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Structure, Bonding and Properties of
lonic Solids and Solid State Chemistry

12.1 CHARACTERISTIC PROPERTIES OF IONIC COMPOUNDS

(i) Complete Transfer of Electron(s) from One Species to the Other
The electrovalent or ionic bond is formed between the combining species through the complete
transfer of one or more valence electron(s) from one species to the other. By transferring the electron(s),
the species transforms into a cation while the other species by accepting the electron(s) transforms
into an anion. The electrostatic Coulombic attraction between the oppositely charged species (i.e.
cation and anion) prevails to hold the species. Examples:
—e
(@) NaCl: Na (1s* 2s* 2p®3s' ;ie. 2,8, 1) —> Na' (1s* 25* 2p%, i.e. 2, 8)
+e
Cl (15 252 2p% 352 3p°; ie. 2,8,7) —> CI (1s* 25* 2p® 35% 3p° , ie. 2, 8, 8)
Na" + CI” — NaCl (crystal)
—2e N +2e .
(b) MgO: Mg (2,8,2) ——> Mg*" (2,8); 0(2,6) ——> 0 (2,8)
Mg* + 0> —— MgO (crystal)
-2 +2
(c) CaFy: Ca(2,8,8,2) ——— Ca* (2,8,8); 2F (2,7) ——— 2F (2, 8)
Ca*" +2F — Ca*" (F), (crystal)

(i) Nondirectional Combining Force

The attractive force between the cationic and anionic species is purely electrostatic in nature and it is
equally probable in all directions. Thus the ionic forces are quite strong and omnidirectional while
the covalent forces are very much directional. The attractive Coulombic force within the ion pair is
given by, F'= q+q*/(4n80r2) where ¢ and ¢~ are the charges of the cation and anion respectively and
r stands for the interionic separation. In a solid crystal, g, stands for the permitivity of vacuum. The
attractive force extends throughout the lattice.

(iii) Physical State

Because of the omnidirectional nature of the ionic forces, the ionic compounds form three dimensional
solid aggregates of the cations and anions which are arranged in some well defined geometrical
patterns. Thus the electrovalent compounds form crystalline solids. They never exist as the isolated
molecules in contrast to the covalent molecules. At ordinary conditions, they remain as solids.

(iv) Electrical Conductivity

In the solid state, the ions remain in the well defined lattice points and they cannot move freely to
conduct electricity. But on fusion, the ions can move freely to carry electricity. In some cases, the
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2 Fundamental Concepts of Inorganic Chemistry

conductivity of the ionic solids may rise due to the crystal defects. When the ionic compounds are
dissolved in water, the ions become more free to move and as a result, the solutions are very good
conductors of electricity.

(v) Hardness and Brittleness

The ionic compounds are hard because of the omnidirectional strong electrostatic force extending
throughout the crystal but they are brittle. When an external pressure is exerted on the ionic crystal,
it may set up the anion-anion and cation-cation repulsions. Because of the repulsive forces, the
crystals break down. It explains the cleavage properties of many minerals.

(vi) Melting and Boiling Points

The reason behind the hardness can again explain the high melting and boiling points of the ionic
solids.

(vii) Solubility

The ionic compounds are generally soluble in polar solvents having high dielectric constants or
permitivities. It is known that the Coulombic attractive force holding the oppositely charged ions is
inversely proportional to the permitivity (¢) of the medium, i.e. F' oc 1/¢. The relative permitivities of
the different media are : air or vacuum (1), H,0 (82), CH;CN (33), NH; (25). Thus with the increase
of permitivity of a medium, the attractive force between the oppositely charged species decreases.
This is why, when an ionic compound is placed in water, the attractive force responsible for holding
the oppositely charged ions in the crystal lattice is significantly dropped to facilitate the breakage of
the crystal lattice. In general, a solvent with a higher permitivity is more promising to dissolve
the ionic solids.

The phenomenon can also be interpreted in terms of ion-dipole interaction. The energy required
to break down the ionic lattice is largely compensated through the hydration energies of the cations
and anions. The dipolar solvent molecules can solvate both the types of ions through the proper
orientation of their polar ends.

(viii) Isomorphism (Greek isos means equal and morphe means form)

Many pairs of ionic compounds are known to crystallise simultaneously in the same form and they
are referred to as isomorphous crystals (noted by E. Mitscherlich, a student of Berzelius). Such
isomorphous compounds can crystallise simultaneously from a solution to form the mixed crystals.
They can also form overgrowth. Some isomorphous pairs are given below :

Cu,S, Ag,S; KCIO,, KMnO,; ZnSO, . TH,0, MgS0,.7TH,0; NaNO,, CaCO; KMnO,, BaSO,;
KI10,, CaWO,; NiSO,.TH,0, NiPO;F.7TH,0; K,S0, . Al,(SO,), . 24H,0, (NH,),S0,.41,(S0,);.24H,0

The basic condition for the isomorphism is the similarity of the internal structure of the crystals
in all respects. It does not depend on the chemical properties and even also the total number of atoms
(e.g. last pair in the above given examples). The isomorphous crystals have similar unit cells with
almost the same dimensions, i.e., the same interfacial angle and axial ratio. But the crystals with
almost the same crystal dimensions are not necessarily isomorphous.

The detailed analysis of the isomorphous compounds reveals that for the isomorphism (characterised
by the mixed crystal formation and overgrowth), the following conditions must be satisfied.

(a) The two compounds must have the same type of formula to provide the same number of
lattice points (not necessarily the same number of atoms, the atoms can be replaced by
some suitable radicals to maintain the constancy of the number of lattice points).

(b) The size of the corresponding constituent units must be comparable.
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(c) The stereochemical orientation of the corresponding constituent units in the compounds
must be identical.

(d) The polarising power and polarisability of the corresponding constituent units in the
compounds must be comparable.

(e) The crystals should have the same type of crystal structure (i.e. the same type of unit cell)
with the comparable crystal dimensions (i.e. interfacial angle and axial ratio).

(f) The molar volume of the compounds should be comparable.

The fulfilment of the above conditions can be illustrated through the following examples.

NaNO; and CaCO; (calcite): Molar volume (in cm’ mol™) of NaNO; = 37.4; Molar volume of
CaCO5 = 36.9; ry,- = 95 pm; reer = 99 pm. Both CO32_ and NO; are planar where three oxygen
atoms are at the corners of an equilateral triangle. Both the central atoms (i.e. C and N) are sp”
hybridised. The axial ratios of the unit cells are also comparable. Hence NaNO; and CaCOj; are
isomorphous.

NaNO; and KNO;: r, . =95pm<r,, =133 pm. Thus, the relative size ratio, r,/r_is different
for NaNO; with respect to that of KNO;. Hence these are not isomorphous.

BaSO, and KMnO,: Vot = 135 pm, Ter = 133 pm. Both MnO, and SOf* are tetrahedral and
their sizes are also comparable. The axial ratios of the unit cells are also comparable. Hence, these
are isomorphous.

KNO; and KCIO;: CIO; is pyramidal (sp? hybridisation of CI) while NOy is planar (sp®
hybridisation of N'). Hence, they are not isomorphous.

RaSO, and BaSO,: They are isomorphous and they can be isomorphously coprecipitated. From
the standpoint of ionic radii, Ra*" (152 pm) and Ba*" (143 pm) are close and they can produce
isomorphous crystals. Ca>" (106 pm) is much smaller and CaSO0, is not isomorphous with RaSO,.
From a solution having a very low concentration of Ra** (ie. [Ra2+] [SOff] < Ksp ), it can be
coprecipitated with BaSO,. By using this carrier or collector technique, Ra*" can be separated even
when Ra*" concentration in solution is exceedingly small.

