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1.1  CONTROL SYSTEM

Control system theory evolved as an engineering discipline and due to universality of the  
principles involved, it is extended to various fields like economy, sociology, biology, medicine, etc. Control 
theory  has  played a vital  role  in the advance of engineering and science. The automatic control has 
become an integral part of modern manufacturing and industrial processes. For example, numerical control 
of machine tools in manufacturing industries, controlling pressure, temperature, humidity, viscosity and 
flow in process industry.

When a number of elements or components are connected in a sequence to perform a specific 
function, the group thus formed is called a system. In a system when the output quantity is controlled by 
varying the input quantity, the system is called control system. The output quantity is called controlled 
variable or response and input quantity is called command signal or excitation.

OPEN LOOP SYSTEM

Any physical system which does not automatically correct the variation in its output, is called an 
open loop system, or control system in which the output quantity has no effect upon the input quantity 
are called open-loop control system. This means that the output is not fedback to the input for correction.

In open loop system the output can be varied by varying the input.  But due to external disturbances 
the system output may change. When the output changes due to disturbances, it is not followed by changes 
in input to correct the output. In open loop systems the changes in output are corrected by changing the 
input manually.

CLOSED LOOP SYSTEM

Control systems in which the output has an effect upon the input quantity in order to maintain the 
desired output value are called closed loop systems.
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The open loop system can be modified as closed loop system by providing a feedback. The  
provision of feedback automatically corrects the changes in output due to disturbances. Hence the closed 
loop system is also called automatic control system. The general block diagram of an automatic control 
system is shown in fig 1.2. It consists of an error detector, a controller, plant (open loop system) and 
feedback path elements.

The reference signal (or input signal) corresponds to desired output. The feedback path elements 
samples the output and converts it to a signal of same type as that of reference signal. The feedback signal 
is proportional to output signal and it is fed to the error detector. The  error  signal  generated by the error 
detector is the difference between reference signal and feedback signal. The controller modifies and 
amplifies the error signal to produce better control action. The modified error signal is fed to the plant to 
correct its output.

Advantages of open loop systems

1.  The open loop systems are simple and economical.
2.  The open loop systems are easier to construct.
3.  Generally the open loop systems are stable.

Disadvantages of open loop systems 
1.  The open loop systems are inaccurate and unreliable.
2.  The changes in the output due to external disturbances are not corrected automatically.

Advantages of closed loop systems

1.  The closed loop systems are accurate.
2.  The closed loop systems are accurate even in the presence of non-linearities. 
3.  The sensitivity of the systems may be made small to make the system more stable.
4.  The closed loop systems are less affected by noise.

Disadvantages of closed loop systems

1.  The closed loop systems are complex and costly.
2.  The feedback in closed loop system may lead to oscillatory response.
3.  The feedback reduces the overall gain of the system.
4.  Stability is a major problem in closed loop system and more care is needed to design a stable
     closed loop system.

1.2	 EXAMPLES OF CONTROL SYSTEMS

EXAMPLE 1 : TEMPERATURE CONTROL SYSTEM

OPEN LOOP SYSTEM

The electric furnace shown in fig 1.3. is an open loop system. The output in the system is the desired temperature. 

The temperature of the system is raised by heat generated by the heating element. The output temperature depends 

on the time during which the supply to heater remains ON. 

The ON and OFF of the supply is governed by the time setting of the relay. The temperature is measured by a 

sensor, which gives an analog voltage corresponding to the temperature of the furnace. The analog signal is converted 

to digital signal by an Analog - to - Digital converter (A/D converter).
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The digital signal is given to the digital display device to display the temperature. In this system if there is any 

change in output temperature then the time setting of the relay is not altered automatically.

CLOSED LOOP SYSTEM

The electric furnace shown in fig 1.4 is a closed  loop  system. The output of the system is the desired temperature 

and it depends on the time during which the supply to heater remains ON. 

The switching ON and OFF of the relay is controlled by a controller which is a digital system or computer. The 
desired  temperature  is  input  to  the system through keyboard or as a signal corresponding to desired temperature via 
ports. The actual temperature is sensed by sensor and converted to digital signal by the A/D converter. The computer 
reads the actual temperature and compares with desired temperature. If it finds any difference then it sends signal to 
switch ON or OFF the relay through D/A converter and amplifier. Thus the system automatically corrects any changes 
in output. Hence it is a closed loop system.

EXAMPLE 2 : TRAFFIC CONTROL SYSTEM

OPEN LOOP SYSTEM

Traffic control by means of traffic signals operated on a time basis constitutes an open-loop control system.  
The sequence of  control signals are based on a time slot given for each signal. The time slots are decided based on 
a traffic study. The system will not measure the density of the traffic before giving the signals. Since the time slot does 
not changes according to traffic density, the system is open loop system.

CLOSED LOOP SYSTEM

Traffic control system can be made as a closed loop system if the time slots of the signals are decided based on 
the density of traffic. In closed loop traffic control system, the density of the traffic is measured on all the sides and the 
information is fed to a computer. The timings of the control signals are decided by the computer based on the density 
of traffic . Since the closed loop system dynamically changes the timings, the flow of vehicles will be better than open 
loop system.

Electric
Furnace

A/D
Converter Interface

Digital
Display

Relay
Control
Circuit

AC supply

Heating element

Sensor

Fig 1.3 : Open loop temperature control system.
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EXAMPLE 3 : NUMERICAL CONTROL SYSTEM

OPEN LOOP SYSTEM 
Numerical control is a method of controlling the motion of machine components using numbers.  Here, the 

position of work head tool is controlled by the binary information contained in a disk.

A magnetic disk is prepared in binary form representing the desired part P (P is the metal part to be machined). 
The tool will operate on the desired part P. To start the system, the disk is fed through the reader to the D/A converter. 
The D/A converter converts the FM(frequency modulated) output of the reader to a analog signal. It is amplified and 
fed to servometer which positions the cutter on the desired part P. The position of the cutter head is controlled by the 
angular motion of the servometer. This is an open loop system since no feedback path exists between the output and 
input. The system positions the tool for a given input command. Any deviation in the desired position is not checked 
and corrected automatically.

CLOSED LOOP SYSTEM

A magnetic disk is prepared in binary form representing the desired part P (P is the metal part to be  
machined). To start the system, the disk is loaded in the reader. The controller compares the frequency modulated 
input pulse signal with the feedback pulse signal. The controller is a computer or microprocessor system.

 
The 

controller carries out mathematical operations on the difference in the pulse signals and generates an error signal. 
The D/A converter converts the controller output pulse (error signal) into an analog signal . The amplified analog signal  
rotates the servomotor to position the tool on the job. The position of the cutterhead is controlled according to  
the input of the servomotor. 

