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The electrovalent or ionic bond is formed between the combining species through the complete
transfer of one or more valence electron(s) from one species to the other. By transferring the electron(s),
the species transforms into a cation while the other species by accepting the electron(s) transforms
into an anion. The electrostatic Coulombic attraction between the oppositely charged species (i.e.
cation and anion) prevails to hold the species. Examples:

(a) NaCl : Na (1s2 2s2 2p6 3s1 ; i.e. 2, 8, 1) 
–e

  Na+ (1s2 2s2 2p6, i.e. 2, 8 )

Cl (1s2 2s2 2p6 3s2 3p5; i.e. 2, 8, 7) 
e

  Cl– (1s2 2s2 2p6 3s2 3p6 , i.e. 2, 8, 8)

Na+ + Cl–  NaCl (crystal)

(b) MgO : Mg (2, 8, 2) 
–2e

  Mg2+ (2, 8); O (2, 6) 
2e

   O2– (2, 8)

Mg2+ + O2–  MgO (crystal)

(c) CaF2 : Ca (2, 8, 8, 2) 
–2e

  Ca2+ (2, 8, 8); 2F (2, 7) 
2e

  2F– (2, 8)

Ca2+ + 2F–  Ca2+ (F–)2 (crystal)

The attractive force between the cationic and anionic species is purely electrostatic in nature and it is
equally probable in all directions. Thus the ionic forces are quite strong and omnidirectional while
the covalent forces are very much directional. The attractive Coulombic force within the ion pair is
given by, F = q+q–/(40r

2) where q+ and q– are the charges of the cation and anion respectively and
r stands for the interionic separation. In a solid crystal, 0 stands for the permitivity of vacuum. The
attractive force extends throughout the lattice.

Because of the omnidirectional nature of the ionic forces, the ionic compounds form three dimensional
solid aggregates of the cations and anions which are arranged in some well defined geometrical
patterns. Thus the electrovalent compounds form crystalline solids. They never exist as the isolated
molecules in contrast to the covalent molecules. At ordinary conditions, they remain as solids.

In the solid state, the ions remain in the well defined lattice points and they cannot move freely to
conduct electricity. But on fusion, the ions can move freely to carry electricity. In some cases, the
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conductivity of the ionic solids may rise due to the crystal defects. When the ionic compounds are
dissolved in water, the ions become more free to move and as a result, the solutions are very good
conductors of electricity.

The ionic compounds are hard because of the omnidirectional strong electrostatic force extending
throughout the crystal but they are brittle. When an external pressure is exerted on the ionic crystal,
it may set up the anion-anion and cation-cation repulsions. Because of the repulsive forces, the
crystals break down. It explains the cleavage properties of many minerals.

The reason behind the hardness can again explain the high melting and boiling points of the ionic
solids.

The ionic compounds are generally soluble in polar solvents having high dielectric constants or
permitivities. It is known that the Coulombic attractive force holding the oppositely charged ions is
inversely proportional to the permitivity () of the medium, i.e. F  1/. The relative permitivities of
the different media are : air or vacuum (1), H2O (82), CH3CN (33), NH3 (25). Thus with the increase
of permitivity of a medium, the attractive force between the oppositely charged species decreases.
This is why, when an ionic compound is placed in water, the attractive force responsible for holding
the oppositely charged ions in the crystal lattice is significantly dropped to facilitate the breakage of
the crystal lattice. In general, a solvent with a higher permitivity is more promising to dissolve
the ionic solids.

The phenomenon can also be interpreted in terms of ion-dipole interaction. The energy required
to break down the ionic lattice is largely compensated through the hydration energies of the cations
and anions. The dipolar solvent molecules can solvate both the types of ions through the proper
orientation of their polar ends.

Many pairs of ionic compounds are known to crystallise simultaneously in the same form and they
are referred to as isomorphous crystals (noted by E. Mitscherlich, a student of Berzelius). Such
isomorphous compounds can crystallise simultaneously from a solution to form the mixed crystals.
They can also form overgrowth. Some isomorphous pairs are given below :

Cu2S, Ag2S; KClO4, KMnO4; ZnSO4 . 7H2O, MgSO4.7H2O; NaNO3, CaCO3; KMnO4, BaSO4;
KIO4, CaWO4; NiSO4.7H2O, NiPO3F.7H2O; K2SO4 . Al2(SO4)3 . 24H2O, (NH4)2SO4.Al2(SO4)3.24H2O

The basic condition for the isomorphism is the similarity of the internal structure of the crystals
in all respects. It does not depend on the chemical properties and even also the total number of atoms
(e.g. last pair in the above given examples). The isomorphous crystals have similar unit cells with
almost the same dimensions, i.e., the same interfacial angle and axial ratio. But the crystals with
almost the same crystal dimensions are not necessarily isomorphous.

The detailed analysis of the isomorphous compounds reveals that for the isomorphism (characterised
by the mixed crystal formation and overgrowth), the following conditions must be satisfied.

(a) The two compounds must have the same type of formula to provide the same number of
lattice points (not necessarily the same number of atoms, the atoms can be replaced by
some suitable radicals to maintain the constancy of the number of lattice points).

(b) The size of the corresponding constituent units must be comparable.



(c) The stereochemical orientation of the corresponding constituent units in the compounds
must be identical.

(d) The polarising power and polarisability of the corresponding constituent units in the
compounds must be comparable.

(e) The crystals should have the same type of crystal structure (i.e. the same type of unit cell)
with the comparable crystal dimensions (i.e. interfacial angle and axial ratio).

(f) The molar volume of the compounds should be comparable.
The fulfilment of the above conditions can be illustrated through the following examples.
NaNO3 and CaCO3 (calcite): Molar volume (in cm3 mol–1) of NaNO3 = 37.4; Molar volume of

CaCO3 = 36.9; rNa+ = 95 pm; rCa2+ = 99 pm. Both 2– –
3 3andCO NO  are planar where three oxygen

atoms are at the corners of an equilateral triangle. Both the central atoms (i.e. C and N) are sp2

hybridised. The axial ratios of the unit cells are also comparable. Hence NaNO3 and CaCO3 are
isomorphous.

NaNO3 and KNO3: 95 pm  
Na K

r r  = 133 pm. Thus, the relative size ratio, r+/r– is different
for NaNO3 with respect to that of KNO3. Hence these are not isomorphous.

BaSO4 and KMnO4: 2 135 pm,
Ba K

r r    = 133 pm. Both – 2–
4 4andMnO SO  are tetrahedral and

their sizes are also comparable. The axial ratios of the unit cells are also comparable. Hence, these
are isomorphous.

KNO3 and KClO3: –
3ClO  is pyramidal (sp3 hybridisation of Cl) while –

3NO  is planar (sp2

hybridisation of N ). Hence, they are not isomorphous.
RaSO4 and BaSO4: They are isomorphous and they can be isomorphously coprecipitated. From

the standpoint of ionic radii, Ra2+ (152 pm) and Ba2+ (143 pm) are close and they can produce
isomorphous crystals. Ca2+ (106 pm) is much smaller and CaSO4 is not isomorphous with RaSO4.
From a solution having a very low concentration of 2 2 2–

4( . . [ ] [ ] ),   spRa i e Ra SO K  it can be
coprecipitated with BaSO4. By using this carrier or collector technique, Ra2+ can be separated even
when Ra2+ concentration in solution is exceedingly small.