Note : Isomorphous crystals lead to coprecipitation or induced precipitation which is important
in analytical chemistry (c¢f. Sec. 14.17.3).

(ix) Variable Electrovalency

Generally the d and fblock elements show variable valencies. For the d block elements (i.e. transition
metals), the d levels remain incompletely filled for which the successive ionisation potentials do not
increase too rapidly (see Sec. 8.12.2). The energy required to raise the oxidation state from a lower
oxidation state can be compensated through the higher lattice energy (or, solvation energy in solution).
This is why, under the identical conditions, the existence of more than one stable oxidation state
becomes energetically possible. Thus the occurrence of Fe? and Fe*™; Cu™ and Cu**; Co** and Co™*;
etc. are well documented. The heavier congeners (i.e. 4d and 5d series) show a marked tendency
towards the higher oxidation state (see Sec. 8.20.3 for relativistic effects). For example, though
both the +2 and +3 states are known for Co, for RA and Ir the +3 state (or, higher state) is more well
documented; stability of +4 state runs as Pt > Pd > Ni; Cr?* is the most stable state for Cr while both
Mo and W possess the stable +6 state. To explain such variable oxidation states both the lattice
energy (i.e. Madelung energy) and ligand field effects are to be considered.

To consider the effect of ionisation potentials on the variable oxidation states, let us consider, Cu,
Ag and Au which display the common states +1 and +3; but the stability of the +3 state increases in
descending the group ( ¢f relativistic effects, Sec. 8.20.3). On the other hand, the stability of +2
state decreases in descending the group. The ionisation energies (kJ] mol™) of Cu, Ag and Au are
given in Table 12.1.1.
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Table 12.1.1. lonisation energies of Cu, Ag and Au

Tonisation energy (kJ mol™")

Element Ist 2nd 3rd Ist + 2nd + 3rd Ist + 2nd
Cu 745 1959 3551 6255 2704
Ag 731 2074 3361 6166 2805
Au 889 1939 2943 5771 2828

Thus it is evident that to attain the trivalency (+3), the less energy is required for Au compared to
Cu and Ag while for the +2 state, Cu is more favoured compared to Ag and Au. However to explain
the relative stabilities of the states, consideration of the ligand field effect is extremely important.
For the present system, the Jahn-Teller effect is extremely important. The ninth electron (d°-system)
in d iz _) orbital (z-out distortion) is destabilised maximum in Au(II). It favours the oxidation of
Au(Il) to Au(I1l) compared to oxidation of Cu(Il) and Ag(Il).

Similar arguments also hold good for the variable valencies in the lanthanides and actinides.

Lastly, the inert pair effect (see Sec. 10.3) in the just post-transition elements also leads to the
variable valency.

12.2 DIFFERENT TYPES OF IONS AND ELECTRONIC CONFIGURATIONS OF THE IONS
INVOLVED IN IONIC BONDING

(i) Inert Gas Structure

The ions tend to have the inert gas configuration, ns’np® (exception : Be?*, Li* and H~ of 1s* helium
gas structure; H' , no outer electron). The configuration is attained by the elements (i.e. metals) of
Gr1(1),11(2)and III (13) by the way of complete loss of their valence electrons and by the elements
(i.e. nonmetals) of Gr VII (17), VI (16) and V (15) by the way of capturing 1, 2 and 3 electrons
respectively. Some representative examples are shown below.

H —— He (15%) «—Li", Be*"
N>, O, F —— Ne (2s%2p%) «—— Na*, Mg**, APP*
§¥, CI"—— Ar (3s*3p%) «——K*, Ca**, Sc*, Ti*
Se*", Br —— Kr (4s*4p®) «——Rb", Sr**, Y**, zr**
Te*, - — Xe (55°5p°) «— Cs*, Ba*', La*>", Ce*
At —> Rn (65*6p®) «— Fr", Ra*", Ac*", Th**

(ii) The Eighteen Electron Structure (i.e. pseudo noble gas configuration)

The anions (exception : Au~ in CsAu, Au~ — 55*5p°5d"'%) do not have the 18 electron structure, but
it is frequently observed for the cations of the post-transition elements. The post-transition elements
of Gr1(11), I (12), III (13) and IV (14) lose their outermost electrons 1(ns'), 2(ns?), 3(ns’np") and
4(ns*np?) respectively to attain the electronic structure, (n — 1)s*(n — 1)p°(n — 1)d'°. Some examples
are:

Cu', Zn*', Ga**, Ge*" — 35?3p°3d'",

Ag®, Cd**, In**, Sn*" — 45%4p%4d';

Au®, H*', TP", Pb* — 5525p%54"°.
In this category Cu, Ag and Au show the variable oxidation states of +1, +2, +3 characterised by
18, 17 and 16 outermost electrons respectively. The general stability orders are [see Sec. 12.1 (ix)] :

Cu** > Cut > Cu’'; Ag" > Ag™; A’ > Au™ > Au®*.
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It shows that the attainment of just outermost 18 electron structure cannot assure the stability
necessarily. It is proposed by some authors that the nuclear charges of these species are not sufficiently
high to bind the outermost 18 electrons firmly. It is highly pronounced (see Table 12.1.1) in the case
of Au which leads to +3 state as the most stable one. But Zn>", Cd*", Hg*", etc. attain the stability
with the 18 electron structure. Thus the explanation is not correct. The relative stability of such
variable oxidation states can be rationalised by the simultaneous consideration of the endothermic
effect (i.e. ionisation energy) and the exothermic effects (i.e. lattice or solvation energy and ligand
field stabilisation energy).

For the heavier post-transition elements, due to the inert pair effect (see Sec. 10.3), instead of the
18 electron structure, the 18, 2 structure, i.e. (n — 1)s*(n — 1)p®(n — 1)d"%ns?, is preferred. Some
representative examples are : 7/, Pb*", Bi*" — 2,8, 18,32, 18, 2; Sb** — 2,8, 18,18, 2.

(iii) The Transition and Inner-transition Metal lon Structure

The transition metal ions are characterised by (1 — 1)s*> (n— 1)p® (n — 1)d'~. The incompletely filled
d-level shows the variable valency because of the small difference in stability of two or more oxidation
states for a particular metal. For example :
Fe (3d%s?) — Fe** (3d%), Fe** (3d°); Co (3d74s?) — Co** (3d"), Co*" (3d%); etc.
For the inner-transition metal ions (i.e. lanthanides and actinides), the incompletely (n — 2)ffilled

level leads to the variable valency. The electronic configuration of the inner-transition metal ions is
given by (n —2)d"% (n — 2)f"™13 (n — 1)s* (n — 1)p®, (n = 6 for lanthanides, n = 7 for actinides).

(iv) Polyatomic lons

Many covalently bonded polyatomic species can act as the constituent ions in some ionic crystals.
Such anions are: CO;, NO;, BF, , BeF}, MnO, , ClO, , CrO; ,SO; ,[Fe(CN), I+, etc. and
such cations are: NH, ,[Cu(NH,),]*",[Co(NH;), ", etc.

(v) lons with Irregular Configurations

There are some polynuclear cluster species which cannot be classified into any particular group.
2+ 2+
Examples: Hg; , Ge; , etc.