The transducer attached to the cutterhead converts the motion into an electrical signal. The analog  
electrical signal is converted to the digital pulse signal by the  A/D  converter. Then this signal is compared with the input 
pulse signal. If there is any difference between these two, the controller sends a signal to the servomotor to reduce it. 
Thus the system automatically corrects any deviation in the desired output tool position. An advantage of numerical 
control is that complex parts can be produced with uniform tolerances at the maximum milling speed.

Reader D/A Amplifier
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Fig 1.5 : Open loop numerical control system.
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Fig 1.6 : Closed loop numerical control system.
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EXAMPLE 4 : POSITION CONTROL SYSTEM USING SERVOMOTOR

The position control system shown in fig 1.7 is a closed loop system. The system consists of a servomotor 
powered by a generator. The load whose position has to be controlled is connected to motor shaft through gear wheels. 
Potentiometers are used to convert the mechanical motion to electrical signals. The desired load position (θ

R
) is set on 

the input potentiometer and the actual load position (θc) is fed to feedback potentiometer. The difference between the 
two angular positions generates an error signal, which is amplified and fed to generator field circuit. The induced emf 
of the generator drives the motor. The rotation of the motor stops when the error signal is zero, i.e. when the desired 
load position is reached.

This type of control systems are called servomechanisms .The servo or servomechanisms are feedback  control  
systems in which the output is mechanical position (or time derivatives of position e.g. velocity and acceleration).

1.3	 MATHEMATICAL MODELS OF CONTROL SYSTEMS

A control system is a collection of physical objects (components) connected together to serve an 
objective. The input output relations of various physical components of a system are governed by differential 
equations. The mathematical model of a control system constitutes a set of differential equations. The 
response or output of the system can be studied by solving the differential equations for various input 
conditions.

The mathematical model of a system is linear if it obeys the principle of superposition and homogenity. 
This principle implies that if a system model has responses y1(t) and y2 (t) to any inputs x1 (t) and x2 (t) 
respectively, then the system response to the linear combination of these inputs a1x1 (t) + a2 x2 (t) is given 
by linear combination of the individual outputs a1 y1(t) + a2 y2(t), where a1 and a2 are constants.

The principle of superposition can be explained diagrammatically as shown in fig. 1.8. 

Amplifier

Fig 1.7 : A position control system (servomechanism).
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A mathematical model will be linear if the differential equations describing the system has  
constant coefficients (or the coefficients may be functions of independent variables). If the coefficients 
of the differential equation describing the system are constants then the model is linear time invariant. 
If the coefficients of differential equations governing the system are functions of time then the model is 
linear time varying.

The differential equations of a linear time invariant system can be reshaped into different form for 
the convenience of analysis. One such model for single input and single output system analysis is transfer 
function of the system. The transfer function of a system is defined as the ratio of Laplace transform of 
output to the Laplace transform of input with zero initial conditions.

Transfer function Laplace Transform of input
Laplace Transform of output

with zero initial condition
=                      	   .....(1.1)

The transfer function can be obtained by taking Laplace transform of the differential equations 
governing the system with zero initial conditions and rearranging the resulting algebraic equations to get 
the ratio of output to input.

1.4	 MECHANICAL TRANSLATIONAL SYSTEMS

The model of mechanical translational systems can be obtained by using three basic elements mass, 
spring and dash-pot. These three elements represents three essential phenomena which occur in various 
ways in mechanical systems. 

The weight of the mechanical system is represented by the element mass and it is assumed to be 
concentrated at the center of the body. The elastic deformation of the body can be represented by a spring. 
The friction existing in rotating mechanical system can be represented by the dash-pot. The dash-pot is a 
piston moving inside a cylinder filled with viscous fluid.

When a force is applied to a translational mechanical system, it is opposed by opposing forces due to 
mass, friction and elasticity of the system. The force acting on a mechanical body are governed by Newton’s 
second law of motion. For translational systems it states that the sum of forces acting on a body is zero. (or 
Newton’s second law states that the sum of applied forces is equal to the sum of opposing forces on a body).
LIST OF SYMBOLS USED IN MECHANICAL TRANSLATIONAL SYSTEM

x	 =	 Displacement, m

v	 =	 dt
dx  = Velocity, m/sec

a	 = dt
dv

dt
d x

2

2
=  = Acceleration, m/sec2

f	 =	 Applied force, N (Newtons)
fm	=	 Opposing force offered by mass of the body, N
fk 	=	 Opposing force offered by the elasticity of the body (spring), N
fb	 =	 Opposing force offered by the friction of the body (dash - pot), N
M	=	 Mass, kg
K	=	 Stiffness of spring, N/m
B	 =	 Viscous friction co-efficient, N-sec/m

Note : Lower case letters are functions of time
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FORCE BALANCE EQUATIONS OF IDEALIZED ELEMENTS

Consider an ideal mass element shown in fig 1.9 which has negligible friction and elasticity. Let a 
force be applied on it. The mass will offer an opposing force which is proportional to acceleration of the body.

Let, f  =  Applied force
	      fm = Opposing force due to mass

Here, f
dt
d x or f M

dt
d x

2

2

2

2

m m\ =

By Newton’s second law,  f f M
dt
d x

2

2

m= =       	 .....(1.2)

Consider an ideal frictional element dashpot shown in fig 1.10 
which has negligible mass and elasticity. Let a force be applied on it. The 
dash-pot will offer an opposing force which is proportional to velocity 
of the body.

Let, f	 = Applied force
       fb	= Opposing force due to friction

Here, f dt
dx or f B dt

dx
b b\ =

By Newton’s second law,  f f B dt
dx

b= = 		    .....(1.3)

When the dashpot has displacement at both ends as shown in 
fig 1.11, the opposing force is proportional to difference between 
velocity at both ends.

( ) ( )f dt
d x x or f B dt

d x xb b1 2 1 2\ − = −

∴  ( )f f B dt
d x xb 1 2= = − 	                                .....(1.4)

Consider an ideal elastic element spring shown in fig 1.12, which has  negligible mass and friction. 
Let a force be applied on it. The spring will offer an opposing force which is proportional to displacement 
of the body.

