfaces corresponding to a reference x’y’z’ rotated relative to xyz at a
point.

Figure 1.7 Reference coordinate axes
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In a similar manner, the shear stress 1., can be found from Eq. (1.12) by replacing
nby x”and s by y". Thus we get

Ty =05y 1,4

Wy T Ty iy + Tl iy + Tyl B + O e By +

y ey Py T Py ty My

Tyzax’yay’z + szax’zay'x + szax’zay’y + 6zzax'zay’z (1-14)

We can calculate other shear stresses 1., Tyxr Tyze Town T
Y 4

interfaces associated with axes x'y’z’.

Thus Eq. (1.14) is the parent equation for determining shear stresses for the
reference x'y’z’ rotated relative to xyz at a point.

2y~ For orthogonal

1.6 PRINCIPAL STRESSES

There exist three orthogonal planes through a point on which only normal stresses
exist and shear stresses are zero called principal planes. The direction cosines of
outward normal on these planes define the principal axes. The magnitude of normal
stresses on the principal planes are called principal stresses. Given the nine stress
components at a point, our objective is to determine the principal stresses, and the
direction cosines of principal axes. This is discussed in this section.

Let us assume that there is a plane 7 with direction cosines n,, n, and n, on which
the stress vector T" is wholly normal. Let 6 be the magnitude of this stress vector. Then
we have

T"=on (1.15)
The components of along the x-, y- and z-axes are
T¢ =on,; T, =on,; T, =on, (1.16)

Also, from Cauchy’s formula

n_
T, =0,n,+ Tyl + Tl

n_
T, =Tyt + 0y, + 1,1

z

xy

T, =Ty + 1,1, + 6,1, (1.17)

Subtracting Eq. (1.17) from Eq. (1.16), we get

(Cxr —OI, + Ty, + T, 1, =0

Tyyllx +(O

o o)n, +1,,n, =0

v
y +(0,—0)n, =0 (1.18)

These are three simultaneous equations involving the unknowns n,, 1, and . For
the existence of a nontrivial solution.

Ty + Ty M

(Gxx - G) Ty T2z
Ty (6, —0) T, |=0 (1.19)
Tz Tyz (Gzz - 0)

On expanding, the above determinant leads to a cubic equation in ¢ as
63—1102"‘120—13:0 (1.20)
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where, I; = (04 + 0, + 0,) (1.21)
L= (Gxxoyy *+Gy0z; + 05,0, — Txyz - Tyzz - szz) (1.22)
13 = ( Oxx ny Ozt 2 Txy Tyz Oz~ 6chﬂcyz2 - ny"':zx2 - 6zzﬂcxyz) (123)

The three real roots of the cubic equation designated as ¢;, 6,, and o5 are the
principal stresses.

Substituting any one of these (c; or 6, or o3) in Eq. (1.18), we can solve for the
corresponding entities 7., n, and n,. In the sequel to avoid the trivial solution, the
condition

n2+nl+n’=1 (1.24)
is used along with any two equations from the set of equations [Eq. (1.18)].

The planes on each of which the stress vector is wholly normal are called the
principal planes, and the corresponding stresses are the principal stresses. The normal
to a principal plane is called the principal stress axis.

The quantities I;, I and I; are known as the first, second and third invariants of
stress respectively. An invariant is one whose value does not change when the frame
of reference is changed.

In terms of the principal stresses, the invariants are

[,=0,+0,+0; (1.25)
I, = 6,6, + 6,05 + G507 (1.26)
13 = 016263 (1.27)

1.7 OCTAHEDRAL STRESSES

A plane that is equally inclined to the three axes x, y, z is called an octahedral plane. Such

a plane will have n, = n, = n,. Since n,*> + n,” + n,> = 1, an octahedral plane will be
defined by n,=n,=n,=+ % There are eight such planes.

The normal and shear stresses on these planes are called the octahedral normal stress
Coct and octahedral shear stress T,. They are calculated by the following formulae.

1
Ooct = g (Ot Oyy t+ C..) (1.28)

Toct” = %[(Gm -0, )2 + (ny - GZZ)2 +(0,, — cs,c,c)2 + 6(’ny2 + tyZZ + ‘czxzﬂ (1.29)

They can also be expressed in terms of the principal stress and stress invariants as

1 1
Cot = = (0140, +03) = — 1 (1.30)
3 3
1
Toet” = 5[((51—02)2+(02_53)2+(53_61)2} (1.31)
or Toct = % (I;> = 3L)"? (1.32)

The octahedral normal stress 6, can be interpreted as the mean normal stress at a
given point in a body. If in state of stress, the first invariant I; = (6, + 6, + ©3) is zero,
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then the normal stresses on the octahedral planes will be zero and only the shear
stresses will act.