Note : Isomorphous crystals lead to coprecipitation or induced precipitation which is important
in analytical chemistry (cf. Sec. 14.17.3).

Generally the d and f block elements show variable valencies. For the d block elements (i.e. transition
metals), the d levels remain incompletely filled for which the successive ionisation potentials do not
increase too rapidly (see Sec. 8.12.2). The energy required to raise the oxidation state from a lower
oxidation state can be compensated through the higher lattice energy (or, solvation energy in solution).
This is why, under the identical conditions, the existence of more than one stable oxidation state
becomes energetically possible. Thus the occurrence of Fe2+ and Fe3+; Cu+ and Cu2+; Co2+ and Co3+;
etc. are well documented. The heavier congeners (i.e. 4d and 5d series) show a marked tendency
towards the higher oxidation state (see Sec. 8.20.3 for relativistic effects). For example, though
both the +2 and +3 states are known for Co, for Rh and Ir the +3 state (or, higher state) is more well
documented; stability of +4 state runs as Pt > Pd > Ni; Cr3+ is the most stable state for Cr while both
Mo and W possess the stable +6 state. To explain such variable oxidation states both the lattice
energy (i.e. Madelung energy) and ligand field effects are to be considered.

To consider the effect of ionisation potentials on the variable oxidation states, let us consider, Cu,
Ag and Au which display the common states +1 and +3; but the stability of the +3 state increases in
descending the group ( cf. relativistic effects, Sec. 8.20.3). On the other hand, the stability of +2
state decreases in descending the group. The ionisation energies (kJ mol–1) of Cu, Ag and Au are
given in Table 12.1.1.



Thus it is evident that to attain the trivalency (+3), the less energy is required for Au compared to
Cu and Ag while for the +2 state, Cu is more favoured compared to Ag and Au. However to explain
the relative stabilities of the states, consideration of the ligand field effect is extremely important.
For the present system, the Jahn-Teller effect is extremely important. The ninth electron (d9-system)
in 2 2

1
–x y

d  orbital (z-out distortion) is destabilised maximum in Au(II). It favours the oxidation of
Au(II) to Au(III) compared to oxidation of Cu(II) and Ag(II).

Similar arguments also hold good for the variable valencies in the lanthanides and actinides.
Lastly, the inert pair effect (see Sec. 10.3) in the just post-transition elements also leads to the

variable valency.

The ions tend to have the inert gas configuration, ns2np6 (exception : Be2+, Li+ and H– of 1s2 helium
gas structure; H+ , no outer electron). The configuration is attained by the elements (i.e. metals) of
Gr I (1), II (2) and III (13) by the way of complete loss of their valence electrons and by the elements
(i.e. nonmetals) of Gr VII (17), VI (16) and V (15) by the way of capturing 1, 2 and 3 electrons
respectively. Some representative examples are shown below.

H–  He (1s2)  Li+, Be2+

N3–, O2–, F–  Ne (2s22p6)  Na+, Mg2+, Al3+

S2–, Cl–  Ar (3s23p6)  K+, Ca2+, Sc3+, Ti4+

Se2–, Br–  Kr (4s24p6)  Rb+, Sr2+, Y3+, Zr4+

Te2–, I –  Xe (5s25p6)  Cs+, Ba2+, La3+, Ce4+

At–  Rn (6s26p6)  Fr+, Ra2+, Ac3+, Th4+

The anions (exception : Au– in CsAu, Au–  5s25p65d10) do not have the 18 electron structure, but
it is frequently observed for the cations of the post-transition elements. The post-transition elements
of Gr I (11), II (12), III (13) and IV (14) lose their outermost electrons 1(ns1), 2(ns2), 3(ns2np1) and
4(ns2np2) respectively to attain the electronic structure, (n – 1)s2(n – 1)p6(n – 1)d10. Some examples
are:

Cu+, Zn2+, Ga3+, Ge4+  3s23p63d10;

Ag+, Cd2+, In3+, Sn4+  4s24p64d10;
Au+, Hg2+, Tl3+, Pb4+  5s25p65d10.

In this category Cu, Ag and Au show the variable oxidation states of +1, +2, +3 characterised by
18, 17 and 16 outermost electrons respectively. The general stability orders are [see Sec. 12.1 (ix)] :

Cu2+ > Cu+   Cu3+; Ag+ > Ag2+; Au3+ > Au+   Au2+.

Ionisation energy (kJ mol–1)
Element 1st 2nd 3rd 1st + 2nd + 3rd 1st + 2nd

Cu 745 1959 3551 6255 2704
Ag 731 2074 3361 6166 2805
Au 889 1939 2943 5771 2828



It shows that the attainment of just outermost 18 electron structure cannot assure the stability
necessarily. It is proposed by some authors that the nuclear charges of these species are not sufficiently
high to bind the outermost 18 electrons firmly. It is highly pronounced (see Table 12.1.1) in the case
of Au which leads to +3 state as the most stable one. But Zn2+, Cd2+, Hg2+, etc. attain the stability
with the 18 electron structure. Thus the explanation is not correct. The relative stability of such
variable oxidation states can be rationalised by the simultaneous consideration of the endothermic
effect (i.e. ionisation energy) and the exothermic effects (i.e. lattice or solvation energy and ligand
field stabilisation energy).

For the heavier post-transition elements, due to the inert pair effect (see Sec. 10.3), instead of the
18 electron structure, the 18, 2 structure, i.e. (n – 1)s2(n – 1)p6(n – 1)d10ns2, is preferred. Some
representative examples are : Tl+, Pb2+, Bi3+  2, 8, 18, 32, 18, 2; Sb3+  2, 8, 18, 18, 2 .

The transition metal ions are characterised by (n – 1)s2 (n – 1)p6 (n – 1)d1–9. The incompletely filled
d-level shows the variable valency because of the small difference in stability of two or more oxidation
states for a particular metal. For example :

Fe (3d64s2)  Fe2+ (3d6), Fe3+ (3d5); Co (3d74s2)  Co2+ (3d7), Co3+ (3d6); etc.

For the inner-transition metal ions (i.e. lanthanides and actinides), the incompletely (n – 2)f filled
level leads to the variable valency. The electronic configuration of the inner-transition metal ions is
given by (n – 2)d10 (n – 2)f 1–13 (n – 1)s2 (n – 1)p6, (n = 6 for lanthanides, n = 7 for actinides).

Many covalently bonded polyatomic species can act as the constituent ions in some ionic crystals.
Such anions are: 2– – – 2– – – 2– 2– 3–/ 4–

3 3 4 4 4 4 4 4 6, , , , , , , , [ ( ) ] ,CO NO BF BeF MnO ClO CrO SO Fe CN  etc. and
such cations are: 2 3

4 3 4 3 6, [ ( ) ] , [ ( ) ] ,  NH Cu NH Co NH  etc.

There are some polynuclear cluster species which cannot be classified into any particular group.
Examples: 2 2

2 2, ,Hg Ge   etc.