Let,  f  =	 Applied force
        fk  =	 Opposing force due to elasticity

Here fk ∝ x     or    fk = K x

By Newton’s second law,   f = fk = Kx	    	 .....(1.5)

When the spring has displacement at both ends as shown in 
fig 1.13 the opposing force is proportional to difference between 
displacement at both ends.

fk ∝ (x1- x2)       or  	 fk = K(x1- x2) 

          ∴  f = fk = K(x1- x2)                        		  .....(1.6)
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Guidelines to determine the Transfer Function of Mechanical Translational System 

1.	 In mechanical translational system, the differential equations governing the system are 
obtained by writing force balance equations at nodes in the system. The nodes are meeting 
point of elements. Generally the nodes are mass elements in the system. In some cases the 
nodes may be without mass element.

2.	 The linear displacement of the masses (nodes) are assumed as x1 , x2 , x3 , etc., and assign a 
displacement to each mass(node).The first derivative of the displacement is velocity and the 
second derivative of the displacement is acceleration.

3.	 Draw the free body diagrams of the system. The free body diagram is obtained by drawing 
each mass separately and then marking all the forces acting on that mass (node). Always 
the opposing force acts in a direction opposite to applied force. The mass has to move in the 
direction of the applied force. Hence the displacement, velocity and acceleration of the mass 
will be in the direction of the applied force. If there is no applied force then the displacement, 
velocity and acceleration of the mass will be in a direction opposite to that of opposing force.

4.	 For each free body diagram, write one differential equation by equating the sum of applied 
forces to the sum of opposing forces.

5.	 Take Laplace transform of differential equations to convert them to algebraic equations.    	
Then rearrange the s-domain equations to eliminate the unwanted variables and obtain the 
ratio between output variable and input variable. This ratio is the transfer function of the 
system.

Note :	 Laplace transform of x(t) = L{x(t)} = X(s)

	 Laplace transform of L( ) ( ) ( )dt
dx t

dt
d x t s X s= =% /  (with zero initial conditions)

	 Laplace transform of L( ) ( ) ( )
dt
d x t

dt
d x t s X s

2 2

2 2
2= =' 1  (with zero initial conditions)

	  
EXAMPLE 1.1

Write the differential equations governing the mechanical system shown in fig 1. and determine the transfer 

function.

SOLUTION

In the given system, applied force ‘f(t)’ is the input and displacement ‘x’ is the output.

Let,  Laplace transform of f(t)  =  L{f(t)} = F(s)

       Laplace transform of  x  = L{x} = X(s)

       Laplace transform of  x
1
 = L{x

1
} = X

1
(s)

x1 x

K1

M1

B

K

M2 f(t)

B2B1

Fig 1.
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Hence the required transfer function is 
( )
( )

F s
X s

The system has two nodes and they are mass M
1
 and M

2
. The differential equations governing the system are 

given by force balance equations at these nodes.

Let the displacement of mass M
1
 be x

1
. The free body diagram of mass M

1
 is shown in fig 2. The opposing forces 

acting on mass M
1
 are marked as f

m1 
, f

b1 
, f

b
, f

k1
 and f

k
.

; ; K xf M
dt

d x
f B

dt
dx

f
2

2

m1 1
1

b1 1
1

k1 1 1= = =

( ) ; f ( )f B
dt
d x x K x xb 1 k 1= − = −

By Newton’s second law,

f
m1

 + f
b1

 + f
b
 + f

k1
 + f

k
 = 0

dt

d x
dt
dx

(x ) K x (x ) 0M B B
dt
d x K x

2

2

1
1

1
1

1 1 1 1` + + − + + − =  

On taking Laplace transform of above equation with zero initial conditions we get,

M
1
s2X

1
(s) + B

1
sX

1
(s) + Bs[X

1
(s) - X(s)] + K

1
X

1
(s) + K[X

1
(s) - X(s)] = 0

X
1
(s) [M

1
s2 + (B

1 
+ B)s + (K

1
 + K)] - X(s) [Bs + K] = 0

X
1
(s) [M

1
s2 + (B

1 
+ B)s + (K

1
 + K)] = X(s) [Bs + K] 

( ) ( )
( ) ( )

X s X s
M s B B s K K

Bs K
21

1 1 1

` =
+ + + +

+

......(1)

The free body diagram of mass M
2 
is shown in fig 3. The opposing forces acting on M

2
 are marked as f

m2 
, f

b2,
 f

b

and f
k 
.	

f
dt
d x ; f BM

dt
dx

2

2

m2 2 b2 2= =

f
dt
dx ( ) ; f ( )B x x K x x

m2 1 k 1= − = −

	 By Newton’s second law,	

f
m2

 + f
b2

 + f
b
 + f

k
 = f(t)

dt
d x

dt
dx ( ) ( ) ( )M B B

dt
d x x K x x f t

2

2

2 2 1 1
+ + − + − =

On taking Laplace transform of above equation with zero initial conditions we get,

M
2
s2X(s) + B

2
sX(s) + Bs[X(s) - X

1
(s)] + K[X(s) - X

1
(s)] = F(s) 

X(s)[M
2
s2 + (B

2 
+ B)s + K]  - X

1
(s)[Bs + K] = F(s)		  .....(2)

Substituting for X
1
(s) from equation (1) in equation (2) we get,

( ) [ s ( ) ] ( )
s ( ) (K )

( )
( )X s M B B s K X s

M B B s K
Bs K

F s2
2

2

2 2
1 1 1

+ + + −
+ + + +

+ =

fm1

fb1

fb

fk1

fk

M1

Fig 2 : Free body diagram
of mass M (node 1).1

x1

f(t)

fm2

fb2

fk

M2

Fig 3 : Free body diagram
of mass M (node 2).2

x

fb
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( )
s ( ) ( )

[ s ( ) ] [ s ( ) ( )] ( )
( )X s

M B B s K K

M B B s K M B B s K K Bs K
F s

2

2 2 2

1 1 1

2 2 1 1 1

+ + + +
+ + + + + + + − +

=> H

( )
( )

[ s ( ) ( )] [ s ( ) ] ( )

s ( ) ( )
F s
X s

M B B s K K M B B s K Bs K

M B B s K K
2 2 2

2

1 1 1 2 2

1 1 1` =
+ + + + + + + − +

+ + + +

RESULT

The differential equations governing the system are,

1.
dt

d x
B

dt
dx

( ) x (x ) 0M B
dt
d x x K K x

2

2

1
1

1
1

1 1 1 1+ + − + + − =

2.
dt
d x B

dt
dx ( ) ( x ) ( )M B

dt
d x x K x f t

2

2

2 2 1 1+ + − + − =

The transfer function of the system is,

( )
( )

[ s ( ) ( )] [ s ( ) ] ( )

s ( ) ( )
F s
X s

M B B s K K M B B s K Bs K

M B B s K K
2 2 2

2

1 1 1 2 2

1 1 1=
+ + + + + + + − +

+ + + +

EXAMPLE 1.2

Determine the transfer function 
( )
( )

F s
Y s2  of the system shown in fig 1.