12.3 ELECTRON DENSITY (ED) MAPS AND IONIC RADII
12.3.1 lonic Radii from X-Ray Electron Density Maps

The X-ray studies can precisely determine the internuclear distance, but it cannot estimate directly
the size of the individual ions which is governed by the radial distribution probability of the outermost
electrons. But it can record the electron density maps (ED maps) which arise due to the scattering of
the X-rays by the electrons. From the ED maps, it is observed that the electron density gradually falls
from the nucleus of an ion with the increase of
the distance along the internuclear axis of the
adjacent ions and at a particular distance it falls
to a minimum value then it rises gradually as
the distance towards the nearest next nucleus :
decreases (see Fig. 12.3.1.1). Now we can = *.-*—"‘“‘.—“ = s i
assume that at the point of minimum electron I‘Eﬂ I Me-
Thos we ey definean fonic radius ot an on as F19: 12311 Elcton donsity (ED) maps in NaF
crystals (variation of electron density around the
the distance from its nucleus to the point of nuclei).

Electron density
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minimum electron density along the line joining the centres of the adjacent two ions (i.e. generally
cation and anion). Some representative values of ionic radii obtained from X-ray electron density
maps of alkali halides are given in Table 12.3.1.1. Here it is worth mentioning that the ED map very
often passes through a very broad minimum instead of a sharp minimum and it complicates to
parametrize the size of ions.

Table 12.3.1.1. Some representative ionic radii derived from X-ray
electron density maps

Ion Ionic radius Ion Ionic radius
ry (pm) r_ (pm)

Na* 117 cr 164

K 149 Br~ 180

Rb* 163 I 205

Cs* 186

In comparison with the ionic radii obtained from other methods (say, Pauling’s method, see
Table 12.3.2.1), these values are different.

12.3.2 lonic Radii from Other Methods

In the crystals, the ions are at an equilibrium distance where the attractive and repulsive forces
balance each other. This equilibrium internuclear distance can be easily obtained from the X-ray
studies. The internuclear separation (R,) is the sum of the radii of the involved ions, i.e. Ry=r, + r..
Thus if the radius of one ion is known, then by subtraction, the radius of the other ion can be obtained.
To solve the problem, it is assumed that the ionic radius of an ion is its own characteristic property
and it is constant and it does not depend on the neighbour with which it exists. This approximation
is at least grossly supported from the experimental fact. For example, the difference between the
radii of K" and Na" ions derived from the measurements of four different alkali halides is fairly
constant.

g = I'nat = Rory = Rovary = 35 P Rykery = Rovacyy = 35 pm;
Rokary = Rogvasry = 32 pm; Rokpy — Rovgry = 30 pm
Now to start the process to compute the ionic radii, it is required to have the knowledge of the
value of ionic radius of at least one. Then we can go for the others by using this value. Hence, it is
important to determine the ionic radius of the starting one by an independent method. The validity or
accuracy of the computation process for the other ions depends on the accuracy of the starting value
determined separately. Some methods developed by different workers are discussed below.

(i) Lande’s Method : Lande’ (1920) started with the crystal of Lil in which the size of the anion
is much larger compared to that of the tiny cation, Li". Here it is assumed that the large sized
anions touch with one another. Thus half of the internuclear separation between the adjacent
anions gives the value of ionic radius of the anion, i.e. r_= % Ry = % (426) pm =213 pm.

By using this value for /~, the ionic radius of K™ is evaluated as,

r RO(K+_1,) - =(353-213) pm = 140 pm.
By continuing the process, ionic radii for the other ions have been determined.

(ii) Bragg’s Method : Bragg in 1927 assumed the radius of O~ as half of the internuclear distance
of the adjacent oxide ions in silicates. Thus Bragg started with the silicate in the same way as
followed by Lande” in the case of Lil. Thus, ro = 3 Ry o) insilicate, = 5 (270) pm = 135

pm. By using this value, Bragg and West computed the ionic radii for more than 80 ions.

=



Structure, Bonding and Properties of lonic Solids and Solid State Chemistry 7

(iii) Molar Refractivity Method : Goldschmidt’s Radii : By using the Lorentz-Lorenz equation
(see Eq. 12.3.2.1), the molar refraction (R;,) can be determined experimentally.

n -1 M

n+2 P
where 7 is the refractive index of the substance of molecular mass M and density p. R, is an
additive property of the constituent atoms or ions and bonds. Thus, for the ionic compounds,
the refraction by the constituent individual ions can be determined.
The molar refraction has the dimension of volume (= M/p). Thus if R, is the ionic refraction
by the i-th ion, then the radius (7;) of the ion can be calculated as follows :

Ry ..(123.2.1)

r;=CRy7 .(123.2.2)
where C is the proportionality constant. By using the above relation, for two different ions, we
have:
1/3 173
il = {—RMU) } or, o0 (12.32.3)
iy ? STE 173 ..(12.3.2.
Ry T Ryt R

Thus if the ionic refractions of the individual ions and the corresponding interionic seperations
are known, then by using Eqn. 12.3.2.3, the ionic radii of the constituent ions can be evaluated.
This method was developed by Wasastjerna in 1923.

By using the interionic distances in the alkali halides and alkaline earth oxides, the ionic radii
for F~and O*~ are found to be 133 pm and 132 pm respectively. Goldschmidt (1929) utilised
these values to compute the ionic radii for a number of ions. These values are very often
referred to as Goldschmidt’s ionic radii.

(iv) Pauling’s Method and Pauling’s Univalent Radii : Now we can recall the quantum mechanical
analysis of the hydrogen like system for which the radius of the species having the electron in
the outermost principal quantum number # is given by :

r,= n*h*(4nme*Z), in CGS unit; r,= sonzhz/(nmezZ), in SI unit;

ie. r,=Cn*Z .. (12.3.2.4)
where, C is constant, m = mass of an electron, e = charge of an electron, Ze = nuclear charge.
For amany-electron species, the radial distribution function of the outermost electron determines
the size of the ion and such electrons are attracted towards the nucleus. In a polyelectronic
system, because of the screening effect, the outermost electron experiences the nuclear charge
(Z— S)e, where S is the screening constant, which can be evaluated by the Slater’s rule (see
Sec. 4.2.4). Thus the radius of an ion can be expressed as :

cn® o’

fion = 7_8 = Z*
For the isoelectronic species, n (the outermost principal quantum number) is identical. In each

of the compounds, Na"F~, K" CI", Rb"Br and Cs "I, the constituent ion pairs are isoelectronic.
For such isoelectronic ion pairs we can write :

zZ

...(12.3.2.5)

e

anion_S _ 4
VA -S *

cation antion

anion

...(12.3.2.6)

7y
r

Cn? and S are identical for the isoelectronic species, because these depend only on the electronic
configuration. The constant Cn? is different for different inert gas configurations. For the ions
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of neon gas configuration (e.g. 0>, F~, Na*, Mg*", A", etc.), its value is 614 pm. The value
of Cn? for the argon gas configuration (e.g. K", CI", Ca®", S*~, etc.) is 1036.5 pm. Similarly it
can be calculated for other species also. Eqn. 12.3.2.6 reduces to,

Zpin =S A

_ anion _ anion 12327
A 87 er ..(123.2.7)

cation anion cation

ro.
cation

Teation + Tanion

*

VA

]"Jr _
- % *
r+r 74z

ie.

The internuclear distance (R = 7.agion T Fanion) €alt be obtained from the X-ray studies and the
shielding constant S can be obtained by using the Slater’s rule for the lighter elements, and
from the values of molar refraction for the heavier members. Thus, 7, and »_can be easily
computed.