The X-ray studies can precisely determine the internuclear distance, but it cannot estimate directly
the size of the individual ions which is governed by the radial distribution probability of the outermost
electrons. But it can record the electron density maps (ED maps) which arise due to the scattering of
the X-rays by the electrons. From the ED maps, it is observed that the electron density gradually falls
from the nucleus of an ion with the increase of
the distance along the internuclear axis of the
adjacent ions and at a particular distance it falls
to a minimum value then it rises gradually as
the distance towards the nearest next nucleus
decreases (see Fig. 12.3.1.1). Now we can
assume that at the point of minimum electron
density, one ion stops and the next one starts.
Thus we may define an ionic radius of an ion as
the distance from its nucleus to the point of

Fig. 12.3.1.1. Electron density (ED) maps in NaF
crystals (variation of electron density around the
nuclei).



minimum electron density along the line joining the centres of the adjacent two ions (i.e. generally
cation and anion). Some representative values of ionic radii obtained from X-ray electron density
maps of alkali halides are given in Table 12.3.1.1. Here it is worth mentioning that the ED map very
often passes through a very broad minimum instead of a sharp minimum and it complicates to
parametrize the size of ions.

Ion Ionic radius Ion Ionic radius
r+ (pm) r– (pm)

Na+ 117 Cl– 164
K+ 149 Br– 180
Rb+ 163 I– 205
Cs+ 186

In comparison with the ionic radii obtained from other methods (say, Pauling’s method, see
Table 12.3.2.1), these values are different.

In the crystals, the ions are at an equilibrium distance where the attractive and repulsive forces
balance each other. This equilibrium internuclear distance can be easily obtained from the X-ray
studies. The internuclear separation (R0) is the sum of the radii of the involved ions, i.e. R0 = r+ + r–.
Thus if the radius of one ion is known, then by subtraction, the radius of the other ion can be obtained.
To solve the problem, it is assumed that the ionic radius of an ion is its own characteristic property
and it is constant and it does not depend on the neighbour with which it exists. This approximation
is at least grossly supported from the experimental fact. For example, the difference between the
radii of K + and Na+ ions derived from the measurements of four different alkali halides is fairly
constant.

rK+ – rNa+ = R0(KF) – R0(NaF) = 35 pm; R0(KCl ) – R0(NaCl) = 35 pm;

R0(KBr) – R0(NaBr) = 32 pm; R0(KI) – R0(NaI) = 30 pm.

Now to start the process to compute the ionic radii, it is required to have the knowledge of the
value of ionic radius of at least one. Then we can go for the others by using this value. Hence, it is
important to determine the ionic radius of the starting one by an independent method. The validity or
accuracy of the computation process for the other ions depends on the accuracy of the starting value
determined separately. Some methods developed by different workers are discussed below.

(i) Lande’s Method : Lande´ (1920) started with the crystal of LiI in which the size of the anion
is much larger compared to that of the tiny cation, Li+. Here it is assumed that the large sized
anions touch with one another. Thus half of the internuclear separation between the adjacent
anions gives the value of ionic radius of the anion, i.e. 1 1

– 0( – )2 2 (426) pm 213 pm.I II
r R  

By using this value for I – , the ionic radius of K + is evaluated as,

– –0( – )
–

K K I I
r R r   = (353 –213) pm = 140 pm.

By continuing the process, ionic radii for the other ions have been determined.
(ii) Bragg’s Method : Bragg in 1927 assumed the radius of O2– as half of the internuclear distance

of the adjacent oxide ions in silicates. Thus Bragg started with the silicate in the same way as
followed by Lande´ in the case of LiI. Thus, 1

2– 0( – )2 O OO
r R  in silicate, = 1

2  (270) pm = 135
pm. By using this value, Bragg and West computed the ionic radii for more than 80 ions.



(iii) Molar Refractivity Method : Goldschmidt’s Radii : By using the Lorentz-Lorenz equation
(see Eq. 12.3.2.1), the molar refraction (RM) can be determined experimentally.

2

2

– 1
.

2
M

n M
R

n



…(12.3.2.1)

where n is the refractive index of the substance of molecular mass M and density . RM is an
additive property of the constituent atoms or ions and bonds. Thus, for the ionic compounds,
the refraction by the constituent individual ions can be determined.
The molar refraction has the dimension of volume (= M/). Thus if RM(i) is the ionic refraction
by the i-th ion, then the radius (ri) of the ion can be calculated as follows :

1/ 3
( )i M ir CR …(12.3.2.2)

where C is the proportionality constant. By using the above relation, for two different ions, we
have:

1/3 1/3
( ) ( )

1/3 1/3
( ) ( ) ( )

/ or,M i M ii
i j

M j i j M i M j

R Rr
r r

R r r R R

 
  

   
…(12.3.2.3)

Thus if the ionic refractions of the individual ions and the corresponding interionic seperations
are known, then by using Eqn. 12.3.2.3, the ionic radii of the constituent ions can be evaluated.
This method was developed by Wasastjerna in 1923.
By using the interionic distances in the alkali halides and alkaline earth oxides, the ionic radii
for F– and O2– are found to be 133 pm and 132 pm respectively. Goldschmidt (1929) utilised
these values to compute the ionic radii for a number of ions. These values are very often
referred to as Goldschmidt’s ionic radii.

(iv) Pauling’s Method and Pauling’s Univalent Radii : Now we can recall the quantum mechanical
analysis of the hydrogen like system for which the radius of the species having the electron in
the outermost principal quantum number n is given by :

rn = n2h2/(4me2Z), in CGS unit; rn = 0n
2h2/(me2Z), in SI unit;

i.e. rn = Cn2/Z … (12.3.2.4)

where, C is constant, m = mass of an electron, e = charge of an electron, Ze = nuclear charge.
For a many-electron species, the radial distribution function of the outermost electron determines
the size of the ion and such electrons are attracted towards the nucleus. In a polyelectronic
system, because of the screening effect, the outermost electron experiences the nuclear charge
(Z – S)e, where S is the screening constant, which can be evaluated by the Slater’s rule (see
Sec. 4.2.4). Thus the radius of an ion can be expressed as :

2 2

ion *–

Cn Cn
r

Z S Z
  …(12.3.2.5)

For the isoelectronic species, n (the outermost principal quantum number) is identical. In each
of the compounds, Na+F–, K+Cl–, Rb+Br– and Cs+I –, the constituent ion pairs are isoelectronic.
For such isoelectronic ion pairs we can write :

*
anion anion

*
– cation cation

–

–

Z S Zr

r Z S Z

   …(12.3.2.6)

Cn2 and S are identical for the isoelectronic species, because these depend only on the electronic
configuration. The constant Cn2 is different for different inert gas configurations. For the ions



of neon gas configuration (e.g. O2–, F –, Na+, Mg2+, Al3+, etc.), its value is 614 pm. The value
of Cn2 for the argon gas configuration (e.g. K+, Cl–, Ca2+, S 2– , etc.) is 1036.5 pm. Similarly it
can be calculated for other species also. Eqn. 12.3.2.6 reduces to,

*
cation anion anion

* *
cation anion cation anion anioncation

–

– 2

r Z S Z

r r Z Z S Z Z
 

   …(12.3.2.7)

i.e.
*
–

* *
+ – –

r Z

r r Z Z






 

The internuclear distance (R0 = rcation + ranion) can be obtained from the X-ray studies and the
shielding constant S can be obtained by using the Slater’s rule for the lighter elements, and
from the values of molar refraction for the heavier members. Thus, r+ and r– can be easily
computed.
Let us illustrate the process for Na+F – in which the isosteric species are having the electronic
configuration, 1s22s22p6. The shielding constant S, for this configuration is obtained by the
Slater’s rule :

