

CONTENTS

<i>Preface</i>	v
Chapter 1: Introduction to Parallel Processing	1
1.1 Evolution of Computer Systems	1
1.1.1 Generations of Computer Systems	2
1.1.2 Trends towards Parallel Processing	4
1.2 Parallelism in Uniprocessor Systems	8
1.2.1 Basic Uniprocessor Architecture	8
1.2.2 Parallel Processing Mechanisms	11
1.2.3 Balancing of Subsystem Bandwidth	13
1.2.4 Multiprogramming and Time Sharing	16
1.3 Parallel Computer Structures	20
1.3.1 Pipeline Computers	20
1.3.2 Array Computers	22
1.3.3 Multiprocessor Systems	25
1.3.4 Performance of Parallel Computers	27
1.3.5 Data Flow and New Concepts	29
1.4 Architectural Classification Schemes	32
1.4.1 Multiplicity of Instruction-Data Streams	32
1.4.2 Serial versus Parallel Processing	35
1.4.3 Parallelism versus Pipelining	37
1.5 Parallel Processing Applications	40
1.5.1 Predictive Modeling and Simulations	42
1.5.2 Engineering Design and Automation	44
1.5.3 Energy Resources Exploration	46
1.5.4 Medical, Military, and Basic Research	48
1.6 Bibliographic Notes and Problems	49
Chapter 2: Memory and Input-Output Subsystems	52
2.1 Hierarchical Memory Structure	52
2.1.1 Memory Hierarchy	52
2.1.2 Optimization of Memory Hierarchy	56
2.1.3 Addressing Schemes for Main Memory	58
2.2 Virtual Memory System	60
2.2.1 The Concept of Virtual Memory	61
2.2.2 Paged Memory System	65
2.2.3 Segmented Memory System	71
2.2.4 Memory with Paged Segments	77

2.3	Memory Allocation and Management	80
2.3.1	Classification of Memory Policies	80
2.3.2	Optimal Load Control	86
2.3.3	Memory Management Policies	91
2.4	Cache Memories and Management	98
2.4.1	Characteristics of Cache Memories	98
2.4.2	Cache Memory Organizations	102
2.4.3	Fetch and Main Memory Update Policies	113
2.4.4	Block Replacement Policies	115
2.5	Input-Output Subsystems	118
2.5.1	Characteristics of I/O Subsystem	118
2.5.2	Interrupt Mechanisms and Special Hardware	123
2.5.3	I/O Processors and I/O Channels	128
2.6	Bibliographic Notes and Problems	141
Chapter 3	Principles of Pipelining and Vector Processing	145
3.1	Pipelining: An Overlapped Parallelism	145
3.1.1	Principles of Linear Pipelining	146
3.1.2	Classification of Pipeline Processors	151
3.1.3	General Pipelines and Reservation Tables	154
3.1.4	Interleaved Memory Organizations	156
3.2	Instruction and Arithmetic Pipelines	164
3.2.1	Design of Pipelined Instruction Units	164
3.2.2	Arithmetic Pipelines Design Examples	170
3.2.3	Multifunction and Array Pipelines	181
3.3	Principles of Designing Pipeline Processors	187
3.3.1	Instruction Prefetch and Branch Handling	187
3.3.2	Data Buffering and Busing Structures	193
3.3.3	Internal Forwarding and Register Tagging	196
3.3.4	Hazard Detection and Resolution	200
3.3.5	Job Sequencing and Collision Prevention	203
*3.3.6	Dynamic Pipelines and Reconfigurability	208
3.4	Vector Processing Requirements	212
3.4.1	Characteristics of Vector Processing	213
3.4.2	Multiple Vector Task Dispatching	218
3.4.3	Pipelined Vector Processing Methods	226
3.5	Bibliographic Notes and Problems	229
Chapter 4:	Pipeline Computers and Vectorization Methods	233
4.1	The Space of Pipeline Computers	233
4.1.1	Vector Supercomputer	234
4.1.2	Scientific Attached Processors	235

