

Contents

<i>Preface</i>	<i>vii</i>
<i>Syllabus</i>	<i>xiii</i>

PART A

1. INTRODUCTION	3-33
1.1 Overview 3	
1.1.1 Classification of Machine Design 3	
1.1.2 Types of Design Based on Methods 3	
1.2 Basic Procedure in Machine Design 4	
1.3 Engineering Materials and their Mechanical Properties 5	
1.3.1 Selection of Materials for Engineering Purposes 5	
1.4 Mechanical Properties of Metals 5	
1.5 Factors Influencing Machine Design/Design Considerations 6	
1.6 Codes and Standards 7	
1.7 Indian Standards for Designation of Materials (BIS System) 7	
1.8 Stress Analysis (Fundamentals from Strength of Materials) 10	
1.9 Stress-Strain Diagram 12	
1.10 Material Subjected to Combined Direct and Shear Stress 14	
1.11 Biaxial/Two Dimensional Stress 16	
1.12 Triaxial Stress/Three Dimensional Stress 17	
1.13 Stress Tensor/Components of Stress 17	
1.14 Biaxial Deformation/Strain 18	
1.15 Triaxial Deformation/Strain 18	
VTU Question Papers 28	
2. DESIGN FOR STATIC AND IMPACT STRENGTH	34-162
Design For Static Strength	
2.1 Static Load 34	
2.2 Factor of Safety 34	
2.2.1 Selection of Factor of Safety 35	
2.3 Combined Stresses 35	
2.3.1 Direct Stress 35	
2.3.2 Bending Stress 36	
2.3.3 Torsional Stress 36	
2.4 Eccentric Loading (Superposition) 58	
2.5 Theories of Failure: Static Loading 70	
2.5.1 Maximum Normal Stress Theory (MNST) or Principal Stress Theory or Rankine's Theory 70	
2.5.2 Maximum Normal Strain Theory or Principal Strain Theory or Saint Venant Theory 71	

x Design of Machine Elements I (DME I)

2.5.3 Maximum Shear Stress Theory (MSST) or Guest's or Tresca's Theory or Shear Difference Theory	71
2.5.4 Maximum Shear Energy Theory or Distortion Theory or von Mises Theory (DET)	72
2.5.5 Maximum Strain Energy Theory (MSET) or Haigh's Theory	73
2.6 Difference Between Ductile and Brittle Fracture	73
2.7 Failure of Ductile and Brittle Materials	74
2.8 Stress Concentration	90
2.8.1 Characteristics of Stress Concentration Factor	91
2.9 Stress Concentration in Contrast to Ductile and Brittle Materials under Static Loading	92
2.10 Determination of Stress Concentration Factor	92
2.11 Methods of Reducing Stress Concentration	93

Design For Impact Strength

2.12 Impact Loading: Introduction	121
2.13 Methods of Selecting Members to Withstand Impact Load	121
2.14 Properties of Material to Resist Impact Load	121
2.15 Strain Energy Due to Impact Load (Impact Stresses Due to Axial Load)	121
2.16 Impact Stresses Due to Bending	128
2.17 Impact and Torsion	130
2.18 Effect of Inertia	130

VTU Question Papers 142

3. DESIGN FOR FATIGUE STRENGTH

163–246

3.1 Introduction to Fatigue	163
3.2 Characteristics of Fatigue	164
3.3 Factors to be Considered to Avoid Fatigue Failure	164
3.4 Phenomenon of Fatigue Failure/Nature of Fatigue	164
3.5 High Cycle and Low Cycle Fatigue	165
3.5.1 Low Cycle Fatigue (LCF)	166
3.5.2 High Cycle Fatigue (HCF)	166
3.6 Definitions/ Nomenclature	166
3.7 S-N Curve: General S-N Behaviour or Wohler Curves	169
3.8 Endurance Limits Modifying Factors/Strength Reduction Factors/Factors Influencing S-N Behavior	170
3.9 Factor of Safety for Fatigue Loading	174
3.10 Fatigue Strength under Fluctuating Stresses: Fatigue Failure Theories	174
3.10.1 Soderberg Criteria or Yield Criteria	174
3.10.2 Goodman Criteria or Fracture Criteria	176
3.11 Relation Between Endurance Limit and Ultimate Tensile Strength	177
3.12 Relation Between Direct Stress Endurance Limit and Ultimate Tensile Strength	177
3.13 Relation Between Cyclic Torsion Endurance Limit and Ultimate Tensile Strength	178
3.14 Stresses due to Combined Loading	201
3.15 Cumulative Fatigue Damage	230

VTU Question Papers 235

4. THREADED FASTENERS

247–317

4.1 Introduction	247
4.2 Important Definitions	247
4.3 Forms of Screw Threads	248
4.4 Designation of Screw Threads	248
4.5 Materials Used for Bolts	249
4.6 Working Stress in Bolts—Initial Tension Unknown	249