S = 7 × 0.35 + 2 × 0.85 = 4.15
The interionic separation is 231 pm, i.e. rNa+ + rF– = 231 pm. Now by using Eqn. 12.3.2.7, we
get:

–

– –

– 4.15 9 – 4.15 4.85

– 2 4.15 11 9 – 8.30 11.70
Na F

Na F Na F

r Z

r r Z Z



 

  
   

or, –95.7 pm and 135.3
Na F

r r  

Note on calculation of Z* : In calculating S for the isosteric species Na+ and F–, some
authors consider all 8 electrons in the valence shell instead of 7 electrons shielding the last
valence shell electron. It leads to :

S = 8 × 0.35 + 2 × 0.85 = 4.50, and Z* = 6.5 (for Na+), and Z* = 4.5 (for F–).
Thus the Z* values obtained are very close to those of Pauling's values (cf. 6.48 and 4.48 for
Na+ and F– respectively). This is the justification for considering all the 8-valence electrons,
but it definitely does not obey the Slater's rule. However, in this method, the calculated
values: r+ = 94.5 pm and r– =  136.5 pm do not differ significantly from the values obtained
by using the Slater's rule strictly.

In the case of K+Cl–, the ions are isosteric having the electronic configuration 1s22s22p63s23p6.
The shielding constant for these isosteric ions is obtained as follows :

S = 7 × 0.35 + 8 × 0.85 + 2 × 1.0 = 2.45 + 6.80 + 2 = 12.25
By using the value, rK+ + rCl– = 314 pm, we get :

–

– –

– 11.25 17 – 11.25 5.75

– 2 11.25 19 17 – 22.5 13.5
ClK

K Cl K Cl

Zr

r r Z Z



 

  
   

or, rK+ = 133 pm and rCl– = 181 pm.

(v) Pauling’s Crystal Radii : Now let us try to apply the method utilised in computing the ionic
radii of 1-1 salt (where |Z+| = |Z–| = 1) in the cases where the cationic and anionic charges are
not unity. Let us take the case of CaS which has the NaCl structure. The electronic configurations



of Ca2+ and S2– are : 1s22s22p63s23p6 (i.e. Ar configuration). Thus, the ions are also isoelectronic
with K+ and Cl–. Hence we can write :

2 2
19 – 11.25

/ ( – ) /( – )
20 – 11.25Ca K K Ca

r r Z S Z S    

Using the value of rK+ obtained from KCl, we get, rCa2+ = 117 pm.
Similarly, by using the relation, rS2–/rK+ = (ZK+ –12.25)/(ZS2– – 12.25), we get, rS2– = 219 pm.
These values can also be evaluated by using the constant Cn2 (see Eqn. 12.3.2.5) which is
1036.5 pm for the argon gas configuration.
Thus we get the calculated internuclear distance, rCa2+ + rS2– = (117 + 219) pm = 336 pm. This
value is much larger than the experimentally observed value 284 pm. Thus the process is
erratic for the polyvalent ions while it is good for the uni-univalent systems. In fact, radii
calculated for the polyvalent ions in this way are referred to as their hypothetical univalent
radii when the ions act hypothetically as the univalent ions in the Coulombic field.
To clarify the above drawback, we are to consider the Born-Lande equation (see Sec. 12.7.1)
in which it is found that the equilibrium internuclear distance (R0) is related as follows.

1/( – 1)
0

0 – 2

4
n

nB
R

AZ Z e

 
   

…(12.3.2.8)

It shows that the internuclear equilibrium distance (R0) is proportional to (1/Z+ Z–)1/(n – 1) for
which the Born exponent (n) is the same for the isosteric species, i.e.

R0  (1/Z+ Z–)1/(n –1) …(12.3.2.9)
Thus if for the uni-univalent salt, the interionic separation is R0(11) and R0(ij) is the separation
for the i – j type lattice (i.e. |Z+ | = i, |Z–| = j), then they are related as :

1/( – 1)

0(11)
1

1 1

n

R D
 

   
…(12.3.2.10)

1/( – 1)

0( )
1

n

ijR D
ij

 
  

 
…(12.3.2.11)
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Thus by using Eqn. 12.3.2.10, for i – j type lattice, we get the univalent ionic radii for the
multivalent ions. These are the hypothetical radii for the multivalent ions, when they retain
the electronic configurations but act in the Coulombic field as the univalent ions. Thus Eqn.
12.3.2.10 leads to the real values only for the 1–1 type lattice structures. However, by using
Eqns. 12.3.2.11–12, we can calculate the real ionic radii for the polyvalent ions by using their
hypothetical univalent radii obtained from Eqn. 12.3.2.10.
For example, the isosteric species K+ , Cl–, Ca2+ and S2– are having the argon configuration for
which the Born exponent is : n = 9 . The internuclear distance of the hypothetical uni-univalent
CaS is 336 pm, i.e. R0(11) = 336 pm. Therefore, R0(Ca2+ – S2–) = 336 (1/4)1/(9 – 1) = 336 × 0.84 =
282.2 pm. This calculated value is in good agreement with the observed one, 284 pm.



For calculating the ionic radii of the polyvalent ions, we can proceed as follows :

R0(ij) = R0(11) × (ij)–1/(n – 1) …(12.3.2.13)

From Eqn. 12.3.2.13, taking i = j, i.e. R0(ij) = 2ri and R0(11) = 2r1, we get :

ri = r1(i)
– 2/(n – 1) …(12.3.2.14)

where ri = crystal field radius for the i-valent ion, and r1 = univalent radius of the i-valent ion.
Let us apply Eqn. 12.3.2.14 for Ca2+ and S2– for which n = 9, r1(Ca2+) = univalent radius of Ca2+

= 117 pm, and r1(S2–) = 219 pm
Therefore, r2(Ca2+) = ionic radius of divalent Ca2+ = 117 × (2)–2/8 = 117 × 0.84 = 98.3 pm; and,
r2(S2–) = 219 × 0.84 = 184 pm.

The best value obtained in this method for the radius of O2– ion is 140 pm. Using this value,
Pauling estimated the ionic radii for most of the common ions. These are very often referred to
as Pauling’s ionic radii. These are given in Table 12.3.2.1 for some representative ions.

Ions of main group elements

Li+ 60 Be2+ 31 H– 208
Na+ 95 Mg2+ 65 Al3+ 50 Si4+ 41 O2– 140 F– 136
K+ 133 Ca2+ 99 Ga3+ 62 Ge4+ 53 S2– 184 Cl– 181
Rb+ 148 Sr2+ 113 In3+ 81 Sn4+ 71 Tl+ 144 Se2– 198 Br– 195
Cs+ 169 Ba2+ 135 Tl3+ 95 Pb4+ 84 Pb2+ 120 Te2– 221 I– 216

Transition metal ions*

Ti4+ 68 Ti3+ 76 Mn2+ 80 Cu+ 96 Zn2+ 74
Zr4+ 80 Fe3+ 53 Fe2+ 75 Ag+ 126 Cd2+ 97
Ce4+ 101 Cr3+ 55 Co2+ 72 Au+ 137 Hg2+ 110

Co3+ 63 Ni2+ 69

* value largely depends on the spin state, i.e. high spin or low spin state.

