CONTENTS

Preface

CHAPTER 1: BASIC PRINCIPLES OF ELECTRICAL MACHINE DESIGN 1.1–1.46

1	1	Introduction	1	2
- 1	. І	IIIIIOduction	- 1	. ∠

- 1.1.1 Constructional Elements of Transformer 1.2
- 1.1.2 Constructional Elements of Rotating Machines 1.3
- 1.1.3 Classification of Design Problems 1.4
- 1.1.4 Standard Specifications 1.4
- 1.1.5 Major Considerations in Electrical Machine Design 1.6
- 1.2 General Design Procedure 1.7
 - 1.2.1 Main Dimensions of Rotating Machines 1.7
- 1.3 Magnetic and Electric Loadings 1.8
 - 1.3.1 Specific Magnetic Loading 1.9
 - 1.3.2 Choice of Specific Magnetic loading 1.9
 - 1.3.3 Specific Electric Loading 1.10
 - 1.3.4 Choice of Specific Electric Loading 1.11
- 1.4 Output Equation 1.12
- 1.5 Separation of D and L 1.16
 - 1.5.1 Separation of D and L for DC Machines 1.16
 - 1.5.2 Separation of D and L for Induction Motors 1.17
 - 1.5.3 Separation of D and L for Synchronous Machines 1.18
- 1.6 Factors Affecting the Size of Rotating Machines 1.19
- 1.7 Variation of Output and Losses with Linear Dimensions 1.20
- 1.8 Limitations in Design 1.21
- 1.9 Modern Machines Manufacturing Techniques 1.22
- 1.10 Modern Trends in Design of Electric Machines 1.23

ii A Simplified Text in Electrical Machine D					
1.11 Com	1.11 Computer Aided Design of Electrical Machines 1.23				
1.11	1 Analysis Method of Design of Electrical Machines 1.23				
1.11	2 Synthesis Method of Design of Electrical Machines 1.25				
1.11	3 Hybrid Method of Design of Electrical Machines 1.26				
1.11	4 Optimization Techniques in Electrical Machine Design 1.26				
1.11	5 General Procedure for Optimization in Design of Electrical Machines 1.2				
1.12 Summary of Design Equations 1.27					
1.13 Solved Problems 1.28					
1.14 Short-Answer Questions 1.36					
1.15 Exercises 1.44					
CHAPTER	CHAPTER 2: ELECTRICAL ENGINEERING MATERIALS 2.1–2				

-2.14

- 2.1 Materials for Electrical Apparatus 2.1
- 2.2 High Conductivity Materials 2.1
 - 2.2.1 Copper as Conductive Materials 2.2
 - 2.2.2 Aluminium as Conductive Materials 2.2
 - 2.2.3 Iron and Steel as Conductive Materials 2.3
 - 2.2.4 Alloys of Copper as Conductive Materials 2.3
- 2.3 High Resistivity Materials 2.4
 - 2.3.1 Resistivity Materials Used for Precision Work 2.4
 - 2.3.2 Resistivity Materials Used for Rheostats 2.4
 - 2.3.3 Resistivity Materials Used for Heating Devices 2.4
- 2.4 Electrical Carbon Materials 2.5
- 2.5 Magnetic Materials 2.6
- 2.6 Types of Ferromagnetic Materials 2.6
- 2.7 Soft Magnetic Materials 2.6
 - 2.7.1 Solid Core Magnetic Materials 2.6
 - 2.7.2 Sheet Steel as Magnetic Materials 2.7
 - 2.7.3 Special Purpose Alloys for Magnetic Materials 2.8
- 2.8 Insulating Materials 2.8
 - 2.8.1 Classification of Insulating Materials 2.9
 - 2.8.2 Insulating Electrical Materials Used in Modern Electrical Machines 2.10
 - 2.8.3 Temperature Rise and Insulating Materials 2.10
- 2.9 Short-Answer Questions 2.12
- 2.10 Exercises 2.13

