
CHAPTER 

1
Computing and Computers

This chapter provides a broad overview of digital computers while introducing many of the 
concepts that are covered in depth later. It first examines the nature and limitations of the 
computing process. Then it briefly traces the historical development of computing machines 
and ends with a discussion of contemporary VLSI-based computer systems.

1.1 THE NATURE OF COMPUTING

Throughout history humans have relied mainly on their brains to perform calculations; in other 
words, they were the computers [Boyer 1989]. As civilization advanced, a variety of computing 
tools were invented that aided, but did not replace, manual computation. The earliest peoples 
used their fingers, pebbles, or tally sticks for counting purposes. The Latin words digitus 
meaning “finger” and calculus meaning “pebble” have given us digital and calculate and 
indicate the ancient origins of these computing concepts.

Two early computational aids that were widely used until quite recently are the abacus and 
the slide rule, both of which are illustrated in Figure 1.1. The abacus has columns of pebble like 
beads mounted on rods. The beads are moved by hand to positions that represent numbers. 
Manipulating the beads according to certain simple rules enables people to count, add, and 
perform the other basic operations of arithmetic. The slide rule, on the other hand, represents 
numbers by lengths marked on ruler like scales that can be moved relative to one another. By 
adding a length a on a fixed scale to a length b on a second, sliding scale, their combined length 
c = a + b can be read off the fixed scale. The slide rule’s main scales are logarithmic, so that the
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Figure 1.1

(a)	 Japanese abacus (soroban) displaying the number 0011234567890;
(b)  Slide rule illustrating the multiplication 1.30 × 2.30 = 2.99.

process of adding two lengths on these scales effectively multiplies two numbers.1 Slide rules 
are marked with various other scales that allow an experienced user to evaluate complicated 
expressions such as 2.15 × 17.9–50 sin π in several steps.

As the size and complexity of the calculations being carried out increases, two serious 
limitations of manual computation become apparent.

• The speed at which a human computer can work is limited. A typical elementary
operation such as addition or multiplication takes several seconds or minutes. Problems 
requiring billions of such operations could never be solved manually in a reasonable
period of time or at reasonable cost. Fortunately, modern computers routinely tackle
and quickly solve such problems.

•	 Humans are notoriously prone to error, so long calculations done by hand are unreliable 
unless elaborate precautions are taken to eliminate mistakes. Most sources of human
error (distraction, fatigue, and the like) do not affect machines, so they can provide
results that are, within broad limits, free from error.

The English computer pioneer Charles Babbage (1792-1871) often cited the following 
example to justify construction of his first automatic computing machine, the Difference Engine 
1Logarithms are defined by the relation 10a = A, where a = log10A. A length marked A on a log scale is 
proportional to log10A = a. When we add two lengths marked A and B on a slide rule, we are actually adding  
a = logl0A and b = log10B. Therefore, the result c represents log10A + log10B. Now 10a × 10b = 10a+b implies  
c = log10A + log10B = log10(A × B), so if we read c from the first scale, we will obtain the number whose log is 
c, that is. A × B.
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[Morrison and Morrison 1961]. In 1794 the French government began a project to compute 
entirely by hand an enormous set of mathematical tables. Among the many required tables were 
the logs of the numbers from 1 to 200,000 calculated to 19 decimal places. The entire project 
took two years to complete and employed about 100 people. The mathematical abilities of most 
of these human computers were limited to addition and subtraction, and they performed their 
calculations using pen and paper. A few skilled mathematicians provided the instructions. To 
minimize errors, each number was calculated independently by two human calculators. The 
final set of tables occupied 17 large volumes. The log table alone contained about 8 million 
digits.

1.1.1 The Elements of Computers
Every computer, human or artificial, contains the following components: a processor able to 
interpret and execute programs; a memory for storing the programs and the data they process; 
and input-output equipment for transferring information between the computer and the outside 
world.

The brain versus the computer. Consider the actions involved in a manual calculation 
using pencil and paper—for example, filling out an income tax return. The purpose of the paper 
is information storage. The information stored can include a list of instructions—more formally 
called a program, algorithm, or procedure—to be followed in carrying out the calculation, as 
well as the numbers or data to be used. During the calculation intermediate results and ultimately 
the final results are recorded on the paper. The data processing takes place in the human brain, 
which serves as the (central) processor. The brain performs two distinct functions: a control 
function that interprets the instructions and ensures that they are performed in the proper 
sequence and an execution function that performs specific steps such as addition, subtraction, 
multiplication, and division. A pocket calculator often serves as an aid to the brain. Figure 1.2a 
illustrates this view of human computation.