Let us illustrate the process for Na ' F~ in which the isosteric species are having the electronic
configuration, 1s*25*2p%. The shielding constant S, for this configuration is obtained by the
Slater’s rule :

§=7x0.35+2x0.85=4.15

The interionic separation is 231 pm, i.e. ry,+ + ¥ =231 pm. Now by using Eqn. 12.3.2.7, we

get:
Tt LA 9405 48
ro.+r_ Z . +Z —2x415 11+9-830 11.70
Na F Na F
or, - =95.7 pm and r_ =1353

Note on calculation of Z* : In calculating S for the isosteric species Na* and F~, some
authors consider all 8 electrons in the valence shell instead of 7 electrons shielding the last
valence shell electron. It leads to :
S=8x0.35+2x0.85=4.50,and Z = 6.5 (for Na*), and Z" = 4.5 (for F").

Thus the Z* values obtained are very close to those of Pauling's values (cf. 6.48 and 4.48 for
Na" and F~ respectively). This is the justification for considering all the 8-valence electrons,
but it definitely does not obey the Slater's rule. However, in this method, the calculated
values: r, =94.5 pm and »_= 136.5 pm do not differ significantly from the values obtained
by using the Slater's rule strictly.

In the case of K*CI, the ions are isosteric having the electronic configuration 15%2s?2p%3s°3p°.
The shielding constant for these isosteric ions is obtained as follows :

S=7x035+8x0.85+2x1.0=245+6.80+2=12.25
By using the value, rg+ + rop = 314 pm, we get :

T Z,--W2 171125 575

ro4r  Z +Z —2x1125 19+17-225 135
K Cl K Cl

or, g+ =133 pm and - = 181 pm.

(v) Pauling’s Crystal Radii : Now let us try to apply the method utilised in computing the ionic
radii of 1-1 salt (where |Z'| = |Z | = 1) in the cases where the cationic and anionic charges are
not unity. Let us take the case of CaS which has the NaCl structure. The electronic configurations
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of Ca®" and §>~ are : 15%25°2p%35?3p® (i.e. Ar configuration). Thus, the ions are also isoelectronic
with K" and CI". Hence we can write :

ros /rK+ :(ZK+ —S)/(ZCa2+ -3)

_19-11.25

T 20-11.25

Using the value of rg+ obtained from KCI, we get, rc,2- = 117 pm.

Similarly, by using the relation, re-/rg = (Zg+ —12.25)/(Ze- — 12.25), we get, re- =219 pm.
These values can also be evaluated by using the constant Cn? (see Eqn. 12.3.2.5) which is
1036.5 pm for the argon gas configuration.

Thus we get the calculated internuclear distance, 7,2 + re-= (117 +219) pm =336 pm. This
value is much larger than the experimentally observed value 284 pm. Thus the process is
erratic for the polyvalent ions while it is good for the uni-univalent systems. In fact, radii
calculated for the polyvalent ions in this way are referred to as their hypothetical univalent
radii when the ions act hypothetically as the univalent ions in the Coulombic field.

To clarify the above drawback, we are to consider the Born-Lande equation (see Sec. 12.7.1)
in which it is found that the equilibrium internuclear distance (R,) is related as follows.

_( nBang, jl/ml)
O \uztz e

..(123.2.8)

It shows that the internuclear equilibrium distance (R,) is proportional to (1/Z" Z~ Y =1 for
which the Born exponent () is the same for the isosteric species, i.e.

Ry oc (1/Z° Z)Vn =D ...(12.3.2.9)
Thus if for the uni-univalent salt, the interionic separation is R,y and R, is the separation
for the i —j type lattice (i.e. |Z" | = i, |Z| =), then they are related as :

1 1/(n-1)
Rom) =D[mj ...(12.3.2.10)
1 U(n—1)
RO(ij) =D[;) ...(12.3.2.11)
nBame, 1= =1
where, D= 2
Ae

If, n and B are the same then we can write :

R, .
0(i/) :(l/ij)l/(”—l) (123212)
0(11)

Thus by using Eqn. 12.3.2.10, for i — j type lattice, we get the univalent ionic radii for the
multivalent ions. These are the hypothetical radii for the multivalent ions, when they retain
the electronic configurations but act in the Coulombic field as the univalent ions. Thus Eqn.
12.3.2.10 leads to the real values only for the 1-1 type lattice structures. However, by using
Eqns. 12.3.2.11-12, we can calculate the real ionic radii for the polyvalent ions by using their
hypothetical univalent radii obtained from Eqn. 12.3.2.10.

For example, the isosteric species K, CI-, Ca*" and S*" are having the argon configuration for
which the Born exponent is : n =9 . The internuclear distance of the hypothetical uni-univalent
CaS is 336 pm, i.e. Ry 1y = 336 pm. Therefore, Ry, 52y = 336 (1/4)"0 "D =336 x 0.84 =
282.2 pm. This calculated value is in good agreement with the observed one, 284 pm.
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For calculating the ionic radii of the polyvalent ions, we can proceed as follows :

R =Roany x @)1 -..(12.3.2.13)
From Eqn. 12.3.2.13, taking i =, i.e. Ry;, = 2r; and Ry ) = 2y, we get :
ry=r @y 20D ..(12.3.2.14)

where r; = crystal field radius for the i-valent ion, and , = univalent radius of the i-valent ion.
Let us apply Eqn. 12.3.2.14 for Ca*" and §>~ for which n =9, F1(cq*) = univalent radius of Ca*
=117 pm, and r(5> = 219 pm

Therefore, 7¢,2+ = ionic radius of divalent Ca*" = 117 x (2) ¥ =117 x 0.84 = 98.3 pm; and,
Tysry = 219 % 0.84 = 184 pm.

The best value obtained in this method for the radius of O*~ ion is 140 pm. Using this value,
Pauling estimated the ionic radii for most of the common ions. These are very often referred to
as Pauling’s ionic radii. These are given in Table 12.3.2.1 for some representative ions.

Table 12.3.2.1. Pauling’s ionic radii (values in pm) for some representative ions (6:6 coordination system,

rjr_=0.7)

Ions of main group elements
Lit 60 BT 31 H 208
Na* 95 Mg* 65 APt 50 0 St 41 o* 140 F 136
K 133 Cd®" 99 Ga®" 62 Ge*t 53 s 184 cr 181
Rb" 148 ST 113 WYt 81 sn** 71 TIT 144 Se 198 B 195

Cs* 169  Ba*" 135 TPT 95 Pp*T 84 Pb*T 120 Te 221 I 216
Transition metal ions*
Ti*" 68 73" 76 Mn** 80 Cut 9 Zn** 74
i 80 Fe** 53 Fe** 75 Ag® 126 cd* 97
Ce** 101 crt 55 Co* 72 Au® 137 Hg** 110
Co>" 63 Ni%* 69

* value largely depends on the spin state, i.e. high spin or low spin state.

(vi) Yatsimirskii’s Thermochemical Radii : The methods already discussed are not suitable for

the polyvalent ions suchas CN ™, C ol , SOf ~, BF, , etc. The problem is further complicated
in these cases because most of the polyvalent ions are nonspherical in shape. But it is very
often required to know their ionic radii for calculating the lattice energy of the systems involving
such polyvalent ions.

To solve the problem, Yatsimirskii developed a method to calculate the ionic radii for such
species from the lattice energy of the compounds containing the species by using the standard
equations such as Born-Lande equation (see Eqns. 12.7.1.13-15), Kapustinskii equation
(see Eqn. 12.7.4.1), etc. From such equations the interionic separation is obtained. Then if the
radius of one of the ions is known, the radius for the other ion can be obtained. For example, in
the case of KNO,, the radius of K* is known and hence from the knowledge of interionic
separation, the radius of NO; can be estimated. Some representative values are given in
Table 12.3.2.2.