Contents

CHAPTER 3: MAGNETIC CIRCUITS IN MACHINES	3.1-3.58
3.1 Design of Magnetic Circuits 3.4	
3.2 Magnetic Curve 3.7	
3.3 Magnetic Circuit Calculations 3.8	
3.4 Reluctance of Air-Gap in Machines with Smooth Armature 3.10	
3.5 Reluctance of Air-Gap in Machines with Open Armature Slots 3.10	
3.6 Effect of Ventilating Ducts on Reluctance of Air-Gap 3.13	
3.7 Total Gap Contraction Factor 3.14	
3.8 MMF for Air-Gap 3.15	
3.9 MMF for Teeth 3.17	
3.10 Real and Apparent Flux Densities 3.19	
3.11 Magnetizing Current 3.21	
3.11.1 Magnetizing Current for Concentrated Windings 3.21	
3.11.2 Magnetizing Current for Distributed Windings 3.21	
3.12 Flux Leakage 3.23	
3.13 Magnetic Leakage Calculations 3.25	
3.14 Leakage in Armature 3.28	
3.14.1 Leakage Permeance of Parallel Sided Slot 3.283.14.2 Specific Permeance of Tapered Slot 3.30	
3.14.3 Specific Permeance of Circular Slot 3.33	
3.15 Slot Leakage Reactance 3.33	
3.16 Unbalanced Magnetic Pull 3.35	
3.17 Summary of Design Equations 3.37	
3.18 Solved Problems 3.40	
3.19 Short-Answer Questions 3.46	
3.20 Exercises 3.56	
CHAPTER 4: HEATING AND COOLING	4.1–4.50
4.1 Introduction 4.3	
4.1.1 Heat Conduction 4.3	
4.1.2 Heat Radiation 4.5 4.1.3 Heat Convection 4.6	
4.2 Newton's Law of Cooling 4.7	

	4.3	Internal	Temperatures	in	Core	and	Winding	4.7
--	-----	----------	--------------	----	------	-----	---------	-----

- 4.3.1 Internal Temperature of a Hot Body 4.8
- 4.3.2 Internal Temperature in Cores 4.9
- 4.3.3 Internal Temperature in Winding 4.9
- 4.4 Heating Equation 4.10
- 4.5 Cooling Equation 4.13
- 4.6 Types of Enclosures for Rotating Electrical Machines 4.15
- 4.7 Ventilation in Electrical Machines 4.16
 - 4.7.1 Induced Ventilation 4.16
 - 4.7.2 Forced Ventilation 4.17
 - 4.7.3 Radial Ventilation System 4.18
 - 4.7.4 Axial Ventilation System 4.18
 - 4.7.5 Combined Axial and Radial Ventilation System 4.19
- 4.8 Cooling of Totally Enclosed Machines 4.19
- 4.9 Cooling of Turbo Alternators 4.19
 - 4.9.1 Air Cooled Turbo Alternators 4.20
 - 4.9.2 Hydrogen Cooled Turbo Alternators 4.20
 - 4.9.3 Direct Cooled Turbo Alternators 4.21
 - 4.9.4 Estimation of Coolant 4.22
- 4.10 Rating of Electrical Machines 4.24
 - 4.10.1 Types of Duties and Rating 4.25
 - 4.10.2 Determination of Motor Rating for Variable Load Drives 4.26
 - 4.10.3 Temperature Rise in Short time Rating 4.28
- 4.11 Summary of Design Equations 4.30
- 4.12 Solved Problems 4.32
- 4.13 Short-Answer Questions 4.45
- 4.14 Excercises 4.48

CHAPTER 5: ARMATURE WINDING

5.1-5.116

- 5.1 Basic Concepts of Armature Winding 5.1
- 5.2 DC Machine Armature Winding 5.3
 - 5.2.1 Types of Armature Winding for DC Machine 5.4
 - 5.2.2 Winding Pitches for DC Machine Lap and Wave Winding 5.5
 - 5.2.3 Simplex Lap Winding for DC Machine 5.7
 - 5.2.4 Simplex Wave Winding for DC Machine 5.11