(vi) Yatsimirskii’s Thermochemical Radii : The methods already discussed are not suitable for
the polyvalent ions such as – 2– 2– –

3 4 4, , , ,CN CO SO BF  etc. The problem is further complicated
in these cases because most of the polyvalent ions are nonspherical in shape. But it is very
often required to know their ionic radii for calculating the lattice energy of the systems involving
such polyvalent ions.
To solve the problem, Yatsimirskii developed a method to calculate the ionic radii for such
species from the lattice energy of the compounds containing the species by using the standard
equations such as Born-Lande equation (see Eqns. 12.7.1.13-15), Kapustinskii equation
(see Eqn. 12.7.4.1), etc. From such equations the interionic separation is obtained. Then if the
radius of one of the ions is known, the radius for the other ion can be obtained. For example, in
the case of KNO3, the radius of K+ is known and hence from the knowledge of interionic
separation, the radius of –

3NO  can be estimated. Some representative values are given in
Table 12.3.2.2.

Except for the perfectly tetrahedral ions (e.g. 2– – 2– 2– – –
4 4 4 4 4 4, , , , , ,SO MnO CrO BeF BF ClO  etc.) and

octahedral ions (e.g. 2– 3– –
6 6 6, , ,SiF AlF PF  etc.) which tend to adopt the spherical (at least pseudo-

spherical) symmetry, the thermochemical radii are of no use. However, these values can be used
approximately in the thermochemical treatments.



Shannon has considered all the factors such as oxidation state, crystal structure, covalent-ionic
interaction, coordination number (C.N.), crystal vacancies and distortions, etc. which influence the
ionic radii. He has defined a set of crystal radii for different coordination numbers based on 2–O

r 
124 pm (C.N. = 4), 126 pm (C.N. 6), = 128 pm (C.N. = 8).

The basic principles of these methods have been already discussed. Goldschmidt started with the
ionic radius of O2– as 132 pm while Pauling started with the value 140 pm for O2–. Except for H–, the
differences in the values are not remarkable (see Table 12.3.4.1).

Ion Shannon’s Goldschmidt’s Pauling’s Ion Shannon’s Goldschmidt’s Pauling’s
crystal radii value (pm) value (pm) crystal radii value (pm) value (pm)

(pm)

H– 154 208 Be2+ 59 34 31
F– 119 133 136 Mg2+ 86 78 65
Cl– 167 181 181 Ca2+ 126 106 99
Br– 182 196 195 Sr2+ 132 127 113
I– 206 220 216 Ba2+ 149 143 135
O2– 126 132 140 Al3+ 68 57 50
S2– 170 174 184 Sc3+ 89 83 81
Li+ 90 68 60 Y3+ 104 106 93
Na+ 116 98 95 Si4+ 54 39 41
K+ 152 133 133 Ti4+ 75 64 68
Rb+ 166 149 148 Zr4+ 86 87 80
Cs+ 181 165 169 Ce4+ 101 102 101

The ionic radius for H– is astonishingly high. This high value appears due to the presence of a
single charge in the nucleus which weakly binds the two outer electrons. Besides this, the electrons
repel strongly each other and screen each other from facing the nuclear charge.

It is interesting to note that in the alkali hydrides, the Pauling’s high value for H– is never attained
(see Table 12.3.4.2) and it gradually increases with the increase of electropositive character of the

Ion Thermochemical Ion Thermochemical
radius (pm) radius (pm)

4NH  151 OH– 119
–

3 2CH CO 148 CN– 177
–

4BF 218 –
3NO 165

2–
3CO 164 –

2NO 178
2–
4CrO 242 –

4ClO 226
–
4MnO 215 –

3ClO 157
2–
4SO 244 –

3BrO 140
–
3N 181 –

3IO 108



alkali metal. In other words, with the increase of covalency (i.e. the increase of anion polarisation
by the cation), the ionic radius for H– decreases. The value reported by Goldschmidt is the
crystalographic value obtained for CsH.

Compound R0(M+ – H –) rH – = R0 – rM+
(pm) (pm)

LiH 204 126
NaH 244 146
KH 285 152
RbH 302 153
CsH 319 154

The nonattainability of the high value for H– calculated by Pauling is due to the easy compressibility
of the diffuse H– in which the electrons are loosely bound and a certain degree of covalency (which
cannot be avoided for such a polarisable anion) in the M—H bond. With the increase of
covalency, the radius of an anion decreases. The effect of covalency on the radius of H– is nicely
reflected (see Table 12.3.4.2) in the alkali metal hydrides. In LiH, the covalency is maximum and
hence the ionic radius of H– is minimum in LiH.

Compared to the traditional ionic radii, the Shannon’s crystal radii are better to represent
the reality. The Shannon’s crystal radii take care of partial covalency present in the systems and
these ionic radii are generally larger for the cations and smaller for the anions than the traditional
ionic radii.

(i) Principal quantum number for the outermost electrons : In general, we have the relation
(see Eqn. 12.3.2.4),

 rion = Cn2/(Zion – S) = 2 *
ion/ ,Cn Z

where C is a constant and n is the principal quantum number for the outermost electrons. Thus
with the increase of n, the radius increases. But we should simultaneously consider both the
factors n and Z*. If Z* remains more or less constant then the radius increases with the n as in
the alkali metal ions and nonmetals (specially away from the transition metals) of Gr VI (16),
VII (17). But if both n and Z* increase simultaneously as in the heavier transition metals, then
the variation of rion with the n is not so marked. These aspects have been discussed in detail in
discussing the periodic trends of radii of the ions (see Sec. 8.10).
Li+ (90 pm) < Na+ (116 pm) < K+ (152 pm) < Rb+ (166 pm) < Cs+ (181 pm) (Shannon’s
values)

F– (119 pm) < Cl– (167 pm) < Br– (182 pm) < I– (206 pm) (Shannon’s values)

The smaller bare ions are more hydrated (i.e. larger hydration sphere, see Chapter 11, Vol. 2)
because of their higher electrical field intensity compared to the larger bare ions. Thus size sequence
of the hydrated ions very often opposes the size sequence of the bare ions.

Size of hydrated ions : Li+ > Na+ > K+ > Rb+

Size of bare ions : Li+ < Na+ < K+ < Rb+

(ii) Charge on the ion and nuclear charge to number of electron ratio : With the increase of
positive charge (more correctly, the effective nuclear charge, Z*) on the cation (retaining the



same principal quantum number for the outermost electrons whose radial distribution function
governs the size of the ion), the outermost electrons experience an increased attraction towards
the nucleus. Thus with the increase of positive charge of the cation, there is a shrinkage in
the size due to the increase of the nuclear charge/electron ratio.

Fe2+ (75 pm) > Fe3+ (53 pm); Pb2+ (120 pm) > Pb4+ (84 pm);

Mn2+ (80 pm) > Mn3+ (66 pm) > Mn4+ (54 pm).

These are the Pauling radii.
 Corresponding covalent radii vs. ionic radii : The covalent or atomic radii are always larger

than the cationic radii. For examples (Pauling’s value) :

Li (152 pm) > Li+ (60 pm) ; K (231 pm) > K+ (133 pm); Ba (217 pm) > Ba2+ (135 pm).
It occurs so, because in these cations, the outermost principal quantum number decreases
by unity compared to the neutral species. Besides this, the enhanced positive charge on the
cationic species also favours the size shrinkage.
For the anions, an increased negative charge increases the electron-electron repulsion and
decreases the effective nuclear charge experienced by the outermost electrons and as a result,
with the increase of charge on an anion, the size increases due to decrease of nuclear charge/
electron ratio. This is why, the anionic radii are larger than their corresponding covalent or
atomic radii. For examples (Pauling’s value) :

Cl– (181 pm) > Cl (99 pm); O2– (140 pm) > O (66 pm); S2– (184 pm) > S (104 pm).