Except for the perfectly tetrahedral ions (e.g. SOf_, MnO,, CrOf_ s BeF42_ , BF, ,CIO, , etc.)and
octahedral ions (e.g. SiF62*, AIF™, PFy , etc.) which tend to adopt the spherical (at least pseudo-
spherical) symmetry, the thermochemical radii are of no use. However, these values can be used
approximately in the thermochemical treatments.
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Table 12.3.2.2. Yatsimirskii's thermochemical radii adjusted to be
compatible with Shannon's crystal radii for some representative polyvalent

ions.
Ion Thermochemical lon Thermochemical
radius (pm) radius (pm)
NH, 151 OH 119
CH,CO, 148 cN 177
BF, 218 NOy 165
oy~ 164 NO; 178
Cro; 242 Clo, 226
MnO, 215 Cloy 157
No. 244 BrO; 140
N, 181 10y 108

12.3.3 Shannon’s Crystal Radii

Shannon has considered all the factors such as oxidation state, crystal structure, covalent-ionic
interaction, coordination number (C.N.), crystal vacancies and distortions, etc. which influence the
ionic radii. He has defined a set of crystal radii for different coordination numbers based on P =
124 pm (C.N. =4), 126 pm (C.N. 6), = 128 pm (C.N. = 8).

12.3.4 Comparison among Shannon’s Crystal radii, Goldschmidt’s Radii and Pauling’s Radii

The basic principles of these methods have been already discussed. Goldschmidt started with the
ionic radius of 0%~ as 132 pm while Pauling started with the value 140 pm for O*~. Except for A, the
differences in the values are not remarkable (see Table 12.3.4.1).

Table 12.3.4.1. Comparison among different types of ionic radiii

lon Shannon’s Goldschmidt’s Pauling’s | Ion Shannon’s Goldschmidt’s  Pauling’s
crystal radii  value (pm) value (pm) crystal radii  value (pm) value (pm)
(rm)
H 154 208 B>t 59 34 31
F 119 133 136 Mg* 86 78 65
cr 167 181 181 Ca** 126 106 99
Br~ 182 196 195 St 132 127 113
I 206 220 216 Ba** 149 143 135
0> 126 132 140 AP 68 57 50
e 170 174 184 St 89 83 81
Li 90 68 60 P 104 106 93
Na* 116 98 95 Si** 54 39 41
K 152 133 133 Ti* 75 64 68
Rb* 166 149 148 Zt 86 87 80
Cs* 181 165 169 Ce*t 101 102 101

The ionic radius for H™ is astonishingly high. This high value appears due to the presence of a
single charge in the nucleus which weakly binds the two outer electrons. Besides this, the electrons
repel strongly each other and screen each other from facing the nuclear charge.

It is interesting to note that in the alkali hydrides, the Pauling’s high value for A is never attained
(see Table 12.3.4.2) and it gradually increases with the increase of electropositive character of the
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alkali metal. In other words, with the increase of covalency (i.c. the increase of anion polarisation
by the cation), the ionic radius for H- decreases. The value reported by Goldschmidt is the
crystalographic value obtained for CsH.

Table 12.3.4.2. Apparent radius of H~ in alkali metal hydrides.

Compound Roor - ry—=Ro—rys
(pm) (pm)

LiH 204 126

NaH 244 146

KH 285 152

RbH 302 153

CsH 319 154

The nonattainability of the high value for H calculated by Pauling is due to the easy compressibility
of the diffuse A~ in which the electrons are loosely bound and a certain degree of covalency (which
cannot be avoided for such a polarisable anion) in the M—H bond. With the increase of
covalency, the radius of an anion decreases. The effect of covalency on the radius of A~ is nicely
reflected (see Table 12.3.4.2) in the alkali metal hydrides. In LiH, the covalency is maximum and
hence the ionic radius of A~ is minimum in LiH.

Compared to the traditional ionic radii, the Shannon’s crystal radii are better to represent
the reality. The Shannon’s crystal radii take care of partial covalency present in the systems and
these ionic radii are generally larger for the cations and smaller for the anions than the traditional
ionic radii.

12.4 FACTORS AFFECTING THE IONIC RADII

(1) Principal quantum number for the outermost electrons : In general, we have the relation
(see Eqn. 12.3.2.4),
Fion = Cn*/(Zigy — S) = Cn*IZ;,

where C is a constant and 7 is the principal quantum number for the outermost electrons. Thus
with the increase of n, the radius increases. But we should simultaneously consider both the
factors n and Z*. If Z* remains more or less constant then the radius increases with the # as in
the alkali metal ions and nonmetals (specially away from the transition metals) of Gr VI (16),
VII (17). But if both n and Z" increase simultaneously as in the heavier transition metals, then
the variation of ;,,, with the n is not so marked. These aspects have been discussed in detail in
discussing the periodic trends of radii of the ions (see Sec. 8.10).

Li" (90 pm) < Na* (116 pm) < K" (152 pm) < Rb* (166 pm) < Cs* (181 pm) (Shannon’s
values)

F~ (119 pm) < CI" (167 pm) < Br~ (182 pm) <[ (206 pm) (Shannon’s values)

Hydrated ions vs. Bare ions
The smaller bare ions are more hydrated (i.e. larger hydration sphere, see Chapter 11, Vol. 2)
because of their higher electrical field intensity compared to the larger bare ions. Thus size sequence
of the hydrated ions very often opposes the size sequence of the bare ions.
Size of hydrated ions : Li* > Na" > K" > Rb*
Size of bare ions : Li" < Na" <K' <Rb"*

(i1) Charge on the ion and nuclear charge to number of electron ratio : With the increase of
positive charge (more correctly, the effective nuclear charge, Z') on the cation (retaining the
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same principal quantum number for the outermost electrons whose radial distribution function
governs the size of the ion), the outermost electrons experience an increased attraction towards
the nucleus. Thus with the increase of positive charge of the cation, there is a shrinkage in
the size due to the increase of the nuclear charge/electron ratio.
Fe** (75 pm) > Fe** (53 pm); Pb** (120 pm) > Pb*" (84 pm);
Mn** (80 pm) > Mn>" (66 pm) > Mn*" (54 pm).
These are the Pauling radii.

o Corresponding covalent radii vs. ionic radii : The covalent or atomic radii are always larger

than the cationic radii. For examples (Pauling’s value) :
Li (152 pm) > Li* (60 pm) ; K (231 pm) > K" (133 pm); Ba (217 pm) > Ba*" (135 pm).

It occurs so, because in these cations, the outermost principal quantum number decreases
by unity compared to the neutral species. Besides this, the enhanced positive charge on the
cationic species also favours the size shrinkage.
For the anions, an increased negative charge increases the electron-electron repulsion and
decreases the effective nuclear charge experienced by the outermost electrons and as a result,
with the increase of charge on an anion, the size increases due to decrease of nuclear charge/
electron ratio. This is why, the anionic radii are larger than their corresponding covalent or
atomic radii. For examples (Pauling’s value) :

CI- (181 pm) > CI (99 pm); O* (140 pm) > O (66 pm); S*~ (184 pm) > S (104 pm).
Here it is worth mentioning that the increase of anionic charge contracts the interionic
cation-anion separation due to the increased Coulombic interaction. This fact tends to
introduce a shrinkage in the anionic radius with the increase of the anionic charge. This
aspect will be illustrated in the case of isosteric anions (see Table 12.4.2).

e Lanthanides and actinides : By considering the effect of Z" and relativistic effect, the lanthanide
and actinide contractions have been explained in Sec. 8.9.

La** (117 pm) > Nd** (112 pm) > Gd** (108 pm) > Ho>* (104 pm) > Lu** (100 pm)
—— Increasing trend of Z" along the period from left to right

e Halide vs. halate : In this connection, it is interesting to consider the trend of ionic radii of

the halides in comparison with that of their oxyanions.