5.3 AC Mad	chine Armature Winding 5.15	
5.3.1	Chording, Distribution and Winding Factors 5.16	
5.3.2	Types of AC Machine Winding 5.17	
5.3.3	Unbifurcated Winding for AC Machine 5.18	
5.3.4	Bifurcated Winding for AC Machine 5.18	
5.3.5	Mush Winding for AC Machine 5.19	
5.3.6	Double Layer AC Machine Winding 5.20	
5.3.7	Integral Slot Lap Winding for AC Machine 5.20	
5.3.8	Integral Slot Wave Winding for AC Machine 5.21	
5.3.9	Fractional Slot Winding 5.22	
5.3.10	Fractional Slot Lap Winding for AC Machine 5.24	
5.3.11	Fractional Slot Wave Winding for AC Machine 5.24	
5.4 Summa	ary of Design Equations 5.25	
5.5 Solved	Problems 5.26	
5.6 Short-A	nswer Questions 5.112	
5.7 Exercis	es 5 114	
CHAPTER 6	: DESIGN OF DC MACHINES	6.1-6.86
6.1 Constru	uction 6.5	
6.2 Output	Equation 6.5	
6.2.1	Choice of Armature Diameter 6.7	
6.2.2	Choice of Armature Length 6.8	
6.3 Main D	imensions of DC Machines 6.9	
6.3.1	Magnetic Circuit 6.9	
6.3.2	Length of Air-Gap 6.12	
6.4 Choice	of Specific Loadings 6.12	
6.4.1	Specific Magnetic Loading 6.12	
6.4.2	Specific Electric Loading 6.13	
6.4.3	-	
	Choice of Specifc Electric Loading 6.13	
6.4.4		
	on of Number of Poles 6.14	
6.5 Selection	on of Number of Poles 6.14 of Armature 6.16	
6.5 Selection	of Armature 6.16	
6.5 Selection 6.6 Design	of Armature 6.16 Armature Core Design 6.16	

xvi	A Simplified Text in Electrical Machine Design
6.6.4	Slot Dimensions 6.18
6.6.5	Number of Armature Coils 6.18
6.6.6	Area of Cross-section of Armature Conductor 6.20
6.6.7	Armature Resistance 6.20
6.6.8	Design of Lap and Wave Winding for DC Machine 6.21
6.7 Design of	of Commutator and Brushes 6.22
6.8 Design	of Field 6.25
6.8.1	Design of Shunt Field Winding 6.26
6.8.2	Design of Series Field Winding 6.33
6.8.3	Design of Interpoles 6.35
6.9 Summai	y of Design Equations 6.36
6.10 Solved F	Problems 6.40
6.11 Compute	er Programs 6.65
6.12 Short-Ar	nswer Questions 6.73
6.13 Exercise	es 6.84
CHAPTER 7:	DESIGN OF TRANSFORMERS 7.1–7.90
7.1 Constru	ction 7.3
7.1.1	Core Type Transformer 7.4
	Shell Type Transformer 7.4
7.1.3	Distribution Transformer 7.5
7.1.4	Power Transformer 7.5
	put for Single-Phase Transformer Equation of Single-Phase Transformer) 7.6
	put for Three-Phase Transformer Equation of Three-Phase Transformer) 7.8
7.3.1	EMF Per Turn 7.10
7.4 Overall I	Dimesions 7.11
7.5 Design of	of Yoke, Core and Winding for Core and Shell Type Transformers 7.14
7.5.1	Design of Cores 7.14
7.5.2	Rectangular Core 7.15

7.5.3 Square Core 7.16

7.5.5 Multi-Stepped Cores 7.19 7.5.6 Design of Yoke 7.19

7.5.4 Two Stepped Core or Cruciform Core 7.17

ontents	X
7.6 Design o	f Winding 7.21
7.6.1	Resistance of Transformer Winding 7.22
7.6.2	Leakage Reactance of Transformer Winding 7.22
7.6.3	Leakage Flux in Transformer Winding 7.22
7.6.4	Estimation of Leakage Reactance of Core Type Transformer Winding 7.23
7.6.5	Leakage Reactance of Shell Type Transformer Winding with Sandwich Coils 7.27
7.6.6	Mechanical Forces 7.28
7.7 Estimation	on of No-load Current of Transformer 7.31
7.7.1	No-load Current of Single-Phase Transformer 7.31
7.7.2	No-Load Current of Three-Phase Transformer 7.33
7.8 Tempera	ture Rise in Transformers 7.34
7.8.1	Cooling of Transformers 7.34
7.8.2	Transformer oil as Cooling Medium 7.35
7.8.3	Transformer Rise in Plain Walled Tanks 7.35
7.9 Design o	f Tank and Cooling Tubes of Transformers 7.36
7.9.1	Design of Tank 7.36
7.9.2	Design of Cooling Tubes 7.37
7.10 Effect of	Frequency on Iron Losses 7.39
7.11 Summar	y of Design Equations 7.39
7.12 Solved P	roblems 7.43
7.13 Compute	er Programs 7.70