1.8 HYDROSTATIC AND PURE SHEAR STATES

An arbitrary state of stress can be resolved into a hydrostatic state and a state of pure
shear. Let the given state referred to a Cartesian system xyz be

Ox Txy Tz
[t =| Ty Oy Ty (1.33)
Tz yz O
1 1
Let p= 5 (Oxt 0,y +0,) = & I (1.34)

The given stress state can be resolved into two different states

Oxx Tx_t/ Tz 4 00 (Gxx - P) Tx_t/ Tz
Ty Op T |=|0 p O]+ 1, (G —P) Ty (1.35)
Tz Tyz Oz 00 4 Txz Tyz (Gzz - P)

The pure shear state of stress is also known as the deviatoric state of stress.

1.9 EQUATIONS OF EQUILIBRIUM

A rectangular parallelepiped under the action of stress and body forces is shown
in Fig. 1.8. We wish to establish with this element the requirement for the manner in
which stresses must vary with position to guarantee equilibrium in a domain (i.e. we
wish to derive the differential form of the equations of equilibrium). Summing forces
in the x-direction, we get

ot
00y Ty O 1 p =0 (1.36)
ox dy dz
Using the complementary property of shear stresses (T, = Tyz, Ty = Ty, Tox = i)
making similar computations in the y and z directions, we may give the equations of
equilibrium at a point in the body as follows:

0
00y  Tyr O g~ (1.37)
ox dy oz
at, do, Ot
VWL V2B =0 1.38
ox dy oz 7 (%9
a’CZx N a’fzy n aGZZ LB =0 (1_39)
ox dy dz

where B,, B, B, are the body forces components per unit volume.
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Figure 1.8 A rectangular parallelepiped under the action of stresses

Notice that the equations of equilibrium now involve stresses and body forces are
functions of position. These are so called field variables. Also; we have here a set of
partial differential equations for these field variables.

If in a given state of stress, there exists a coordinate system xyz such that
0,,=0,1,=0,7,=0, (1.40)
then that it is said to be a plane stress state parallel to the xy plane. This stress state is

also known as a two-dimensional state of stress. The differential equations of equilibrium
for plane stress state (in the xy plane) become

ot
90 | Tt +B, =0 (1.41)
ox  dy
ﬁ-irad—W+B =0 (1.42)
ox ay 7

1.10 EQUATIONS OF EQUILIBRIUM IN CYLINDRICAL COORDINATES

Till now, we have used a Cartesian frame of reference for analysis of stress. Numerous
problems exist where it is more convenient to use polar or cylindrical coordinates.

Consider an elastic body of revolution as shown in Fig. 1.9, the axis of revolution
is taken as the z-axis. The two other coordinates are r and 0, where 0 is measured
counterclockwise.

The stress components at a point P (r, 8, z) are ©,,, Ggg, .., Tro, Tes To- These are
shown acting on the faces of a radial element at point P in Fig. 1.9. 6,,, G¢g, G,, are called
radial, circumferential and axial stress respectively. If the stresses vary from point to
point, one can derive the differential equation of equilibrium.

Let B,, By and B, denote the body force components per unit volume. For
equilibrium of the element shown in Fig. 1.9, the sum of forces in r, 6 and z directions
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must vanish individually. We can derive the differential equations of equilibrium
expressed in polar coordinates as

9G,, L1 JT,9 N at,, + (S, —Cee) +B, =0 (1.43)
or r do oz r
aTrz +lafez +aGZZ +Tﬁ+BZ =0 (14:4:)

or r 00 0z r

= (1.45)

s
Oy

Toz

Figure 1.9 Cylindrical coordinates (r6z) and stresses on an element

Axisymmetric Case

If a body of revolution is loaded symmetrically, the stress components do not depend
on 0. Since the deformation are axisymmetric, 7,4 at Ty, do not exist. Consequently, the
above equations in the absence of body forces are reduced to

aG,, + (Grr _669) + aFC?‘Z - 0 (1.4:6)
or r 0z
Rz 902 B g (1.47)
or 0z r

However, the state of stress is now characterized by the components 6,, (7, z),

Goo (7’, Z)r (o8 (T, Z)/ and Trz (7’, Z)-

Plane Stress Case

If the state of stress is a two-dimensional plane stress, then only G,,, Ggg, T4 exist. The
other components vanish.



Analysis of Stress 11

The equation of equilibrium reduced to

J0,, " (0,, —Cep) L 1ot
or r " r 00

=0 (1.48)

dT,g  2T,5  100g
+ +— =0 1.49
or r r 00 (149)

1.11 SUMMARY

In this chapter, we have presented the concept of stress as a means of describing how
an external force (point load, body force, surface traction, temperature change)
distributes through an elastic body. In particular, we introduced notation for nine
stress components. These form the rectangular components of a second order tensor.
Not all nine components of the stresses are arbitrary. Using Newton's law, it was
shown that shear stresses with reverse indices at a point are equal, i.e. the com-
plementing property of shear, so only six of the nine stress terms are independent at a
point. Finally, for equilibrium, the six stress components had to vary with position in
a certain manner established by the equations of equilibrium, a set of partial
differential equations. We shall consider next how to measure the primary effects of
the applied forces, namely the deformation of a body.
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