I (206 pm) > Br~ (182 pm) > CI” (167 pm) (Shannon’s data for C.N. = 6, an effect

of the principal quantum number of the outermost electrons)

while, ClOy (157 pm) > BrO; (140 pm) > JO; (108 pm) (thermochemical data).
It is not fully justified to compare the thermochemical radii of the halate ions with the ionic
radii of their corresponding halides, but still, the reverse trend for the two series is really
interesting. In the halates, the central atom is in +5 oxidation state. For the heavier congeners
of X', presence of low shielding d- and f-electrons leads to more effective nuclear charge
experienced by the electrons at the periphery.

o Isosteric species : Now let us consider the effect of charge on the ionic radii among the isosteric
species having identical extranuclear configurations. Two factors work. (a) For the cationic
isosteric species, the ionic radius decreases rapidly with the increase of positive charge due to
increase of nuclear charge/electron ratio (Table 12.4.1). This is in conformity with the prediction

from the relation, r,,, = Cn*/(Z,,,, — S) (for the isosteric species Cn? is constant). (b) In addition

to the above factor, the increased cationic charge attracts the coordinating surrounding anions
more closely resulting a shrinkage in the interionic separation and hence in the ionic radii.

Thus the two factors work in the same direction to decrease the ionic radius.
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Table 12.4.1. lonic radii of some isosteric cations

Ion :

]\[a+ 1\4g2Jr Al3+ Sl'4Jr K Ca2+ SC3+ Ti4+ Au+ Hg2+ Tl3+ Pb4+

Electronic configuration « [He]2s22p°—— | « [Ne]3s23p°——— | « [XeJ4f'*5d' 0 —

Total no. of extra-nuclear electrons| «—10—"——> | ¢«— 18— ——> |«—78—«———
Units of nuclear positive charge 11 12 13 14 19 20 21 22 79 80 81 82
Radius (in pm) (Pauling’s value) 95 65 50 41 133 99 81 68 (137 110 95 84

Ry=(r.+r);and, R o [
AV

Now let us consider the isosteric anionic species (see Table 12.4.2). It is evident that with the
increase of the anionic charge, the anionic radii change but not so markedly in contrast to the
isosteric cationic species. The fact can be rationalised by considering the two opposing factors.
(a) The increased electron density reduces the nuclear charge/electron ratio, increases the
electron-electron repulsion and decreases the effective nuclear charge to be experienced by
the outermost electrons. These factors increase the ionic radii. (b) But due to the increased
anionic charge, the Coulombic attraction between the cation and anion increases and
consequently the interionic separation shortens. It leads to a shrinkage in the anionic radii.
This fact is also concluded from the Born equation (see Sec. 12.7), i.e.

1

1/(n—1)
j (¢f.Eqn.12.3.2.8);and r, = 1;(i)) >, (¢f Eqn. 12.3.2.14)

Table 12.4.2. lonic radii of some isosteric anions

Ion :

N3 o0+ F | P N Cr | S~  Br

Electronic configuration: « [He]2s%2p°—— | « [Ne]3s¥3p*—— | « [4r]3d"%4s?4pS——

Total no. of extranuclear electrons: | «—10——mMmm—— | «—18——— | «—36—————
Units of nuclear positive charge: 7 8 9 15 16 17| 34 35
Radius (in pm) (Pauling’s value): 170 140 136 | 212 184 181 | 198 195

(ii1) Influence of coordination number, i.e.

Because of the two opposing factors,

the ionic radius does not change so 160 -
remarkably with the change of charge 140 -
on the isosteric anions. 1204
100 +
crystal geometry : With the increase of
coordination number, the interionic
separation and consequently the ionic

radius increases. It is due to the fact that 40 6 ' 8 0 12 1. 4
the more the number of surrounding Nuclear charge ——»

ions, the less is the share of the attrac-
tion to be experienced by each of the
oppositely charged ions. In addition to
this, it can be said that with the increase of coordination number, to avoid the steric hindrance
among the coordinating or surrounding ions, they tend to keep themselves away from the
central ion. For example, if 8 C/” ions instead of 6 CI” ions are to coordinate the central ion,
e.g. Na', then the CI ions in the 8 coordination system cannot approach towards the Na" ion
up to the distance as attained by the C/” ions in the 6 coordination system. If we want to place

— lonic radius (pm)

Fig. 12.4.1. Variation of ionic radii with the nuclear
charge of the ions of electronic configuration of neon.
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the 8 CI™ ions at the same distance as in the 6 coordination number, then there will be a severe
repulsion among the CI™ ions due to the steric hindrance. This is why, the interionic separation
between the adjacent opposite ions always increases with the increase of the coordination
number.

The fact can be quantitatively supported by the Born equation (see Sec. 12.7) which leads to :

1(n—1) 1/(n-1)

Ry=r, +r = (%} - [%} (B/4)" D
AZ"Z e Z'Z e

From the above equation, it is evident that the interionic separation (R,) depends on B, i.e. the

type of the crystal. If we consider that an ionic compound 4B may be crystallised in both

common salt structure (i.e. NaCl, 6:6) and cesium chloride structure (i.e. CsCl, 8:8), then

the interionic separations (R,) in AB in the two forms are related as follows :

(n—1)
Ry nacr) / Rycsery = [(BraciAcscr) /(BescrAnact)]

where B measures the short range repulsive force. Hence to measure B, we can reasonably
consider the only nearest neighbours. Thus we get :

Byaci/Bescr = 6/8

The ratio of the Madelung constants is given by,

Acsel/ Anac = 1.76267/1.774755 = 1.0
Thus, Rowvact/Roesen = Bact/ Beye)'" = (6/8) D).
For, n =9 (i.e. Ar gas configuration), RO(NaC[)/RO(CsCl) =0.965.
Thus if a compound exists in both NaC/ and CsClI structure, the interionic separation in the
CsCl crystal will be ~3% larger than that in the NaCl structure. Similar calculations may
be done for other crystals to illustrate the dependance of ionic radii on the crystal structure. It

is found that the interionic separation in the NaCl structure is ~ 5% more compared to that in
the zinc blende (ZnS) structure. Thus we can write,

Coordination No : (ZnS, Zn - blende, 4:4), (NaCl, 6:6), (CsCl, 8:8)

Ry(=r,+r) 0.95 1.00 1.037
(relatively)
C.N.: 4 5 6 7 8 12

r(Na*) (pm): 112 114 116 125 132 138

Thus it is evident that the absolute difference in the values for different crystals is not
significantly large. But, if required, we can use the multiplication factors to compute the ionic
radii from one crystal system to another. Here it is important to mention that the Pauling’s
radii were calculated assuming the 6:6 coordination number as in NaC! and NaF.

(iv) Influence of the radius ratio : As the radius ratio (r,/r ) tends to the lower limiting value for
a particular geometry, the anion-anion repulsion increases (see Sec. 12.8) and it will tend to
increase the interionic separation and consequently the ionic radii. For the octahedral geometry
as in the NaCl structure, the limiting radius ratio is ~ 0.41 and the structure can be attained in
the range of ratio ~ 0.41 to 0.73. However, if the radius ratio tends to the lower limiting
value, 0.41 then the interionic separation increases. It is evident from Table 12.4.3.