SOLUTION

Let,	 Laplace transform of  f(t)  = L{f(t)} = F(s)

	 Laplace transform of  y
1
  = L{y

1
}  = Y

1
(s)

	 Laplace transform of  y
2 
 = L{y

2
}  = Y

2
(s)

The system has two nodes and they are mass M
1
 and M

2
. The differential 

equations governing the system are the force balance equations at these nodes.

The free body diagram of mass M
1
 is shown in fig 2. 

The opposing forces are marked as f
m1

, f
b
, f

k1
 and f

k2

M
dt

d y
; f ; K y ; (y y )f B

dt

dy
f f K

2

2

m1 1
1

b
1

k1 1 1 k2 2 1 2
= = = = −

By Newton’s second law, f
m1

 + f
b
 + f

k1
 + f

k2
 = f(t)

dt

d y

dt

dy
y ( ) ( )M B K K y y f t

2

2

1
1 1

1 1 2 1 2
` + + + − =  .....(1)

On taking Laplace transform of equation (1) with zero initial condition we get,

M
1
s2Y

1
(s) + BsY

1
(s) + K

1
Y

1
(s) + K

2
[Y

1
(s) - Y

2
(s)] = F(s)

Y
1
(s)[M

1
s2 + Bs + (K

1
+

 
K

2
)] - Y

2
(s)K

2
 = F(s)			  .....(2)

The free body diagram of mass M
2
 is shown in fig 3. The opposing forces acting on M

2
 are f

m2
 and f

k2
.

	
dt

d y
; ( )f M f K y y

2

2

m2 2
2

k2 2 2 1
= = −

By Newton’s second law,   f
m2

 + f
k2

 = 0  

f(t) B
K1

y1

y2

K2

M1

M2

Fig 1.

f(t)

fm1

fk1

M1

Fig 2.

fb
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M
dt

d y
( ) 0K y y

2

2

2
2

2 2 1
` + − =

On taking Laplace transform of above equation we get,

M
2
s2Y

2
(s) + K

2
[Y

2
(s) - Y

1
(s)] = 0

Y
2
(s) [M

2
s2 + K

2
] - Y

1
(s) K

2 
= 0

Y (s) ( )
M s

Y s
K

K2

1 2
2

2 2` =
+ 	 .....(3)

Substituting for Y
1
(s) from equation (3) in equation (2) we get,

Y (s)
M s

[ s ( )] ( ) ( )
K

K
M Bs K K Y s K F s

2
2

2
2

2 2
1 1 2 2 2

+
+ + + − => H

Y (s)
(M s )[ s ( )]

( )
K

K M Bs K K K
F s

2 2 2

2
2

2 2 1 1 2 2
+ + + + −

=> H

( )
Y (s)

[ s ( )] (M s )F s M Bs K K K K

K
2 2 2

2

1 1 2 2 2 2

2` =
+ + + + −> H

RESULT

The differential equations governing the system are,

1.
dt

d y
K (y ) ( )M B

dt

dy
K y y f t

2

2

1
1 1

1 21 1 2+ + + − =

.
dt

d y
(y ) 0M K y2

2

2

2
2

2 2 1
+ − =

The transfer function of the system is,

( )
( )

[ s ( )] [ ]F s
Y s

M Bs K K M s K K

K
2 2 2

2

1 1 2 2 2 2

2=
+ + + + −

 

EXAMPLE 1.3

Determine the transfer function, 
( )
( )

F(s)
X (s)

F s
X s

and1 2  for the system shown in fig 1.

SOLUTION

Let,	 Laplace transform of f(t) =  L{f(t)} =  F(s)

	 Laplace transform of x
1
   =  L{x

1
}   =  X

1
(s)

	 Laplace transform of x
2
   =  L{x

2
}   =  X

2
(s)

x1 x2

K1

M1

B12

K2

M2

f(t)

B2
B1

Fig 1.

y2

M2

fm2

fk2

Fig 3.

f(t)

fm1

fb12

M1 Fig 2.fb1

fk1

x1



1. 12 	 Control Systems 

The system has two nodes and they are mass M
1
 and M

2
. The differential equations governing the system are 

the force balance equations at these nodes. The free body diagram of mass M
1
 is shown in fig 2. The opposing forces 

are marked as f
m1

, f
b1

, f
b12

 and f
k1

.

dt

d x
;

dt

dx
;

dt
d (x ) ; xf M f B f B x f K

2

2

m1 1
1

b1 1
1

b12 12 1 2 k1 1 1= = = − =

By Newton’s second law, f
m1

 + f
b1

 + f
b12

 + f
k1

 = f(t)

dt

d x
dt
dx ( )

K x ( )M B B
dt

d x x
f t

2

2

1
1

1
1

12
1 2

1 1+ +
−

+ =

On taking Laplace transform of above equation with zero initial conditions we get,

M
1
s2X

1
(s) + B

1
sX

1
(s) + B

12
s[X

1
(s) - X

2
(s)] + K

1
X

1
(s) = F(s)

X
1
(s)[M

1
s2 + (B

1
 + B

12
)s + K

1
] - B

12
sX

2
(s) = F(s)		  .....(1)

The free body diagram of mass M
2
 is shown in fig 3. The opposing forces are marked as f

m2
, f

b2
, f

b12 
 and f

k2
.

dt

d x
;

dt

dx
f M f B

2

2

m2 2
2

b2 2
2= =

dt
d (x ) ; K xf B x fb12 12 2 1 k2 2 2= − =

By Newton’s second law, f
m2

 + f
b2

 + f
b12

 + f
k2

 = 0

dt

d x
dt

dx ( )
K x ( )M B B

dt
d x x

f t
2

2

2
2 2

12
2 1

2 22+ +
−

+ = 		  .....(2)

On taking Laplace transform  of equation (2) with zero initial conditions we get,

M
2
s2X

2
(s) + B

2
sX

2
(s) + B

12
s[X

2
(s) - X

1
(s)] + K

2
X

2
(s) = 0

X
2
(s)[M

2
s2 + (B

2
 + B

12
)s + K

2
] - B

12
sX

1
(s) = 0

X
2
(s)[M

2
s2 + (B

2
 + B

12
)s + K

2
] = B

12
sX

1
(s)

( )
[ s ( ) K ]

B sX (s)
X s

M B B s22
2 2 12 2

12 1=
+ + + 	

.....(3)

Substituting for X
2
(s) from equation (3) in equation (1) we get,

( ) [ s ( ) ]
M s (B B )

