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3(I)-1
Introduction to Structure of Benzene
(Analytical, Synthetic and Other Evidences in the Derivation of Structure

of Benzene, Orbital Structure, Resonance in Benzene,
Aromatic Characters, Huckel’s Rule)

Michael Faraday first isolated benzene in 1825 from the oily residue derived from the production
of illuminating gas, giving it the name, bicarburet of hydrogen. He also determined C:H ratio
to be 1:1. In 1834, Eilhard Mitscherlich produced it by distilling benzoic acid (from gum
benzoin) and lime. He gave the compound name, benzin, later known as benzene. He also
determined its molecular formula, C6H6. It contains eight hydrogen atoms less than the
corresponding parent hydrocarbon, i.e. hexane (C6H14). It took several years to assign a structural
formula to benzene because of its unusual stability and peculiar properties.

KEKULE STRUCTURE OF BENZENE

Benzene is most commonly encountered aromatic compound. In 1865, Kekule proposed the
first acceptable hexagonal ring structure for benzene. In this structure, there is a hexagonal
ring of carbon atoms distributed in a symmetrical manner, with each carbon atom carrying one
hydrogen atom. The fourth valence of carbon atoms is fulfilled by the presence of alternate
system of single and double bonds, means it can be recognized by the arrangement involving
conjugated double bond system. Kekule structure is shown as:

The above formula had many drawbacks as described below:
1. The presence of three double bonds should make the benzene molecule highly reactive

towards addition reactions like alkene. But, contrary to this, benzene behaves like saturated
hydrocarbons.

2. Moreover, two isomers should result in 1,2-disubstituted benzene as shown in Fig. 3.1.1.
In one of the isomers, the bond between the substituted carbon atoms is single bond while
in the other it is a double bond. Actually, only one 1,2-disubstituted (or ortho) isomer is
formed.

Although Kekule formula could not explain the difference in properties between benzene
and alkenes based on his structure, but he explained the lack of isomerism as in Fig. 3.1.2 by
postulating a rapid interchange in the position of the double bonds as follows:
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This structure is known as Kekule’s dynamic formula.

RESONANCE STRUCTURE OF BENZENE

X-ray studies indicate that all the carbon–carbon bonds in benzene are equivalent and have
bond length 1.39 Å which is intermediate between C–C single bond (1.54 Å) and C=C bond
(1.34 Å). This shows that double bonds in benzene differ from those of alkenes.

Structure of benzene can be explained on the basis of resonance. Benzene (C6H6) may be
assigned following two structures A and B. Structures A and B have same arrangement of
atoms and differ only in electronic arrangement, means electrons are not localized in pi ()
bonds between two specific carbons, but distributed throughout the ring.  Any of these structures
alone cannot explain all the properties of benzene.

Structures A and B are known as resonating or canonical structures of benzene. The actual
structure of benzene is different from both A and B, and cannot be represented by conventional
formulae. The actual structure of benzene lies somewhere in between A and B and may be
represented as C, referred to as resonance hybrid. To indicate two structures which are resonance
forms of the same compound, a double headed arrow is used as shown in Fig. 3.1.3.

Fig. 3.1.1: Kekule isomers for 1,2-dichlorobenzene

Fig. 3.1.2: Interchange of double bonds in Kekule structure of benzene

Fig. 3.1.3: Resonance structure of benzene

The resonance hybrid is more stable than any of the contributing (or canonical) A and B
structures. The difference between the energy of the most stable contributing structure and the
energy of the resonance hybrid is known as resonance energy.

Here it should be noticed that the contributing structures (A) and (B) are of exactly same
energy and they make equal contribution to the resonance hybrid and also stabilization due to
resonance should be large.

Resonance energy of benzene has been found to be 152 kJ/mole. The value of resonance
energy has been determined by studying the enthalpy of hydrogenation and enthalpy of
combustion of benzene.
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UNUSUAL STABILITY OF BENZENE

Reluctance of benzene to undergo alkene type reactions indicates that it must be unusually
stable. The evidence for stability of benzene is obtained by comparing experimental and
calculated values of enthalpies of hydrogenation of benzene. Benzene, cyclohexadiene and
cyclohexene yield cyclohexane on hydrogenation (Fig. 3.1.4).
• Enthalpy of hydrogenation of cyclohexene is –120 kJ mol–1.
• Enthalpy of hydrogenation of 1,4-cyclohexadiene is –240 kJ mol–1.

Thus, the calculated or expected value of enthalpy of hydrogenation of 1,3,5-cyclohexatriene
is –360 kJ mol–1.