Here it is worth mentioning that the increase of anionic charge contracts the interionic
cation-anion separation due to the increased Coulombic interaction. This fact tends to
introduce a shrinkage in the anionic radius with the increase of the anionic charge. This
aspect will be illustrated in the case of isosteric anions (see Table 12.4.2).

 Lanthanides and actinides : By considering the effect of Z* and relativistic effect, the lanthanide
and actinide contractions have been explained in Sec. 8.9.

La3+ (117 pm) > Nd3+ (112 pm) > Gd3+ (108 pm) > Ho3+ (104 pm) > Lu3+ (100 pm)
 Increasing trend of Z* along the period from left to right

 Halide vs. halate : In this connection, it is interesting to consider the trend of ionic radii of
the halides in comparison with that of their oxyanions.

I– (206 pm) > Br– (182 pm) > Cl– (167 pm) (Shannon’s data for C.N. = 6, an effect
of the principal quantum number of the outermost electrons)

while, –
3ClO  (157 pm) > –

3BrO  (140 pm) > –
3IO  (108 pm) (thermochemical data).

It is not fully justified to compare the thermochemical radii of the halate ions with the ionic
radii of their corresponding halides, but still, the reverse trend for the two series is really
interesting. In the halates, the central atom is in +5 oxidation state. For the heavier congeners
of X5+, presence of low shielding d- and f-electrons leads to more effective nuclear charge
experienced by the electrons at the periphery.

 Isosteric species : Now let us consider the effect of charge on the ionic radii among the isosteric
species having identical extranuclear configurations. Two factors work. (a) For the cationic
isosteric species, the ionic radius decreases rapidly with the increase of positive charge due to
increase of nuclear charge/electron ratio (Table 12.4.1). This is in conformity with the prediction
from the relation, rion = Cn2/(Zion – S) (for the isosteric species Cn2 is constant). (b) In addition
to the above factor, the increased cationic charge attracts the coordinating surrounding anions
more closely resulting a shrinkage in the interionic separation and hence in the ionic radii.
Thus the two factors work in the same direction to decrease the ionic radius.



Now let us consider the isosteric anionic species (see Table 12.4.2). It is evident that with the
increase of the anionic charge, the anionic radii change but not so markedly in contrast to the
isosteric cationic species. The fact can be rationalised by considering the two opposing factors.
(a) The increased electron density reduces the nuclear charge/electron ratio, increases the
electron-electron repulsion and decreases the effective nuclear charge to be experienced by
the outermost electrons. These factors increase the ionic radii. (b) But due to the increased
anionic charge, the Coulombic attraction between the cation and anion increases and
consequently the interionic separation shortens. It leads to a shrinkage in the anionic radii.
This fact is also concluded from the Born equation (see Sec. 12.7), i.e.

R0 = (r+ + r–); and,
1/( – 1)
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(cf. Eqn. 12.3.2.14)

Ion : N3– O2– F– P3– S2– Cl– Se2– Br–

Electronic configuration: [He]2s22p6   [Ne]3s23p6   [Ar]3d104s24p6 
Total no. of extranuclear electrons:  10   18   36 
Units of nuclear positive charge: 007 008 009 015 016 017 034 035

Radius (in pm) (Pauling’s value): 170 140 136 212 184 181 198 195

Because of the two opposing factors,
the ionic radius does not change so
remarkably with the change of charge
on the isosteric anions.

(iii) Influence of coordination number, i.e.
crystal geometry : With the increase of
coordination number, the interionic
separation and consequently the ionic
radius increases. It is due to the fact that
the more the number of surrounding
ions, the less is the share of the attrac-
tion to be experienced by each of the
oppositely charged ions. In addition to
this, it can be said that with the increase of coordination number, to avoid the steric hindrance
among the coordinating or surrounding ions, they tend to keep themselves away from the
central ion. For example, if 8 Cl– ions instead of 6 Cl– ions are to coordinate the central ion,
e.g. Na+, then the Cl– ions in the 8 coordination system cannot approach towards the Na+ ion
up to the distance as attained by the Cl– ions in the 6 coordination system. If we want to place

Ion : Na+ Mg2+ Al3+ Si4+ K+ Ca2+ Sc3+ Ti4+ Au+ Hg2+ Tl3+ Pb4+

Electronic configuration [He]2s22p6   [Ne]3s23p6   [Xe]4f 145d10 

Total no. of extra-nuclear electrons  10   18   78 
Units of nuclear positive charge 11 12 13 14 019 20 21 22 079 080 81 82

Radius (in pm) (Pauling’s value) 95 65 50 41 133 99 81 68 137 110 95 84

Fig. 12.4.1. Variation of ionic radii with the nuclear
charge of the ions of electronic configuration of neon.



the 8 Cl– ions at the same distance as in the 6 coordination number, then there will be a severe
repulsion among the Cl– ions due to the steric hindrance. This is why, the interionic separation
between the adjacent opposite ions always increases with the increase of the coordination
number.
The fact can be quantitatively supported by the Born equation (see Sec. 12.7) which leads to :
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From the above equation, it is evident that the interionic separation (R0) depends on B, i.e. the
type of the crystal. If we consider that an ionic compound AB may be crystallised in both
common salt structure (i.e. NaCl, 6:6) and cesium chloride structure (i.e. CsCl, 8:8), then
the interionic separations (R0) in AB in the two forms are related as follows :

1/( – 1)
0( ) 0( )/ [( ) /( )] n

NaCl CsCl NaCl CsCl CsCl NaClR R B A B A

where B measures the short range repulsive force. Hence to measure B, we can reasonably
consider the only nearest neighbours. Thus we get :

BNaCl/BCsCl = 6/8

The ratio of the Madelung constants is given by,

ACsCl/ANaCl = 1.76267/1.74755   1.0

Thus, R0(NaCl)/R0(CsCl) = (BNaCl/BCsCl)
1/(n – 1) = (6/8)1/(n – 1).

For, n = 9 (i.e. Ar gas configuration), R0(NaCl)/R0(CsCl) = 0.965.

Thus if a compound exists in both NaCl and CsCl structure, the interionic separation in the
CsCl crystal will be ~ 3% larger than that in the NaCl structure. Similar calculations may
be done for other crystals to illustrate the dependance of ionic radii on the crystal structure. It
is found that the interionic separation in the NaCl structure is ~ 5% more compared to that in
the zinc blende (ZnS) structure. Thus we can write,

Coordination No : (ZnS, Zn - blende, 4:4), (NaCl, 6:6), (CsCl, 8:8)
R0 (= r+ + r–) 0.95 1.00 1.037
(relatively)

C.N. : 4 5 6 7 8 12
r(Na+) (pm) : 112 114 116 125 132 138

Thus it is evident that the absolute difference in the values for different crystals is not
significantly large. But, if required, we can use the multiplication factors to compute the ionic
radii from one crystal system to another. Here it is important to mention that the Pauling’s
radii were calculated assuming the 6:6 coordination number as in NaCl and NaF.