A computer has several key components that roughly correspond to those just mentioned; 
see Figure 1.2b. The main memory corresponds to the paper used in the manual calculation. Its 
purpose is to store instructions and data. The computer’s brain is its central processing unit 
(CPU). It contains a program control unit (also known as an instruction unit) whose function is 
to fetch instructions from memory and interpret them. An arithmetic-logic unit (ALU), which 
is part of the CPU’s data-processing or execution unit, carries out the instructions. The ALU is 
so called because many instructions specify either arithmetic (numerical) operations or various 
forms of nonnumerical operations that loosely correspond to logical reasoning or decision 
making.

There are important similarities and differences between human beings and artificial
computers in the way in which they represent information. In both cases information is usually 
in digital or discrete form. This is contrasted with analog or continuous information as used, for 
example, in the slide rule of Figure 1.1b. Distance is a continuous quantity, and on a slide-rule 
scale it represents, or serves as an analog for, a continuous sequence of numbers. The problem 
is that such analog quantities have very limited accuracy. The numbers on a slide rule, for
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Figure 1.2: Main components of (a) human computation and (b) machine computation.

example, cannot be read to more than three decimal places. On the other hand, a digital device 
can easily handle a large number of digits. Even the simple abacus of Figure1.1a can display a 
number—admittedly just one—to 13 places of accuracy. This advantage of digital data 
representation over analog is also seen in the higher fidelity of the sound recorded on a compact 
disc (CD), a digital device, compared to an old-fashioned record (LP), which is an analog 
device.

Humans employ languages with a wide range of digital symbols, and they usually represent 
numbers in decimal (base 10) form. It is not practical to build computers to handle symbolic or 
decimal data directly. Instead, computers process data in binary form, that is, using the two 
symbols 0 and 1 called bits (binary digits). Computers are built from electronic switches that 
have two natural states: off (0) and on (1). Hence the internal “language” of computers comprises 
forbidding looking strings of bits such as 10010011 11011001. To provide communication
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Figure 1.3: A Turing machine.

between a computer and its human users, a means of translating information between human 
and machine (binary) formats is necessary. The input-output equipment shown in Figure 1.2b 
performs this task.

An abstract computer. We are interested in the computational abilities of general-purpose 
digital computers. One might raise the following question at the outset: Are there any 
computations that a “reasonable” computer can never perform? Three notions of reasonableness 
are widely accepted.

•	 The computer should not store the answers to all possible problems.
•	 The computer should only be required to solve problems for which a solution procedure 

or program can be given.
•	 The computer should process information at a finite speed

A reasonable computer can therefore solve a particular problem only if it is sup-plied with a 
program that can generate the answer in a finite amount of time.

In the 1930s the English mathematician Alan M. Turing (1912-54) introduced an abstract 
model of a computer that satisfies all the foregoing criteria [Barwise and Etchemendy 1993]. 
This model, now called a Turing machine, has the structure shown in Figure 1.3. As we noted 
earlier two essential elements of any computer are a memory and a processor. The memory of 
a Turing machine is a tape M which resembles that of a tape recorder. Unlike the tape recorder, 
however, the Turing machine’s tape is of unbounded length and is divided lengthwise into 
squares. Each square can be blank, or it can contain one of a small set of symbols. The Turing 
machine’s processor P is a simple device with a small number of internal configurations or 
states. It is linked to M by a read-write head that can read the contents of one square Q and write 
a new symbol into Q to replace the old one in a single time step. Instead of writing on the tape, 
the processor can also just read the current symbol and move the tape one square to the left or 
right of the current square Q.

We can view the Turing machine as having a set of instructions that we will write in the 
compact, four-part format

Sh Tt Oj Sk

This instruction is interpreted in the following way: If the present state of the processor P is Sh 
and the symbol it reads on the square of M under the read-write head is Ti, then perform the 
action (such as write a new symbol or move the tape) specified by Oj and change the state of P 
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to Sk. Another way of expressing this instruction, which is more in tune with the style of a 
modern computer programming language, is

if oldstate = Sh and input = Ti then output = Oj and newstate = Sk;
The output operation indicated by Oj can be any one of the following:

1. Oj = Tj meaning write the symbol T on the tape to replace the symbol Tj.
2. Oj = R, meaning move the tape so that the read-write head is over the square to the

right of the current square. (The tape is moved one square to the left.)
3. Oj = L, meaning move the tape so that the read-write head is over the square to the left

of the current square. (The tape is moved one square to the right.)
4. Oj = H, meaning halt the computation.