Fig. 3.1.4: Hydrogenation of cyclohexene, cyclohexadiene and cyclohexatriene

Thus, the expected enthalpy of hydrogenation for benzene if it were to be represented
hypothetically as 1,3,5-cyclohexatriene is –360 kJ/mol. The experimental value of enthalpy of
hydrogenation of benzene has been found be –208 kJ/mol. Thus, 152 kJ/mol less energy is
produced during hydrogenation of benzene than the expected for hypothetical 1,3,5-cyclo-
hexatriene. In other words, benzene molecule is more stable by 152 kJ/mol than 1,3,5-cyclo-
hexatriene (Kekule benzene). This is the resonance energy of benzene. The unusual stability of
benzene makes it resistant to the usual addition reactions of alkenes. This unusual stabilization
is due to resonance (delocalization of pi () electrons) which is responsible for the aromatic
character of benzene.

ORBITAL STRUCTURE OF BENZENE

According to orbital structure, all the carbon atoms in benzene are sp2-hybridized state. Each
carbon has three sp2-hybrid orbitals lying in one plane and oriented at an angle of 120°. There
is one unhybridized p-orbital having two lobes (one lying above and other below the plane of
ring) lying perpendicular to the plane of hybrid orbitals. Each carbon atom uses two hybrid
orbitals for axial overlap with similar orbitals of two adjacent carbon atoms on either side to
form C–C sigma bonds. The remaining one sp2-hybrid orbital on each carbon atom overlaps
axially with 1s orbital of hydrogen atom to form C–H sigma bond. The axial overlapping of
hybrid orbitals to form C–C and C–H bonds has been shown in Fig. 3.1.5. As is clear, the
framework of carbon and hydrogen atoms is coplanar with H–C–C or C–C–C bond angle as
120°.
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The unhybridized p-orbital on each carbon atom can overlap to a small but equal extent
with the p-orbitals of the two adjacent carbon atoms on either side to constitute pi () bonds as
shown in Figs 3.1.5 and 3.1.6.

Fig. 3.1.5: Sigma (C–C and C–H) bonds formation in benzene

Fig. 3.1.6: Sidewise overlapping of orbitals (six  molecular orbitals)
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The molecular orbital containing pi () electrons spread uniformly over the entire carbon
skeleton and embraces all the six carbons as shown in Fig. 3.1.7.

Fig. 3.1.7: Orbital picture of benzene

This spreading of pi () electrons in the form of ring of pi ()-electrons above and below the
plane of carbon atoms is called delocalization of pi ()-electrons. This delocalization of pi ()-
electrons, results, in the decrease in energy, and hence, accounts for the stability of benzene
molecule. The C–C bond length in benzene is 1.39 Å and C–H bond length is 1.09 Å.

The delocalized structure of benzene also accounts for the X-ray data (all C–C bond lengths
equal) and the absence of the type of isomerism shown in Fig. 3.1.1.

AROMATICITY OR AROMATIC CHARACTER

Benzene undergoes substitution reactions in spite of the high degree of unsaturation. This
behaviour of benzene is referred to as aromaticity or aromatic character. Aromatic character of
benzene can be explained on the basis of resonance structure of benzene or on the basis of
orbital structure of benzene.

In terms of resonance structure, benzene prefers to undergo substitution reactions because
during addition reactions the resonance stabilized benzene ring could be destroyed. On the
other hand, during substitution ring structure aromaticity remains preserved (Fig. 3.1.8).

Fig. 3.1.8: Addition and substitution reactions in benzene
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Huckel (4n + 2) rule for aromaticity
Aromatc compounds are cyclic and planar (e.g. sp2 hybridization). They undergo substtution
raeaction rather than addition reactions. This property is common to every aromatic compounds
and is reffered as aromatacity or aromatic character.

Aromatacity is due to extensive delocalization of pi () electrons in a planar ring system.
Erich Hückel, German physical chemist, formulated a simple expression of the relationship
between the structure of a compound and aromaticity. It is known as Huckel rule. According to
Huckel rule, all aromatic compounds must have (4n + 2) pi electrons where n is an integar (e.g.
n = 0, 1, 2, 3) and shows unusual stability due to complete delocalization of pi () electrons.

Huckel rule is not applicable to non-aromatic compounds, even then, they are cyclic and
planar in nature. Some examples are given here to verify the rule:

Example1
Benzene

Benzene is an aromatic compound as n = 1.

Example 2
Cyclopentadiene

Cyclopentadiene is a non-aromatic compound as ‘n’ is not a integer.

Example 3
Cyclopentadienide ion

Example 4
Naphthalene

Example 5
Cyclooctatetraene
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