(B s) X (s)
( )X s M B B s K

s K
F s2

2

2

1 1 1 12 1
2 2 12 2

12 1

+
+ + + −

+ +
=

M s (B B )

( ) [ s ( ) ] [ s ( ) ] (B s)
( )

s K

X s M B B s K M B B s K
F s

2

2 2 2

2 2 12 2

1 1 1 12 1 2 2 12 2 12

++ +

+ + + + + + −
=

9 C

( )
( )

[M s (B B ) ] [ s ( ) ] ( )

s ( )

F s
X s

s K M B B s K B s

M B B s K
2 2 2

2
1

12 2 2 12 2 12

2 2 12 2

1 1 1

`
+

=
+ + + + + −

+ + +

From equation (3) we get,

( )
[ s ( ) ] ( )

X s
B s

M B B s K X s2

1
12

2 2 12 2 2=
+ + +

		  .....(4)

Substituting for X
1
(s) from equation (4) in equation (1) we get,

( ) [ s ( ) ]
[ s ( ) ] ( ) ( )

B s

X s M B B s K
M B B s K B sX s F s

2
2

12

2 2 2 12 2
1 1 12 1 12 2

+ + +
+ + + − =

fm2

fb12

M2

Fig 3.

fb2

fk2

x2
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	 ( )
[ s ( ) ] [ s ( ) ] ( )

( )X s
B s

M B B s K M B B s K B s
F s

2 2 2

2
12

2 2 12 2 1 1 12 1 12+ + + + + + −
=> H

( )
( )

[ s ( ) ] [ s ( ) ] ( )F s
X s

M B B s K M B B s K B s

B s
2 2 2

2

2 2 12 2 1 1 12 1 12

12` =
+ + + + + + −

RESULT

The differential equations governing the system are,

1.
dt

d ( )
K ( )M

x
B

dt

dx
B

dt

d x x
x f t

2

2

1
1

1
1

12
1 2

1 1
+ +

−
+ =

2.
dt

d ( )
K x 0M

x
B

dt

dx
B

dt

d x x
2

2

2
2

2
2

12
2 1

2 2
+ +

−
+ =

	 The transfer functions of the system are,

.
( )

( )

[ s ( ) ] [ s ( B ) ] ( s)

s ( )

F s

X s

M B B s K M B s K B

M B B s K
1

2 2 2

2
1

1 1 12 1 2 2 12 2 12

2 2 12 2=
+ + + + + + −

+ + +

.
( )

( )

[ s ( ) ] [ s ( B ) ] ( s)F s

X s

M B B s K M B s K B

B s
2

2 2 2
2

2 2 12 2 1 1 12 1 12

12=
+ + + + + + −

EXAMPLE 1.4

Write the equations of motion in s-domain for the system shown in fig 1. Determine the transfer function of the 

system.

SOLUTION

Let,	 Laplace transform of  x(t) = L{x(t)} = X(s)

	 Laplace transform of  f(t) = L{f(t)}  =  F(s)	

Let x
1
 be the displacement at the meeting point of spring and dashpot. Laplace transform of x

1
 is X

1
(s).

The system has two nodes and they are mass M and the meeting point of spring and dashpot. The differential 
equations governing the system are the force balance equations at these nodes. The equations of motion in the s-domain 
are obtained by taking Laplace transform of the differential equations.

The free body diagram of mass M is shown in fig 2. The opposing forces are marked as f
m
, f

b1 
and f

b2
.

dt
d x ; ;

dt
d (x )f M f B

dt
dx f B x

2

2

m b1 1 b2 2 1= = = −

By Newton’s second law the force balance equation is,

f
m
 + f

b1
 + f

b2
 = f(t)

dt
d x

dt
dx

dt
d (x ) ( )M B B x f t

2

2

1 2 1
` + + − =

On taking Laplace transform of the above equation we get,

Ms2X(s) + B
1
sX(s) + B

2
s[X(s) - X

1
(s)] = F(s)

[Ms2 + (B
1
 + B

2
)s] X(s) - B

2
 sX

1
(s) = F(s)		  .....(1)

K

B2

B1

f(t)

x(t)

M

Fig 1.

f(t)

fm

fb2

M

Fig 2.

fb1

x
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The free body diagram at the meeting point of spring and dashpot is shown in fig 3. The opposing forces are 

marked as f
k
 and f

b2
.

( ) ;f B
dt
d x x f Kxb2 2 1 k 1

= − =

By Newton’s second law,  fb2 + fk = 0

( ) 0B
dt
d x x Kx2 1 1` − + =

On taking Laplace transform of the above equation we get,

B
2
s[X

1
(s) - X(s)] + K X

1
(s) = 0

(B
2
s + K) X

1
(s) - B

2
 sX(s) = 0	  	

( )
B s K

B s
( )X s X s1

2

2` =
+

      	 .....(2)

Substituting for X
1
(s) from equation (2) in equation (1) we get,

( ) ( ) ( ) ( )Ms B B s X s B s
B s K

B s
X s F s2

1 2 2
2

2+ + −
+

=6 >@ H

( )
( ) ( ) ( ) ]

( )X s
B s K

Ms B B s B s K B s
F s

2 2

2

1 2 2 2
+

+ + + −
=

6 @

( )
( )

( ) ( ) ( ) ]F s
X s

Ms B B s B s K B s

B s K
2 2

1 2 2 2

2` =
+ + + −

+

6 @

RESULT

The differential equations governing the system are,

1.
dt
d x ( ) ( )M B

dt
dx B

dt
d x x f t

2

2

1 2 1
+ + − =

2.
dt
d ( ) 0B x x K x

22 1 1
− + =

The equations of motion in s-domain are,

1.  [M s2 + (B
1
 + B

2
)s] X(s) - B

2
 sX

1
(s) = F(s)   

2.  (B
2
s + K) X

1
(s) - B

2
 sX(s) = 0

The transfer function of the system is,

( )
( )

[ ( ) ] ( ) ( )F s
X s

M s B B s B s K B s

B s K
2 2

1 2 2 2

2=
+ + + −

+

1.5	 MECHANICAL ROTATIONAL SYSTEMS

The model of rotational mechanical systems can be obtained by using three elements, moment 
of inertia [J] of mass, dash-pot with rotational frictional coefficient [B] and torsional spring with 
stiffness [K].

The weight of the rotational mechanical system is represented by the moment of inertia of the  
mass. The moment of inertia of the system or body is considered to be concentrated at the centre of gravity 
of the body. The elastic deformation of the body can be represented by a spring (torsional spring). The 
friction existing in rotational mechanical system can be represented by the dash-pot. The dash-pot is a 
piston rotating inside a cylinder filled with viscous fluid.