In computing the Pauling’s radii, no such anion-anion repulsion was considered. In fact, no
such repulsion exists in reality when r,/r_= 0.7 as in NaF. Thus for the systems having the
radius ratio ~ 0.7, there is no discrepancy between the experimental and calculated value, but
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Table 12.4.3. Effect of radius ratio on the interionic separation (in
pm) in NaCl type (6 : 6) structure

Compound rr. Roy=ry +r_ Ry (experimental)
(calculated from
Pauling’s radii)

RbBr 0.76 343 343
KBr 0.68 328 329
NaBr 0.49 290 298

as the ratio tends to the lower limiting value (e.g. 0.41 in the octahedral system), the repulsion
increases to increase the interionic separation leading to an appreciable discrepancy. In
explaining the relatively lower melting points (see Fig. 12.7.5.1) of LiF (r,/r_= 0.44) and
Nal (r,/r_=0.44), the anion-anion repulsion was considered to reduce the cohesive energy.
Fig. 12.7.5.1 thus establishes the fact that in tending towards the lower (r,/r ) limiting radius
ratio value, the anion-anion repulsion increases.

(v) Effect of polarisation (i.e. covalency) : The ionic radius of a particular ion in a compound is
dependent on the degree of polarisation or covalency present in the compound. With the increase
of covalency, the radius of a cation increases while the radius of an anion decreases. The
effect of covalency on the radius of H is well noted in the alkali metal hydrides (see Table
12.3.4.2). If in attaining the covalency, the cation utilises its new principal quantum number as
in the case of alkali and alkaline earth cations, the size of the cation gets remarkably increased.
The alkali and alkaline earth cations use the next outer ns orbital to introduce the covalency.

(vi) Crystal field effect : In terms of crystal field theory (CFT), a transition metal ion in an octahedral
geometry shows a lower value of its ionic radius in low spin state compared to its value in high
spin state. In fact, various factors like spin state, geometry and electronic configuration are
important to determine the crystal radii of transition metal ions. Discussion on these aspects
has been done in Vol. 4.

In the octahedral systems, some representative Shannon’s values (in pm) are :

Ions : crt Mn** Fe** Co** Fe** Co**
7 (low spin) : 87 81 75 79 69 68
7 (high spin) : 94 97 92 89 78 75

12.5 ENERGETICS OF IONIC BOND FORMATION : BORN-HABER CYCLE

12.5.1 Born-Haber Cycle for lonic Bond Formation

In predicting the possibility of an ionic bond formation in a particular compound, it is more important
to consider the energetics of the process of formation rather than the concept of attaining the stable
electronic configuration of the constituent ions in the compound under consideration. If the process
is exothermic* (i.e. AH < 0), the compound is stable, but if the process is endothermic (i.e. AH > 0)
the compound is unstable. The enthalpy change (i.e. AH) of the process can be computed from the
Born-Haber cycle which is based on the basic principle (Hess’s law) of thermochemistry. AH being
a state function does not depend on the path through which the process is carried out but on the initial
and final state.

* More correctly, to predict the stability we should consider AG (= AH — TAS) rather than AH alone. But in the
formation of an ionic lattice starting from a solid metallic crystal, AS is not very much significant. Here, at
an ordinary condition, consideration of AH predicts almost the correct result.



Structure, Bonding and Properties of lonic Solids and Solid State Chemistry 17

AH of the process leading to an ionic crystal may be obtained experimentally by the direct
combination of the constituent elements. It can also be computed by using the Born-Haber cycle
which involves the following steps :

(i) Vaporisation of the involved reactant elements.
(i1) Formation of the required ions from the isolated gaseous atoms.
(iii) Combination of the gaseous ions to produce the solid product.

To illustrate the principle of Born-Haber cycle, let us consider the formation of the simple ionic
compound M X" (e.g. NaCl) in computing the standard molar enthalpy of formation (AH,) which
is defined as the change of enthalpy in the formation of one mole of the ionic compound M X" from
its constituent elements in their most stable physical states at 298 K and 1 atm pressure.

Formation of M X" can be considered to take place in two paths (assuming M and X, to exist in
solid and gaseous state respectively at ordinary condition) as shown in the Scheme 12.5.1.1.

AH AH
sub IE +
{ Ms) M M }

9) 9)

+
) 1 %AHdiss AHg,
1 5 X2(g) Xg) Xig)
p= p
© ®
o o
AH; Unmx

MX(S) <
(Exothermic process)

Scheme 12.5.1.1. Possible paths leading to the formation of M*X- crystal.

(Note: Formation of MX(, (solid ionic lattice) from the gaseous ions may be considered to pass
through the formation of gaseous ion-pair, M* X, @

+ - Step-l  , + - Step-ll
Mg* X @ U »M X, 0, " MX,s)
(Exothermic step) T
UMX

For the sake of simplicity, the gaseous ion-pair formation step has been ignored in Scheme 12.5.1.1.
The energy change in the overall process (i.e. combination of Step I and Step II) has been described
here as the lattice energy (U,;y). Thus, U, = U, (for the gaseous ion-pair formation) + U, (for
lattice formation). For the formation of sodium chloride (NaCl), U, and U, have been theoretically
calculated (U, = —440 kJ mol ™" and U, ~ ~330 kJ mol!).

Path II consists of the following steps :

(1) First step : It involves the sublimation of solid M into its vapour. It requires the sublimation
energy, A]_[Sub'

(i1) Second step : 1t involves the ionisation of the isolated gaseous atoms of M. It requires the
ionisation energy (i.e. first IE), AH .

(iii) Third step : It involves the bond dissociation of the halogen gas X, (say Cl,) to form the
gaseous atoms. As the process requires half mole of X, to form one mole of MX, the
requirement of energy is % AH ..

(iv) Fourth step : It involves the gaining of an electron by the isolated gaseous atom (X) to form
X . It measures the electron affinity, AH, .
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(v) Final step : It involves the combination of the oppositely charged isolated gaseous ions (in
the gaseous phase, they may exist as the ion pairs, but here we are ignoring this aspect for
the sake of simplicity) to form a solid crystal in which the omnidirectional electrostatic
force works throughout the crystal. It leads to the release of lattice energy, U,,, which
may be considered as the lattice enthalpy (AH,). Thus, we get the following relation with
appropriate signs of the energy terms (according to the convention of thermodynamics).

1
AH/ :AHsub +AHIE +5AHdiss +AHEA +UMX (12511)

From the standard convention of thermodynamics, when the energy is released (i.e.
exothermic) it is associated with a negative sign (—ve) while for the energy requiring (i.e.
endothermic) process, the energy term is associated with a positive sign (+ve). In forming
the lattice from the isolated gaseous ions, the energy measured by lattice energy (U,,y) is
released. Generally the energy term (AHp,) measuring the electron affinity is exothermic.
In the case of NaCl, by using the calculated value of lattice energy and other energy terms
experimentally determined, let us calculate the enthalpy of formation (AH ’ ). AH_; =108.8
kJ mol™', AH,; = 493.8 kI mol ™!, L (AHy,) = 121.3 kI mol™', AHy, = —348.5 kJ mol ',
Unocy =— 7573 kJ mol~!. By using these energy values in Eqn. 12.5.1.1, we get, AH, =
—381.9 kJ mol™". This calculated value can be compared with the experimental one, — 411
kJ mol!. The calculation from the Born-Haber cycle shows that the formation of Na+Cl(S)
is exothermic and it occurs so in reality.

Note 1 (Hess’s law and Born—Haber thermodynamic cycle dealing with the standard enthalpy
change): Hess’s law states that the standard enthalpy change (denoted by AH®) of a process is the
sum of the standard enthalpy changes of the individual steps of the overall process. Thus in Born—
Haber cycle, we should strictly use the standard enthalpy values of all steps. Standard enthalpy
change denotes the change of enthalpy for a process/step in which the initial and final substances
are in their standard states.