The foregoing apparently restricted form of instruction, with just a few different symbols 
to write on M and a few different states for P, turns out to be sufficien to define programs that 
can perform all reasonable computations. To determine the value of Z = F(X) via a Turing 
machine, where F is some function of interest, we proceed as follows: The input data X is 
placed in a suitably coded form on an otherwise blank tape M. The processor P is supplied with 
a program that specifies a sequence of steps that are designed to compute F. The Turing machine 
is then started and executes instruction after instruction, moving the tape M and writing 
intermediate results on it. Eventually, the Turing machine should halt, and the final result Z 
should be found on the tape.

EXAMPLE 1.1: A TURING MACHINE TO ADD TWO UNARY NUMBERS. Any natural number 
n, that is, a positive integer selected from the set we usually write as 0,1, 2, 3, 4, 5,..., can be written in the 
unary form consisting of a sequence of n 1s. For example, 5 can be written as 11111 and 13 as 
1111111111111. When we record numbers using tally or check marks only, we are using a unary notation. 
(Surprisingly, unary numbers still have a small place in computer design [Poppelbaum et al. 1985].)

We will now show how to program a Turing machine to compute the sum of two unary numbers n1 
and n2. The tape symbols needed are 1 and b, where b denotes a blank. We start with a blank tape (one 
containing b in every square) and write the two input numbers in the following format:

… …��� �� …��� �� …b b b b b b b
n n

111 1 111 1
1 2

We position the read-write head over the blank square (underlined above) to the left of the left-most 
1. Our Turing machine then computes n1 + n2 by the simple expedient of finding the single blank that
separates n1 and n2 and replacing it with 1. The machine then finds and deletes the left-most 1 of n1. The 
resulting pattern of Is and bs

… … …� ��� ��� …b b b b b b b
n n

11 11111 1
1 2+

appearing on the tape is the required answer in the same unary format as the input data. The behavior of 
a seven-instruction Turing machine that implements this procedure is given with explanatory comments 
in Figure 1.4. Observe that although the tape M can have an arbitrarily large number of states, the 
processor P has only the four states S0, S1, S2, and S3.
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Instruction Comment

S0    b    R     S1 Move read-write head one square to right.

S1    1    R     S1 Move read-write head rightward across n1.

S1    b    1     S2 Replace blank between n1 and n2 by 1.

S2    1    L     S2 Move read-write head leftward across n1.

S2    b    R    S3 Blank square reached; move one square to right.

S3    1    b     S3 Replace left-most 1 by blank.

S3    b    H    S3 Halt; the result n1 + n2 is now on the tape.

Figure 1.4: Turing machine program to add two unary numbers.

One of Turing’s most remarkable achievements was to prove that a universal Turing 
machine (not unlike the above unary adding machine) can by itself perform every reasonable 
computation. A universal Turing machine is essentially a simulator of Turing machines. If given 
a description of some particular Turing machine TM—a program description like that of Figure 
1.4 will do—the universal machine simulates all the operations performed by TM. A universal 
Turing machine needs only t different tape symbols and s different processor states, where ts < 
30, implying that it can have a very small instruction set. Nevertheless, such a machine can 
perform any reasonable computation. It can therefore do anything that any real computer can 
do and so serves as an abstract model of the modern general-purpose computer. The universal 
Turing machine also captures a little of the flavor of reduced instruction set computers (RISCs), 
which, despite having relatively few instruction types, are among the most powerful computing 
machines available today.

1.1.2 Limitations of Computers
We turn next to the question of what problems computers can and cannot solve, either in 
principle or in practice [Barwise and Etchemendy 1993; Cormen and Leiserson 1990; Garey 
and Johnson 1979].

Unsolvable problems. Problems exist that no Turing machine and therefore no practical 
computer can solve. There are well-definedproblems, some quite famous,for which no solutions 
or solution procedures are known. An example from pure mathematics is Goldbach’s conjecture, 
formulated by the mathematician Christian Goldbach (1690- 1764), winch states that every 
even integer greater than 2 is the sum of exactly two prime numbers. For instance, 8 = 3 + 5 and 
108 = 37 + 71. Goldbach’s conjecture has been tested for an enormous number of even integers 
and is true in all test cases. Nevertheless, it is not yet known if the conjecture is true for every 
even integer, nor is any reasonable procedure known to determine whether the conjecture is 
true. The number of even integers is infinite, so a complete or exhaustive examination of all 
even integers and their prime factors is not feasible.