M=0

Fig 3.

fb2

fk

x1
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J

T �

Fig 1.14 : Ideal rotational mass element.

When a torque is applied to a rotational mechanical system, it is opposed by opposing torques due to 
moment of inertia, friction and elasticity of the system. The torques acting on a rotational mechanical body 
are governed by Newton’s second law of motion for rotational systems. It states that the sum of torques acting 
on a body is zero (or Newton’s law states that the sum of applied torques is equal to the sum of opposing 
torques on a body).

LIST OF SYMBOLS USED IN MECHANICAL ROTATIONAL SYSTEM

θ	 =	 Angular displacement, rad

	 dt
dθ 	 =	 Angular velocity, rad/sec

	 dt
d2θ 	 =	 Angular acceleration, rad/sec2 

T	 =	 Applied torque, N - m
J	 =	 Moment of inertia, Kg - m2/rad
B	 =	 Rotational frictional coefficient, N - m/(rad/sec)
K	 =	 Stiffness of the spring, N-m/rad

TORQUE BALANCE EQUATIONS OF IDEALISED ELEMENTS
Consider an ideal mass element shown in fig 1.14 which has negligible friction and elasticity. The 

opposing torque due to moment of inertia is proportional to the angular acceleration.

Let,	 T =	 Applied torque.
	 Tj = Opposing torque due to moment of inertia of the body.

Here	 T
dt
d or T J

dt
d

2

2

2

2

j j\ θ θ=

By Newton’s second law,

	 T T J
dt
d

2

2

j
θ= = 				     .....(1.7)

Consider an ideal frictional element dash pot shown in fig 1.15 which has negligible moment of 
inertia and elasticity. Let a torque be applied on it. The dash pot will offer an opposing torque which is 
proportional to the angular velocity of the body.

Let,	 T  =  Applied torque.
	 Tb =	 Opposing torque due to friction.

        T
dt
d or T B dt

d
2b b\ θ θ=

        By Newton’s second law,	   T T B dt
d

b
θ= =     	 .....(1.8)

When the dash pot has angular displacement at both ends as shown in fig 1.16, the opposing torque 
is proportional to the difference between angular velocity at both ends.

( ) ( )T dt
d or T B dt

d
b b1 2 1 2
\ θ θ θ θ− = − 	

	       ( )T T B dt
d

b 1 2
` θ θ= = −                     	 .....(1.9)

T �
B

Fig 1.15 : Ideal rotational dash-pot with
one end fixed to reference.

T1 �1

B

Fig 1.16 : Ideal dash-pot with
angular displacement at both ends.

�2
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Consider an ideal elastic element, torsional spring as shown in fig 1.17, which has negligible moment 
of inertia and friction. Let a torque be applied on it. The torsional spring will offer an opposing torque 
which is proportional to angular displacement of the body.

Let,	 T  =  Applied torque.

	 Tk =	 Opposing torque due to elasticity.

	 Tk ∝ θ    or	 Tk = Kθ 

By Newton’s second law,	 T = Tk = Kθ             .....(1.10)	

When the spring has angular displacement at both ends as shown in fig 1.18 the opposing torque is 
proportional to difference between angular displacement at both ends.

Tk  ∝  (θ1 − θ2)   or   Tk = K(θ1 − θ2)

 ∴ T  =  Tk = K(θ1 − θ2)	 		   .....(1.11)	

Guidelines to determine the Transfer Function of Mechanical Rotational System 
1.	 In mechanical rotational system, the differential equations governing the system are obtained 

by writing torque balance equations at nodes in the system. The nodes are meeting point of 
elements. Generally the nodes are mass elements with moment of inertia in the system. In 
some cases the nodes may be without mass element.

2.	 The angular displacement of the moment of inertia of the masses (nodes) are assumed as θ1, 
θ2, θ3, etc., and assign a displacement to each mass (node). The first derivative of angular 
displacement is angular velocity and the second derivative of the angular displacement is 
angular acceleration.

3.	 Draw the free body diagrams of the system. The free body diagram is obtained by drawing 
each moment of inertia of mass separately and then marking all the torques acting on that 
body. Always the opposing torques acts in a direction opposite to applied torque.

4.	 The mass has to rotate in the direction of the applied torque. Hence the angular displacement, 
velocity and acceleration of the mass will be in the direction of the applied torque. If there 
is no applied torque then the angular displacement, velocity and acceleration of the mass is 
in a direction opposite to that of opposing torque.

5.	 For each free body diagram write one differential equation by equating the sum of applied 
torques to the sum of opposing torques.

6.	 Take Laplace transform of differential equation to convert them to algebraic equations. Then 
rearrange the s-domain equations to eliminate the unwanted variables and obtain the relation 
between output variable and input variable. This ratio is the transfer function of the system.

Note : 

	 Laplace transform of  θ  = L{θ} = θ(s)

	 Laplace transform of  
dθ
dt  = L        = s θ(s)   (with zero initial conditions)

	 Laplace transform of        = L         = s θ(s)   (with zero initial conditions)

	

1
2

3

dθ
dt 1

2
3

1
2

3

d2θ
dt2

1
2

3d2θ
dt2

T � K

Fig 1.17 : Ideal spring with one
end fixed to reference.

T ��
K

Fig 1.18 : Ideal spring with angular
displacement at both ends.

��
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EXAMPLE 1.5

Write the differential equations governing the mechanical rotational system shown in fig 1. Obtain the transfer 

function of the system.

SOLUTION

In the given system, applied torque T is the input and angular displacement θ is the output.

	 Let, Laplace transform of  T   =  L{T} = T(s)

		  Laplace transform of  θ   = L{θ}  = θ(s)

		  Laplace transform of θ
1
  = L{θ

1
} = θ1(s)

	 Hence the required transfer function is 
( )
( )

T s
sθ

The system has two nodes and they are masses with moment of inertia J
1
 and J

2
. The differential equations 

governing the system are given by torque balance equations at these nodes.

Let the angular displacement of mass with moment of inertia J
1
 be θ

1
. The free body diagram of J

1
 is shown in 

fig 2. The opposing torques acting on J
1
  are marked as T

j1
 and T

k
.