4.7 Stresses in Screwed Fastening Due to Static Loading 250	
4.7.1 Initial Stress due to Screwing up of Forces 250	
4.7.2 Stresses due to External Forces 252	
4.7.3 Stresses due to the above Combination (Sections 4.7.1 and 4.7.2) 252	
4.8 Effect of Fatigue or Dynamic Loading 266	
4.9 Effect of Impact Loading 280	
4.10 Eccentric Loading or Bolted Joints in Shear 282	
4.10.1 Eccentric Load Acting Parallel to the Axis of the Bolt 282	
4.10.2 Eccentric Load Acting Perpendicular to the Axis of the Bolt 285	
4.10.3 Load Acting in a Plane Containing the Bolts 302	

VTU Question Papers 307

PART B

5. DESIGN OF SHAFTS	321–401
5.1 Introduction 321	
5.2 Types of Shafts 321	
5.3 Some Definitions 321	
5.4 Materials Used for Shafts 321	
5.5 Maximum Permissible Working or Design Stress 322	
5.6 Design of Shaft 322	
5.7 Shaft Design Based on Strength 322	
5.7.1 Shafts Subjected to Torque (T) only 322	
5.7.2 Shafts Subjected to Bending Moment (BM) Only 323	
5.7.3 Shafts Subjected to Combined T and BM 323	
5.8 Shaft Design Based on Rigidity 324	
5.8.1 Torsional Rigidity (Shaft as Torsion Bars) 324	
5.8.2 Lateral Rigidity (Shafts as Beams) 325	
5.9 ASME Code for Shaft Design 325	
5.10 Shafts Subjected to Combined Axial Load, Together with Torsional and Bending Moments (F, T and BM) 327	
5.11 Shaft Subjected to Fluctuating Loads 328	
5.12 Power Equation 329	
5.13 Evaluation of Transmission Forces 329	
VTU Question Papers 391	

6. COTTER AND KNUCKLE JOINTS, KEYS AND COUPLINGS	402–486
6.1 Cotter Joint 402	
6.2 Types of Cotter Joint 402	
6.3 Socket and Spigot Cotter Joint 402	
6.4 Knuckle Joint 413	
6.5 Keys 417	
6.6 Types of Keys 418	
6.7 Design of Sunk Key 420	
6.8 Effect of Keyways for Sunk Key 421	
6.9 Design of a Taper Key 432	
6.10 Splines 435	
6.11 Couplings 439	
6.12 Flange Coupling 439	
6.13 Flexible Coupling: Bush-pin Type 463	
6.14 Oldham's Coupling 477	

VTU Question Papers 478

7. RIVETED AND WELDED JOINTS	487–645
Riveted Joints	
7.1 Introduction 487	
7.2 Types of Fastening 487	
7.3 Types of Riveted Joints 488	
7.4 Important Terms Used in Riveted Joints 490	
7.5 Types of Rivet Heads 490	
7.6 Materials for Rivets 491	
7.7 Failures of Riveted Joints 491	
7.8 Strength of a Riveted Joint 493	
7.9 Efficiency of a Riveted Joint 493	
7.10 Design of Boiler Joints 496	
7.11 Design Procedure for Longitudinal Butt Joint 496	
7.12 Design Procedure for Circumferential Lap Joint 498	
7.13 Structural Joints or Ties [Diamond or Lozenge Joint] 532	
7.14 Eccentric Loaded Riveted Joints 544	
7.14.1 Load Acting in a Plane Containing the Rivets—Compound Group 545	
7.14.2 Load Acting Perpendicular to the Axis of the Rivet 564	
Welded Joints	
7.15 Introduction 569	
7.16 Types of Welded Joints 570	
7.17 Details of Fillet Weld 571	
7.18 Strength of Butt Weld 572	
7.19 Strength of Fillet Weld 573	
7.19.1 Transverse or Normal Fillet Welds 573	
7.19.2 Parallel or Longitudinal Fillet Welds 574	
7.19.3 Combined Parallel and Transverse Fillet Welds 575	
7.20 Stress Concentration Factors 576	
7.21 Unsymmetrical Welds Subjected to Axial Loads 586	
7.22 Special Cases of Fillet Weld 594	
7.22.1 Tee Joint: Parallel Fillet Weld Subjected to Bending Moment 594	
7.22.2 Tee Joint: Parallel Fillet Weld Subjected to Eccentric Load 595	
7.22.3 Tee Joint: Transverse Fillet Weld Subjected to Bending Moment 596	
7.22.4 Tee Joint: Transverse Fillet Weld Subjected to Eccentric Load 597	
7.22.5 Annular or Circular Fillet Weld Subjected to Torsion 598	
7.22.6 Annular or Circular Fillet Weld Subjected to Bending Moment 599	
7.23 Eccentric Load on Welded Connections 603	
7.23.1 Welded Connection Subjected to Moment in a Plane Normal to the Plane of Weld 604	
7.23.2 Welded Connection Subjected to Moment in a Plane of the Weld 614	
VTU Question Papers 628	
8. POWER SCREWS	646–708
8.1 Introduction 646	
8.2 Types of Screw Thread 646	
8.3 Terminology of Power Screws 647	
8.4 Mechanics of Power Screw: Force and Torque Analysis 648	
8.5 Efficiency of Square Threaded Screw 652	
8.6 Self locking and Overhauling in Power Screws 652	
8.7 Efficiency of Self Locking Screw 653	
8.8 V-threads or Angular Threads 653	
8.9 Stresses in Power Screws 672	
8.10 Design of Screw Jack 680	
VTU Question Papers 701	