Goldbach’s conjecture is an example of an unsolved problem that may eventually be 
solved—we just don’t have a suitable solution procedure yet. Turing machines have proven 
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another class of problems to be unsolvable, so there is no hope of ever solving them; such 
problems are said to be undecidable. An example of an undecidable problem is to determine if 
an arbitrary polynomial equation of the form

a0 + a1x + a2x
2 + ... + an–1x

n–1 + anx
n = b

has a solution consisting entirely of integers. This problem may be answerable for specific 
equations, but a general procedure or program can never be constructed that can analyze any 
possible polynomial equation and decide if it has an integer solution.

Turing identified an undecidable problem that involves the basic nature of Turing machines. 
Does a procedure exist to determine if an arbitrary Turing machine with arbitrary input data will 
ever halt once it has been set in motion? Turing proved that the answer is no, so the Turing 
machine halting problem as this particular problem is called, is also undecidable. This result 
has some practical implications. A common and costly error made by inexperienced computer 
programmers is to write programs that contain infinite loops and therefore fail to halt under 
certain input conditions. It would be useful to have a debugging program that could determine 
whether any given program contains an infinite loop. The undecidability of the Turing machine 
halting problem implies that no such infinite-loop-detecting tool can ever be realized

The Turing machine model of a computer has one unrealistic, if not unreasonable, aspect: 
The length of the tape memory, and hence the total number of states in the Turing machine, is 
infinite. Real computers have a finite amount of memory and are therefore referred to as finite
state machines. Therefore, Turing machines can perform some computations that, in principle, 
finite-state machines cannot perform. For example, a finite-state machine cannot multiply two 
arbitrarily large numbers because it eventually runs out of the states needed to compute the 
product. The number of states of a typical computer is enormous, so this finiteness limitation 
has little significance.A typical general-purpose computer has billions of states and can quickly 
multiply numbers of any practical length.

Intractable problems. Real (finite-state) computers can solve most computational problems 
to an acceptable degree of accuracy. The question then becomes: Can a computer of reasonable 
size and cost solve a given problem in a reasonable amount of time? If so, the problem is said 
to be tractable; otherwise, it is intractable. Whether a given problem is tractable depends on 
several factors: the nature of the problem itself, the solution method or program used, and the 
computing speed or performance of the computer available to solve it. Figure 1.5 gives an 
indication of the speed of modern computers. It shows how the number of basic operations, 
such as the addition of two numbers, that a CPU can perform has been evolving with advances 
in computer hardware.

Example 1.2 illustrates the impact of the solution method on problem difficul .

EXAMPLE 1.2 FINDING AN EULER CIRCUIT IN A GRAPH. A well-known problem associated 
with the Swiss mathematician Leonhard Euler (1707-1783) is the following: Given a set of connected 
paths such as the aisles in an exhibition hall (Figure 1.6a), is it possible to make a tour of the hall so that 
one walks along every aisle exactly once and ends up at the starting point? The problem can be represented 
abstractly by means of a graph, as shown in Figure 1.6b. Each aisle is modeled by a line called an edge, 
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Component technology Date Number of basic operations per second

Electromechanical: relays 1940 10

Electronic: vacuum tubes (valves) 1945 103

Electronic: transistors 1950 104

Small-scale integrated circuits 1960 105

Medium-scale integrated circuits 1980 106

Very large-scale integrated circuits 2000 109

Figure 1.5: Influence of hardware technology on computing speed.

and the junction of two or more aisles by a point called a node. The graph of Figure 1.6b has five nodes 
A, B, C, D, and E and eight edges a, b, c, d, e, f, g, and h. Restated in graph terms, the walking-tour 
problem becomes that of finding a closed path around the graph that contains every edge exactly once; 
such a path is known as an Euler circuit. We consider two possible ways to determine whether a graph 
contains an Euler circuit.

A “brute force” or exhaustive approach is to generate a list of the possible orderings ox permutations 
of the edges of the graph. Each permutation then corresponds to a potential tour of the exhibition hall. The 
list of permutations can be written in the form

	 abcdefgh, acbdefgh, adbcefgh, aebcdfgh, afbcdegh,... 	   (1.1)

We can search the permutation list and check each entry to see if it specifies an Euler circuit. Clearly, 
the list is huge, and most of its entries do not represent Euler circuits. For example, the first permutation 
abcdefgh does not represent an Euler circuit,because while it is possible to go from a to b and from b to 
c, it is not possible to go directly from c to d. A tour starting at node A that traverses a, b, and c must 
continue along g, at which point f or h may be followed. The permutation abcgfdhe appearing

Figure 1.6: (a) Plan of the aisles in an exhibition hall and 
(b) the corresponding graph model.
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