; ( )T J
dt

d
T K

2

2

j1 1
1

k 1
θ

θ θ= = − 	

By Newton’s second law,  T
j1
 + T

k
 = T

( )J
dt

d
K T

2

2

1 1
1θ θ θ+ − =

J
dt

d
K K T

2

2

1
1

1
θ

θ θ+ − = 	                                       	  .....(1)

On taking Laplace transform  of  equation (1) with zero initial conditions we get,

J
1
s2q

1
(s) + Kq

1
(s) - Kq(s) = T(s)

(J
1
s2 + K)q

1
(s) - Kq(s) = T(s) 			    .....(2)	 	

The free body diagram of mass with moment of inertia J
2
 is shown in fig 3. The opposing torques acting on J

2
 

are marked as T
j2
, T

b
 and T

k
.

; ; ( )T J
dt
d T B

dt
d T K

2

2

j2 2 b k 1
θ θ θ θ= = = −

By Newton’s second law, T
j2
 + T

b
 + T

k
 = 0

dt
d ( ) 0J B

dt
d K

2

2

2 1` θ θ θ θ+ + − =   

   
dt
d 0J B

dt
d K K

2

2

2 1
θ θ θ θ+ + − =

On taking Laplace transform of above equation with zero initial conditions we get,

	 J
2
s2q(s) + B s q(s) + K q(s) - Kq

1
(s) = 0

(Applied Torque) (Output)
� B

J1 J2

KT

Fig 1.

TkTj1

�1T

J1

Fig 2 : Free body diagram of mass with
moment of inertia J .1

Tk
Tj2

�

J2

Fig 3 : Free body diagram of mass with
moment of inertia J .2

Tb
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(J
2
s2 + Bs + K) q(s) - Kq

1
(s) = 0

( )
( )

( )s
K

J s Bs K
s

2

1
2θ θ=

+ +  	 	                          	    .....(3)

Substituting for θ
1
(s) from equation (3) in equation (2) we get,

( s )
s

( ) ( ) ( )J K
K

J Bs K
s K s T s2

2

1
2 θ θ+

+ +
− =

^ h

( s ) s
( ) ( )

K
J K J Bs K K

s T s
2 2 2

1 2 θ
+ + + −

=
^ h; E

( )
( )

( s ) sT s
s

J K J Bs K K
K

2 2 2
1 2

`
θ =

+ + + −^ h

RESULT

The differential equations governing the system are,

1. J
dt

d
K K T

2

2

1
1

1
θ

θ θ+ − =

. J
dt
d 0B

dt
d K K2

2

2

2 1
θ θ θ θ+ + − =

The transfer function of the system is,

( )
( )

( s )( s )T s
s

J K J Bs K K
K

2 2 2
1 2

θ =
+ + + −

EXAMPLE 1.6

Write the differential equations governing the mechanical rotational system shown in fig 1. and determine  

the transfer function θ(s)/T(s).

SOLUTION

In the given system, the torque T is the 

input and the angular displacement θ is the output.

Let, Laplace transform of  T = L{T}  = T(s)

	  Laplace transform of θ  = L{θ}  = θ(s)

	  Laplace transform of θ
1
 = L{θ1} = θ

1
(s)

Hence the required transfer function is 
( )
( )

T s
sθ

The system has two nodes and they are masses with moment of inertia J
1
 and J

2
. The differential equations 

governing the system are given by torque balance equations at these nodes.

Let the angular displacement of mass with moment of inertia J
1
 be θ

1
. The free  body diagram of J

1 
is shown in 

fig 2. The opposing torques acting on J
1
 are marked as T

j1
, T

b12
 and T

k
 .

d
; ( ) ; ( )T J

dt
T B

dt
d T K

2

2

j1 1
1

b12 12 1 k 1
θ

θ θ θ θ= = − = − 	     

By Newton’s second law, 	 T
j1
 + T

b12
 + T

k
 = T	

K

J1 J2

�1
B12 �

B

Fig 1.

Tb12Tj1

�1T

J1

Fig 2 : Free body diagram of mass with
moment of inertia J .1

Tk
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		  J
dt

d
( ) ( )B

dt
d K T

2

2

1
1

12 1 1
θ

θ θ θ θ+ − + − = 	          

On taking Laplace transform of above equation with zero initial conditions we get,

J
1
s2q

1
(s) + s B

12
 [q

1
(s) - q(s)] + Kq

1
(s) - Kq(s) = T(s)

q
1
(s) [J

1
s2 + s B

12
 + K ] - q(s) [s B

12
 + K] = T(s)                                                                               .....(1)                                                          

The free body diagram of mass with moment of inertia J
2
 is shown in fig 3. The opposing torques are marked 

as T
j2
, T

b12
, T

b
 and T

k
.

dt
d ; ( )T J T B

dt
d

2

2

j2 2 b12 12 1
θ θ θ= = − 	

; ( )T B
dt
d T Kb k 1
θ θ θ= = −

By Newton’s second law, T
j2
 + T

b12
 + T

b
 + T

k
 = 0

dt
d ( ) ( )J B

dt
d B

dt
d K 0

2

2

2 12 1 1
θ θ θ θ θ θ+ − + + − =

dt
d ( ) 0J B

dt
d

dt
d B B K K

2

2

2 12
1

12 1
θ θ θ θ θ− + + + − =

On taking Laplace transform of above equation with zero initial conditions we get,

J
2
s2q(s) - B

12
 sq

1
(s) + sq(s) [B

12
 + B] + Kq(s) - Kq

1
(s) = 0

q(s) [s2J
2
 + s(B

12
 + B) + K] - q

1
(s) [sB

12
 + K] = 0

( )
[ ]

J ( )
( )s

sB K
s s B B K

s
2

1
12

2 12θ θ=
+

+ + +6 @                                                      	       .....(2)

Substituting for θ
1
(s) from equation (2) in equation (1) we get,

J s
( B )

[ s ( ) ] ( )
( ) ( ) ( )sB K

s K
J s B B K s

sB K s T s2
2

1 12
12

2 12
12

θ
θ+ +

+
+ + +

− + =6 @

( B )
(J s ) [ s ( ) ] ( )

( ) ( )
s K

sB K J s B B K sB K
s T s

2 2 2

12

1 12 2 12 12 θ
+

+ + + + + − +
=> H

( )
( )

(J s ) [ s ( ) ] ( )

( B )
T s

s
sB K J s B B K sB K

s K
2 2 2

1 12 2 12 12

12`
θ =

+ + + + + − +
+

	   

RESULT

The differential equations governing the system are, 

1. J
dt

d
dt
d ( ) ( )B K T

2

2

1
1

12 1 1
θ

θ θ θ θ+ − + − =

2. J
dt

d
dt
d

(B ) ( ) 0B
dt
d B K

2

2

2
1

12
1

12 1
θ θ θ θ θ− + + + − =

The transfer function of the system is,

( )
( )

( ) [ s (B ) ] ( )

( )
T s

s
J s sB K J s B K sB K

sB K
2 2 2

12 2 12 12

12

1

θ =
+ + + + + − +

+

Tb12Tj2

�

J2

Fig 3 : Free body diagram of mass with
moment of inertia J .2

Tk
Tb
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1.6	 ELECTRICAL SYSTEMS

The models of electrical systems can be obtained by using resistor, capacitor and inductor. The current-
voltage relation of resistor, inductor and capacitor are given in table-1. For modelling electrical systems, 
the electrical network or equivalent circuit is formed by using R, L and C and voltage or current source.