(iv) Influence of the radius ratio : As the radius ratio (r+/r–) tends to the lower limiting value for
a particular geometry, the anion-anion repulsion increases (see Sec. 12.8) and it will tend to
increase the interionic separation and consequently the ionic radii. For the octahedral geometry
as in the NaCl structure, the limiting radius ratio is ~ 0.41 and the structure can be attained in
the range of ratio ~ 0.41 to 0.73. However, if the radius ratio tends to the lower limiting
value, 0.41 then the interionic separation increases. It is evident from Table 12.4.3.
In computing the Pauling’s radii, no such anion-anion repulsion was considered. In fact, no
such repulsion exists in reality when r+/r–  0.7 as in NaF. Thus for the systems having the
radius ratio ~ 0.7, there is no discrepancy between the experimental and calculated value, but



as the ratio tends to the lower limiting value (e.g. 0.41 in the octahedral system), the repulsion
increases to increase the interionic separation leading to an appreciable discrepancy. In
explaining the relatively lower melting points (see Fig. 12.7.5.1) of LiF (r+/r– = 0.44) and
NaI (r+/r– = 0.44), the anion-anion repulsion was considered to reduce the cohesive energy.
Fig. 12.7.5.1 thus establishes the fact that in tending towards the lower (r+/r–) limiting radius
ratio value, the anion-anion repulsion increases.

(v) Effect of polarisation (i.e. covalency) : The ionic radius of a particular ion in a compound is
dependent on the degree of polarisation or covalency present in the compound. With the increase
of covalency, the radius of a cation increases while the radius of an anion decreases. The
effect of covalency on the radius of H– is well noted in the alkali metal hydrides (see Table
12.3.4.2). If in attaining the covalency, the cation utilises its new principal quantum number as
in the case of alkali and alkaline earth cations, the size of the cation gets remarkably increased.
The alkali and alkaline earth cations use the next outer ns orbital to introduce the covalency.

(vi) Crystal field effect : In terms of crystal field theory (CFT), a transition metal ion in an octahedral
geometry shows a lower value of its ionic radius in low spin state compared to its value in high
spin state. In fact, various factors like spin state, geometry and electronic configuration are
important to determine the crystal radii of transition metal ions. Discussion on these aspects
has been done in Vol. 4.
In the octahedral systems, some representative Shannon’s values (in pm) are :

Ions : Cr2+ Mn2+ Fe2+ Co2+ Fe3+ Co3+

r (low spin) : 87 81 75 79 69 68

r (high spin) : 94 97 92 89 78 75

In predicting the possibility of an ionic bond formation in a particular compound, it is more important
to consider the energetics of the process of formation rather than the concept of attaining the stable
electronic configuration of the constituent ions in the compound under consideration. If the process
is exothermic* (i.e. H < 0), the compound is stable, but if the process is endothermic (i.e. H > 0)
the compound is unstable. The enthalpy change (i.e.H) of the process can be computed from the
Born-Haber cycle which is based on the basic principle (Hess’s law) of thermochemistry. H being
a state function does not depend on the path through which the process is carried out but on the initial
and final state.

Compound r+/r– R0 = r+ + r– R0 (experimental)
(calculated from
Pauling’s radii)

RbBr 0.76 343 343
KBr 0.68 328 329
NaBr 0.49 290 298

* More correctly, to predict the stability we should consider G (= H – TS) rather than H alone. But in the
formation of an ionic lattice starting from a solid metallic crystal, S is not very much significant. Here, at
an ordinary condition, consideration of H predicts almost the correct result.



H of the process leading to an ionic crystal may be obtained experimentally by the direct
combination of the constituent elements. It can also be computed by using the Born-Haber cycle
which involves the following steps :

(i) Vaporisation of the involved reactant elements.
(ii) Formation of the required ions from the isolated gaseous atoms.

(iii) Combination of the gaseous ions to produce the solid product.
To illustrate the principle of Born-Haber cycle, let us consider the formation of the simple ionic

compound M+X– (e.g. NaCl) in computing the standard molar enthalpy of formation (Hf) which
is defined as the change of enthalpy in the formation of one mole of the ionic compound M+X– from
its constituent elements in their most stable physical states at 298 K and 1 atm pressure.

Formation of M+X– can be considered to take place in two paths (assuming M and X2 to exist in
solid and gaseous state respectively at ordinary condition) as shown in the Scheme 12.5.1.1.

(Exothermic process)

Scheme 12.5.1.1. Possible paths leading to the formation of M+X– crystal.

(Note: Formation of MX(s) (solid ionic lattice) from the gaseous ions may be considered to pass
through the formation of gaseous ion-pair, –

(g).M X

For the sake of simplicity, the gaseous ion-pair formation step has been ignored in Scheme 12.5.1.1.
The energy change in the overall process (i.e. combination of Step I and Step II) has been described
here as the lattice energy (UMX). Thus, UMX = U1 (for the gaseous ion-pair formation) + U2 (for
lattice formation). For the formation of sodium chloride (NaCl), U1 and U2 have been theoretically
calculated (U1  –440 kJ mol–1 and U2  ~330 kJ mol–1).

Path II consists of the following steps :
(i) First step : It involves the sublimation of solid M into its vapour. It requires the sublimation

energy, Hsub.
(ii) Second step : It involves the ionisation of the isolated gaseous atoms of M. It requires the

ionisation energy (i.e. first IE), HIE.
(iii) Third step : It involves the bond dissociation of the halogen gas X2 (say Cl2) to form the

gaseous atoms. As the process requires half mole of X2 to form one mole of MX, the
requirement of energy is 1

2 .dissH
(iv) Fourth step : It involves the gaining of an electron by the isolated gaseous atom (X) to form

X –. It measures the electron affinity, HEA .



(v) Final step : It involves the combination of the oppositely charged isolated gaseous ions (in
the gaseous phase, they may exist as the ion pairs, but here we are ignoring this aspect for
the sake of simplicity) to form a solid crystal in which the omnidirectional electrostatic
force works throughout the crystal. It leads to the release of lattice energy, UMX which
may be considered as the lattice enthalpy (HL). Thus, we get the following relation with
appropriate signs of the energy terms (according to the convention of thermodynamics).

1

2f sub IE diss EA MXH H H H H U          …(12.5.1.1)

From the standard convention of thermodynamics, when the energy is released (i.e.
exothermic) it is associated with a negative sign (–ve) while for the energy requiring (i.e.
endothermic) process, the energy term is associated with a positive sign (+ve). In forming
the lattice from the isolated gaseous ions, the energy measured by lattice energy (UMX) is
released. Generally the energy term (HEA) measuring the electron affinity is exothermic.
In the case of NaCl, by using the calculated value of lattice energy and other energy terms
experimentally determined, let us calculate the enthalpy of formation sub( ). fH H  = 108.8
kJ mol–1, HIE = 493.8 kJ mol–1, 1

2 (Hdiss) = 121.3 kJ mol–1, HEA = –348.5 kJ mol–1,
UNaCl = – 757.3 kJ mol–1. By using these energy values in Eqn. 12.5.1.1, we get, Hf =
– 381.9 kJ mol–1. This calculated value can be compared with the experimental one, – 411
kJ mol–1. The calculation from the Born-Haber cycle shows that the formation of –

( )sNa Cl

is exothermic and it occurs so in reality.