The standard state of a substance at a specified temperature is its pure form at 1 bar pressure.
However, very often, the standard pressure is taken as 1 atm (= 101.325 kPa) instead of 1 bar
(= 100 kPa). The standard enthalpy change may be at any temperature depending on the condition at
1 bar pressure (e.g. H,0 (s) — H,0 (1), AH® (273 K) = +6.01 kJ mol™'; H,0 (1) — H,0 (g), AH®
(373 K) =+40.65 kJ mol™!). However, conventionally, 298 K (i.e. 25°C) is chosen (if not mentioned
other temperature) for reporting the thermodynamic data.

Thus in Born—Haber cycle, strictly, the standard enthalpy values (denoted by AH") are to be
used as illustrated for the formation of CaBr,(s) in Scheme 12.5.1.2. However, for the sake of
simplicity, the superscript (0) has been omitted very often in this book to construct the Born—
Haber cycle.

Note 2 (Relation between the enthalpy values and the commonly used energy values in
different steps/processes): It has been mentioned that enthalpy is a thermodynamic state function
and its change is path independent. Thus in Born—Haber cycle, enthalpy values are to be strictly
used for all steps. In Scheme 12.5.1.1, ionisation energy (instead of ionisation enthalpy), electron
affinity (instead of the corresponding enthalpy value), have been used as their enthalpy values for the
sake of simplicity. Now let us examine whether the approximation is justified or not. It is illustrated
for the ionisation process. Ionisation enthalpy (AH, ;) equals the so called ionisation energy (IE)
at absolute zero (T = 0 K). For the following ionisation process.
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Mg — M @ T €y AHig ) = lonisation e?thalpy atTK .
= AHg) + -[o ACpdT = IE +J0 AnCpdT

5
=1E +ERT (see Sec. 8.12)

C =3 R (for a monoatomic gaseous species having the translational motions only).

AH g 298) is called the standard enthalpy of ionisation which differs from /E by 3 2R x 298
(= 6.2 kJ mol "), a negligible quantity compared to the IE value.

Similarly, the electron affinity value, lattice energy value, bond dissociation energy value,
etc. give their corresponding enthalpy values only at 0 K. In all such cases, the temperature
correction factor is quite a negligible quantity. This is why, these energy values are generally
used as their enthalpy values in thermodynamics calculations as illustrated in Scheme 12.5.1.1.
However, Scheme 12.5.1.2 illustrates the use of true enthalpy values (without the said approximation)
but the result does not differ significantly from the result obtained by ignoring the temperature
correction factor.

Note 3 (Definition of lattice enthalpy and energy): Standard lattice enthalpy (AH,95)) is given
by the standard molar enthalpy change for the conversion of the solid ionic crystal into the
constituent ions in the gaseous state.

MX(y = My + X (), AH, = +ve (Endothermic process)

AH, becomes lattice energy (U,,y) at T = 0 K as in the case of ionisation process. It has been
already mentioned that for the sake of simplicity, U,,, may be taken as the AH,.

Lattice enthalpy (AH,) or lattice energy (U) may be also defined with respect to the following
process leading to the formation of solid ionic crystal from the constituent gaseous ions (as
illustrated in Scheme 12.5.1.1 and in Sec. 12.7.1).

M, + X, — MX),AH, = —ve (Exothermic process)

Both the concepts with proper signs are available in the text books. However, some authors
strictly refer to the endothermic process (i.e. positive energy term) corresponding to the break-up of
lattice. The positive sign (+) to express the lattice enthalpy or lattice energy is omitted from the
numerical value.

Note 4 (Thermodynamic feasibility determined by Gibbs free energy change not alone by
the enthalpy parameter): Born—Haber cycle allows to compute the enthalpy change of a particular
process but to determine the thermodynamic feasibility of a process, the Gibbs free energy change
(more correctly, the standard free energy change, AG® = AH? — TAS?) is to be considered (i.e. AG® =
—ve for a thermodynamically allowed process). Hence to determine the thermodynamic feasibility,
both the enthalpy factor and entropy factor are to be considered. However, in the case formation of
solid ionic crystals from their constituents (as illustrated in Schemes 12.5.1.1, 2), the contribution of
entropy factor (specially at low temperature) may be ignored to determine the thermodynamic
feasibility of the process. Strictly, this approximation is valid at 7= 0 K (where TAS® = 0). In fact, in
the formation of solid ionic crystal, AS® becomes slightly negative due to the formation of a highly
ordered ionic crystal. Thus, AG’ becomes negative only when AH® becomes highly negative in
such cases.

e Thermodynamic criterion of spontaneity for a reaction and relationship between AG and
AG": AG® denotes the standard free energy (standard state refers to 1.0 mol dm™ concentration for
each reactant and product). For a reaction to go on spontaneously, AG (i.e. change in Gibbs free
energy) is to be negative. AG and AG for the following reaction are related as follows:

[C]1[D]

A+B=C+D,AG=AG" +RTIn
[4][B]
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Thus AG depends on the concentrations of the reactants and products and this contribution is
determined by the second term of the above equation. The criterion of spontaneity for a reaction
is AG = —ve (irrespective of the sign of AG"). The standard energy change (AG®) and the
thermodynamic equilibrium constant Ke% (a dimensionless quantity) under the standard conditions
are related as follows:

AG’ =-RT K, , AG® = —ve for nK,, >1

eq?

2+
Cay, +2e+2Bry,

IAH%“: 10288k mel” 20Ky = 2(2E,~2% $R)

" =2(-2x325-5x8.31x 298 x 10~) kJ mol™
Cag +2e+Bryg

) =2(—650—-12.4) kJ mol™
AH® 0= 30.9 kJ mol”

2+
Ca +2e+Bry, v

5 . o
AH%e= Iy + I+ 5 x2RT 3 o cay e
=(590 + 1145 + 5x 8.31x 298 x 10™) kJ mol”

=(1735 + 12.4) kJ mol™

(Exotheromic process)

Cayg * Bry
0 4 X=—aH?
AH®,,, = 178.2 kJ mol
= _(UCaBr2+ AnRT)
Cay, + By, = ~(Ucagr,* 3%8.31%298 x10™) kJ mol”’

—AH=+682.8 kJ mol”"
CaBr, (s)

A 4

Scheme 12.5.1.2. Born—Haber cycle for the formation of CaBr,.

o Illustration of strict thermodynamic convention: Calculation of lattice enthalpy (AH;) or
lattice energy (U) of CaBr, from the Born—Haber cycle.

The corresponding Born—Haber cycle for the formation of CaBr,(s) is illustrated in Scheme 12.5.1.2
where the standard enthalpy values (A/°) have been used.

o Standard state (denoted by superscript 0) conventionally refers to 298 K temperature.
AH ?- = standard enthalpy of formation of CaBr, = —682.8 kJ mol™!
AH Sol;b = standard enthalpy of sublimation of Ca = 178.2 kJ mol™!
AH 3ap = standard enthalpy change of vaporisation of Br,; = 30.9 kJ mol™!
standard enthalpy of bond dissociation of Bryg
~ standard bond dissociation energy of Br, see Sec. 10.1.2)
=192.86 kJ mol ™!
(AHY,, — standard bond dissociation energy ~ 2.5 kJ mol™!, see Sec. 10.1.2).
AHloE = standard enthalpy change during the ionisation of Ca g, (i.e. Cay —> Ca(zg) +2e4)
= I, + 1, +5AnRT
=(590 + 1145 + 5 x 8.31 x 298 x 107) kJ mol!
= (1735 + 12.4) kJ mol ™
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