CHAPTER 8: DESIGN OF THREE-PHASE INDUCTION MOTOR

8.1-8.90

8.1 Construction 8.4

7.15 Exercises 7.88

- 8.2 Output Equation of Induction Motor 8.5
- 8.3 Main Dimensions 8.7
- 8.4 Choice of Specific Loadings 8.8

7.14 Short-Answer Questions 7.79

- 8.4.1 Choice of Specific Electric Loading 8.8
- 8.4.2 Choice of Specific Magnetic Loading 8.8
- 8.5 Design of Stator 8.9
 - 8.5.1 Stator Winding 8.9
 - 8.5.2 Stator Core 8.10

viii			A Simplified Text in Electrical Machine
8.6	Length o	f Air-Gap 8.13	
8.7	Design o	f Squirrel Cage Rotor 8.14	
	8.7.1	Choice of Rotor Slots 8.14	
	8.7.2	Design of Rotor Bars and Slots	8.18
	8.7.3	Design of End Rings 8.19	
	8.7.4	Reduction of Harmonic Torques	8 8.20
8.8	Design o	f Wound Rotor (Slip Ring Rotor)	8.21
	8.8.1	Rotor Windings 8.21	
	8.8.2	Number of Rotor Turns 8.21	
	8.8.3	Number of Rotor Slots 8.21	
	8.8.4	Rotor Teeth 8.22	
	8.8.5	Rotor Core 8.22	
	8.8.6	Slip Rings and Brushes 8.23	
8.9	Magnetic	Leakage Calculations 8.23	
	8.9.1	Leakage Reactance 8.23	
	8.9.2	Specific Permeance 8.24	
8.10	Operatin	g Characteristics 8.27	
	8.10.1	No-load Current 8.27	
	8.10.2	Magnetizing Current 8.27	
	8 10 3	Loss Component of No-load Cu	irrent 8.31

- 8.10.4 Short Circuit Current 8.32
- 8.10.5 Circle Diagram 8.33
- 8.10.6 Dispersion Coefficient 8.36
- 8.11 Summary of Design Equations 8.36
- 8.12 Solved Problems 8.40
- 8.13 Computer Programs 8.72
- 8.14 Short-Answer Questions 8.80
- 8.15 Exercises 8.88

CHAPTER 9: DESIGN OF SYNCHRONOUS MACHINE

9.1-9.66

- 9.1 Types of Synchronous Machine 9.4
 - 9.1.1 Main Dimensions of Synchronous Machine 9.5
- 9.2 Output Equation 9.6
- 9.3 Choice of Specific Loadings 9.7
 - 9.3.1 Choice of Specific Magnetic Loading 9.7
 - 9.3.2 Choice of Specific Electric Loading 9.8

Contents

9.4 Design of Salient Pole Machines 9.8						
	9.4.1 Design of Main Dimensions 9.8					
	9.4.2 Short Circuit Ratio (SCR) 9.9					
	9.4.3	Armature or Stator Design 9.11				
	9.4.4	Armature Resistance 9.12				
	9.4.5	Armature Leakage Reactance 9.12				
	9.4.6	Armature Winding Coil Dimensions 9.13				
	9.4.7	Stator Core 9.14				
	9.4.8	Estimation of Length of Air-Gap 9.16				
	9.4.9	Design of Rotor (or) Design of Field System 9.17				
	9.4.10	Design of Damper Winding 9.20				
	9.4.11	Determination of Full Load Field MMF 9.22				
	9.4.12	Design of Field Winding 9.24				
9.5	.5 Design of Turbo Alternators (or) Non-Salient Pole Alternator 9.26					
	9.5.1	Design of Main Dimensions 9.26				
	9.5.2	Length of Air-Gap 9.27				
	9.5.3	Stator Design 9.27				
	9.5.4	Rotor Design (or) Design of Field System 9.28				
9.6	9.6 Summary of Design Equations 9.29					
9.7	.7 Solved Problems 9.33					
9.8	8 Computer Programs 9.49					
9.9	9 Short-Answer Questions 9.65					
9.10	10 Exercises					
UNI	UNIVERSITY QUESTION PAPERS Q.1 - Q.42					

INDEX

1.1 - 1.6