Note 1 (Hess’s law and Born–Haber thermodynamic cycle dealing with the standard enthalpy
change): Hess’s law states that the standard enthalpy change (denoted by H0) of a process is the
sum of the standard enthalpy changes of the individual steps of the overall process. Thus in Born–
Haber cycle, we should strictly use the standard enthalpy values of all steps. Standard enthalpy
change denotes the change of enthalpy for a process/step in which the initial and final substances
are in their standard states.

The standard state of a substance at a specified temperature is its pure form at 1 bar pressure.
However, very often, the standard pressure is taken as 1 atm (= 101.325 kPa) instead of 1 bar
(= 100 kPa). The standard enthalpy change may be at any temperature depending on the condition at
1 bar pressure (e.g. H2O (s)  H2O (l), H0 (273 K) = +6.01 kJ mol–1; H2O (l)  H2O (g), H0

(373 K) = +40.65 kJ mol–1). However, conventionally, 298 K (i.e. 25°C) is chosen (if not mentioned
other temperature) for reporting the thermodynamic data.

Thus in Born–Haber cycle, strictly, the standard enthalpy values (denoted by H0) are to be
used as illustrated for the formation of CaBr2(s) in Scheme 12.5.1.2. However, for the sake of
simplicity, the superscript (0) has been omitted very often in this book to construct the Born–
Haber cycle.

Note 2 (Relation between the enthalpy values and the commonly used energy values in
different steps/processes): It has been mentioned that enthalpy is a thermodynamic state function
and its change is path independent. Thus in Born–Haber cycle, enthalpy values are to be strictly
used for all steps. In Scheme 12.5.1.1, ionisation energy (instead of ionisation enthalpy), electron
affinity (instead of the corresponding enthalpy value), have been used as their enthalpy values for the
sake of simplicity. Now let us examine whether the approximation is justified or not. It is illustrated
for  the ionisation process. Ionisation enthalpy (H1E) equals the so called ionisation energy (IE)
at absolute zero (T = 0 K). For the following ionisation process.



M(g)  M+
(g) + e(g), HIE(T) = Ionisation enthalpy at T K

= HIE(0) + 
0 0
    

T T

P PC dT IE nC dT

5
(see Sec. 8.12)

2
IE RT 

5
2PC R  (for a monoatomic gaseous species having the translational motions only).

HIE(298) is called the standard enthalpy of ionisation which differs from IE by 5
2 298R 

( 6.2 kJ mol–1), a negligible quantity compared to the IE value.
Similarly, the electron affinity value, lattice energy value, bond dissociation energy value,

etc. give their corresponding enthalpy values only at 0 K. In all such cases, the temperature
correction factor is quite a negligible quantity. This is why, these energy values are generally
used as their enthalpy values in thermodynamics calculations as illustrated in Scheme 12.5.1.1.
However, Scheme 12.5.1.2 illustrates the use of true enthalpy values (without the said approximation)
but the result does not differ significantly from the result obtained by ignoring the temperature
correction factor.

Note 3 (Definition of lattice enthalpy and energy): Standard lattice enthalpy (HL(298)) is given
by the standard molar enthalpy change for the conversion of the solid ionic crystal into the
constituent ions in the gaseous state.

MX(s)
–

( ) ( ) , +ve ( )   g g LM X H Endothermic process

HL becomes lattice energy (UMX) at T = 0 K as in the case of ionisation process. It has been
already mentioned that for the sake of simplicity, UMX may be taken as the HL.

Lattice enthalpy (HL) or lattice energy (U) may be also defined with respect to the following
process leading to the formation of solid ionic crystal from the constituent gaseous ions (as
illustrated in Scheme 12.5.1.1 and in Sec. 12.7.1).

–
( ) ( )g gM X  ( ) , – ve ( )  s LMX H Exothermic process

Both the concepts with proper signs are available in the text books. However, some authors
strictly refer to the endothermic process (i.e. positive energy term) corresponding to the break-up of
lattice. The positive sign (+) to express the lattice enthalpy or lattice energy is omitted from the
numerical value.

Note 4 (Thermodynamic feasibility determined by Gibbs free energy change not alone by
the enthalpy parameter): Born–Haber cycle allows to compute the enthalpy change of a particular
process but to determine the thermodynamic feasibility of a process, the Gibbs free energy change
(more correctly, the standard free energy change, G0 = H0 – TS0) is to be considered (i.e. G0 =
–ve for a thermodynamically allowed process). Hence to determine the thermodynamic feasibility,
both the enthalpy factor and entropy factor are to be considered. However, in the case formation of
solid ionic crystals from their constituents (as illustrated in Schemes 12.5.1.1, 2), the contribution of
entropy factor (specially at low temperature) may be ignored to determine the thermodynamic
feasibility of the process. Strictly, this approximation is valid at T = 0 K (where TS0 = 0). In fact, in
the formation of solid ionic crystal, S0 becomes slightly negative due to the formation of a highly
ordered ionic crystal. Thus, G0 becomes negative only when H0 becomes highly negative in
such cases.
 Thermodynamic criterion of spontaneity for a reaction and relationship between G and

G0:G0 denotes the standard free energy (standard state refers to 1.0 mol dm–3 concentration for
each reactant and product). For a reaction to go on spontaneously, G (i.e. change in Gibbs free
energy) is to be negative. G and G0 for the following reaction are related as follows:

0 [ ] [ ]
, ln

[ ][ ]
      C D

A B C D G G RT
A B



Thus G depends on the concentrations of the reactants and products and this contribution is
determined by the second term of the above equation. The criterion of spontaneity for a reaction
is G = –ve (irrespective of the sign of G0). The standard energy change (G0) and the
thermodynamic equilibrium constant Keq

0  (a dimensionless quantity) under the standard conditions
are related as follows:

0 0 0 0– ln , –ve for ln 1    eq eqG RT K G K

(Exotheromic process)

Scheme 12.5.1.2. Born–Haber cycle for the formation of CaBr2.

Illustration of strict thermodynamic convention: Calculation of lattice enthalpy (HL) or
lattice energy (U) of CaBr2 from the Born–Haber cycle.

The corresponding Born–Haber cycle for the formation of CaBr2(s) is illustrated in Scheme 12.5.1.2
where the standard enthalpy values (H°) have been used.
Standard state (denoted by superscript 0) conventionally refers to 298 K temperature.

0 fH  = standard enthalpy of formation of CaBr2 = –682.8 kJ mol–1

0
subH  = standard enthalpy of sublimation of Ca = 178.2 kJ mol–1

0
vapH  = standard enthalpy change of vaporisation of Br2(l) = 30.9 kJ mol–1

0
dissH  = standard enthalpy of bond dissociation of Br2(g)

 standard bond dissociation energy of Br2(g) see Sec. 10.1.2)
= 192.86 kJ mol–1

0
diss(H  – standard bond dissociation energy  2.5 kJ mol–1, see Sec. 10.1.2).

0
1EH  = standard enthalpy change during the ionisation of Ca(g) (i.e. Ca(g) 

2 –
( ) ( )2 )g gCa e 

= 5
1 2 2
  I I nRT

= (590 + 1145 + 5 × 8.31 × 298 × 10–3) kJ mol–1

= (1735 + 12.4) kJ mol–1