4.2	Early Vector Processors	237
4.2.1	Architectures of Star-100 and TI-ASC	237
4.2.2	Vector Processing in Streaming Mode	245
4.3	Scientific Attached Processors	249
4.3.1	The Architecture of AP-120B	249
4.3.2	Back-end Vector Computations	255
4.3.3	FPS-164, IBM 3838 and Datawest MATP	258
4.4	Recent Vector Processors	264
4.4.1	The Architecture of Cray-1	264
4.4.2	Pipeline Chaining and Vector Loops	271
4.4.3	The Architecture of Cyber-205	280
4.4.4	Vector Processing in Cyber-205 and CDC-NASF	285
4.4.5	Fujitsu VP-200 and Special Features	293
4.5	Vectorization and Optimization Methods	301
4.5.1	Parallel Languages for Vector Processing	301
4.5.2	Design of a Vectorizing Compiler	305
4.5.3	Optimization of Vector Functions	308
4.5.4	Performance Evaluation of Pipeline Computers	314
4.6	Bibliographic Notes and Problems	320
Chapter 5: Structures and Algorithms for Array Processors		325
5.1	SIMD Array Processors	325
5.1.1	SIMD Computer Organizations	325
5.1.2	Masking and Data-routing Mechanisms	328
5.1.3	Inter-PE Communications	332
5.2	SIMD Interconnection Networks	333
5.2.1	Static versus Dynamic Networks	334
5.2.2	Mesh-connected Illiac Network	339
5.2.3	Cube Interconnection Networks	342
5.2.4	Barrel Shifter and Data Manipulator	345
5.2.5	Shuffle-Exchange and Omega Networks	350
5.3	Parallel Algorithms for Array Processors	355
5.3.1	SIMD Matrix Multiplication	355
5.3.2	Parallel Sorting on Array Processors	361
5.3.3	SIMD Fast Fourier Transform	367
5.3.4	Connection Issues for SIMD Processing	373
5.4	Associative Array Processing	374
5.4.1	Associative Memory Organizations	375
5.4.2	Associative Processors (PEPE and STARAN)	380
5.4.3	Associative Search Algorithms	385
5.5	Bibliographic Notes and Problems	388

Chapter 6: SIMD Computers and Performance Enhancement	393
6.1 The Space of SIMD Computers	393
6.1.1 Array and Associative Processors	394
6.1.2 SIMD Computer Perspectives	396
6.2 The Illiac-IV and the BSP Systems	398
6.2.1 The Illiac-IV System Architecture	399
6.2.2 Applications of the Illiac-IV	402
6.2.3 The BSP System Architecture	410
6.2.4 The Prime Memory System	414
6.2.5 The BSP Fortran Vectorizer	417
6.3 The Massively Parallel Processor	422
6.3.1 The MPP System Architecture	423
6.3.2 Processing Array, Memory, and Control	426
6.3.3 Image Processing on the MPP	430
6.4 Performance Enhancement Methods	434
6.4.1 Parallel Memory Allocation	434
6.4.2 Array Processing Languages	440
6.4.3 Performance Analysis of Array Processors	445
6.4.4 Multiple-SIMD Computer Organization	448
6.5 Bibliographic Notes and Problems	454
Chapter 7: Multiprocessor Architecture and Programming	459
7.1 Functional Structures	459
7.1.1 Loosely Coupled Multiprocessors	460
7.1.2 Tightly Coupled Multiprocessors	468
7.1.3 Processor Characteristics for Multiprocessing	478
7.2 Interconnection Networks	481
7.2.1 Time Shared or Common Buses	481
7.2.2 Crossbar Switch and Multiport Memories	487
7.2.3 Multistage Networks for Multiprocessors	492
7.2.4 Performance of Interconnection Networks	502
7.3 Parallel Memory Organizations	508
7.3.1 Interleaved Memory Configurations	508
7.3.2 Performance Trade-offs in Memory Organizations	513
7.3.3 Multicache Problems and Solutions	517
7.4 Multiprocessor Operating Systems	525
7.4.1 Classification of Multiprocessor Operating Systems	526
7.4.2 Software Requirements for Multiprocessors	528
7.4.3 Operating System Requirements	531
7.5 Exploiting Concurrency for Multiprocessing	533
7.5.1 Language Features to Exploit Parallelism	533

7.5.2 Detection of Parallelism in Programs	541
7.5.3 Program and Algorithm Restructuring	545
7.6 Bibliographic Notes and Problems	551
Chapter 8: Multiprocessing Control and Algorithms	557
8.1 Interprocess Communication Mechanisms	557
8.1.1 Process Synchronization Mechanisms	557
8.1.2 Synchronization with Semaphores	565
8.1.3 Conditional Critical Sections and Monitors	572
8.2 System Deadlocks and Protection	577
8.2.1 System Deadlock Problems	577
8.2.2 Deadlock Prevention and Avoidance	580
8.2.3 Deadlock Detection and Recovery	582
8.2.4 Protection Schemes	583
8.3 Multiprocessor Scheduling Strategies	590
8.3.1 Dimensions of Multiple Processor Management	590
8.3.2 Deterministic Scheduling Models	596
8.3.3 Stochastic Scheduling Models	606
8.4 Parallel Algorithms for Multiprocessors	613
8.4.1 Classification of Parallel Algorithms	614
8.4.2 Synchronized Parallel Algorithms	616
8.4.3 Asynchronous Parallel Algorithms	622
8.4.4 Performance of Parallel Algorithms	628
8.5 Bibliographic Notes and Problems	637
Chapter 9: Multiprocessor Systems	643
9.1 The Space of Multiprocessor Systems	643
9.1.1 Exploratory Systems	643
9.1.2 Commercial Multiprocessors	644
9.2 The C.mmp Multiprocessor System	645
9.2.1 The C.mmp System Architecture	645
9.2.2 The Hydra Operating System	650
*9.2.3 Performance of the C.mmp	654
9.3 The S-1 Multiprocessor System	658
9.3.1 The S-1 System Architecture	659
9.3.2 Multiprocessing Uniprocessors	661
9.3.3 The S-1 Software Development	668
9.4 The HEP Multiprocessor System	669
9.4.1 The HEP System Architecture	669
9.4.2 Process Execution Modules	674
9.4.3 Parallel Processing on the HEP	680
9.5 Mainframe Multiprocessor Systems	684
9.5.1 IBM 370/168 MP, 3033, and 3081	684

9.5.2	Operating System for IBM Multiprocessors	693
9.5.3	Univac 1100/80 and 1100/90 Series	694
9.5.4	The Tandem Nonstop System	705
9.6	The Cray X-MP and Cray-2	714
9.6.1	Cray X-MP System Architecture	714
9.6.2	Multitasking on Cray X-MP	717
9.6.3	Performance of Cray X-MP	721
9.7	Bibliographic Notes and Problems	728
Chapter 10: Data Flow Computers and VLSI Computations		732
10.1	Data-driven Computing and Languages	732
10.1.1	Control Flow vs. Data Flow Computers	733
10.1.2	Data Flow Graphs and Languages	740
10.1.3	Advantages and Potential Problems	745
10.2	Data Flow Computer Architectures	748
10.2.1	Static Data Flow Computers	748
10.2.2	Dynamic Data Flow Computers	755
10.2.3	Data Flow Design Alternatives	763
10.3	VLSI Computing Structures	768
10.3.1	The Systolic Array Architecture	769
*10.3.2	Mapping Algorithms into VLSI Arrays	774
10.3.3	Reconfigurable Processor Array	779
10.4	VLSI Matrix Arithmetic Processors	788
10.4.1	VLSI Arithmetic Modules	788
10.4.2	Partitioned Matrix Algorithms	790
10.4.3	Matrix Arithmetic Pipelines	798
*10.4.4	Real-time Image Processing	803
10.5	Bibliographic Notes and Problems	807
<i>Bibliography</i>		813
<i>Index</i>		831