The differential equations governing the electrical systems can be formed by writing Kirchoff ’s 
current law equations by choosing various nodes in the network or Kirchoff ’s voltage law equations by 
choosing various closed paths in the network. The transfer function can be obtained by taking Laplace 
transform of the differential equations and rearranging them as a ratio of output to input.
Table-1.1 : Current-Voltage Relation of  R, L and C

	     Element	        Voltage across the element	        Current through the element

	 	v(t) = Ri(t)	 ( ) ( )i t R
v t= 	

	 	 ( ) ( )v t L dt
d i t= 	 ( ) ( )i t L v t dt1= #

   	 	 ( ) ( )v t C i t dt1= # 	 ( ) ( )i t C dt
dv t=

EXAMPLE 1.7

Obtain the transfer function of the electrical network shown in fig 1.

SOLUTION

In the given network, input is e(t) and output is v
2
(t).

Let,  Laplace transform of  e(t)  = L{e(t)}  = E(s)

	 Laplace transform of v
2
(t) = L{v

2
(t)} = V

2
(s)

The transfer function of the network is 
E(s)
V (s)2

Transform the voltage source in series with resistance R
1
 into 

equivalent current source as shown in figure 2. The network has two 
nodes. Let the node voltages be v

1
 and v

2
. The Laplace transform of 

node voltages v
1
 and v

2
 are V

1
(s) and V

2
(s) respectively. The differential 

equations governing the network are given by the Kirchoff ’s current law 
equations at these nodes.

At node-1, by Kirchoff ’s current law (refer fig 3)

R
v

R
eC

dt
dv

R
v v

1

1
1

1

2

1 2

1
+ +

−
=

On taking Laplace transform of above equation with zero initial conditions we get,

R
V (s)

sV ( )
R

V (s)
R

V (s)
R

E(s)
C s

1

1
1 1

2

1

2

2

1
+ + − =

V (s)
R

s
R R

V (s)
R

E(s)
C1 1

1
1

1
2 2

2

1
+ + − =; E                    .....(1)

i(t)

v(t)

R

–+

i(t)

v(t)

L

–+

i(t)

v(t)

C

–+

~ e(t) C1 C2

R1
R2 21

–

+
v (t)2

–

+

Fig 1.
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_+

V=IR
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R

R

V

I R

Note : Source transformation

V

R
I =

Fig 2.
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At node-2, by Kirchoff ’s current law (refer fig 4)

dt
dv

0
R

v v
C

2

2 1
2

2+ =-

On taking Laplace transform of  above equation with zero initial conditions we get,

R
V (s)

R
V (s)

C sV ( ) 0s
2

2

2
2 2

1− + = 	

R
V (s)

R
V (s)

C sV ( ) ( )s
R

sC V s1
2

1

2

2
2 2

2
2 2= + = +; E 	

( ) [1 ] V ( )V s sC R s1 2 2 2` = + 	 .....(2) 

Substituting for V
1
(s) from equation (2) in equation (1) we get,

(1 R C )V ( )
R
1 C

R
1

R
V (s)

R
E(s)

s s s2 2 2
1

1
2 2

2

1
+ + + − =; E

R
(1 R C )( C R R )

V ( )
R

E(s)
R

s R R s R
s

1 2

2 2 2 1 1 1 2 1
2

1

+ + + −
=> H

E(s)
V ( )

[(1 R C )( C R R ) ]
Rs

s R R s R
2

2 2 1 2 1 1 2 1

2` =
+ + + −

	

RESULT

The (node basis) differential equations governing the electrical network are,

1.
R
v

C
dt
dv v

R
v

R
e

1

1
1

1

2

1 2

1
+ +

−
=

2.
v

C
dt

dv
0

R
v

2

2 1
2

2−
+ =

The transfer function of the electrical network is,

( )
( )

[(1 C )( C R R ) ]E s
V s

sR R R s R
R2

2 2 1 2 1 1 2 1

2=
+ + −+

1.7	 TRANSFER FUNCTION OF ARMATURE CONTROLLED DC  MOTOR

The speed of DC motor is directly proportional to armature voltage and inversely proportional to flux 
in field winding. In armature controlled DC motor the desired speed is obtained by varying the armature 
voltage. This speed control system is an electro-mechanical control system. The electrical system consists 
of the armature and the field circuit but for analysis purpose, only the armature circuit is considered because 
the field is excited by a constant voltage. The mechanical system consists of the rotating part of the motor 
and load connected to the shaft of the motor. The armature controlled DC motor speed control system is 
shown in fig 1.19.

v1
v2

Fig 3. Fig 4.

e

R
1

v

R
1

1

C
dv

dt1

1
v v

R
2 1

2

�
C

dv

dt2

2

v v

R
1 2

2

�
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Let,	 Ra	=	 Armature resistance, Ω
	 La	=	 Armature inductance, H
	 ia	 =	 Armature current, A
	 va	=	 Armature voltage, V
	 eb	=	 Back emf, V
	 Kt	=	 Torque constant, N-m/A
	 T	 =	 Torque developed by motor, N-m
	 θ	 =	 Angular displacement of shaft, rad
	 w  =   Angular velocity, rad/sec
	 J	 =	 Moment of inertia of motor and load, Kg-m2/rad
	 B	 =	 Frictional coefficient of motor and load, N-m/(rad/sec)

	 Kb	=	 Back emf constant, V/(rad/sec)

The equivalent circuit of armature is shown in fig 1.20.
By Kirchoff ’s voltage law, we can write,

     i R L dt
di e vaa a

a
b a+ + =                           .....(1.12)

Torque of DC motor is proportional to the product of 
flux and current. Since flux is constant in this system, the torque 
is proportional to ia alone.

   	 T ∝ ia 

      ∴ Torque, T = Kt ia                               .....(1.13)

The mechanical system of the motor is shown in fig 1.21. 
The differential equation governing the mechanical 

system of motor is given by,

J
dt
d B dt

d T
2

2θ θ+ =                      .....(1.14)

The back emf of DC machine is proportional to speed (angular velocity) of shaft.

	 ; ,e and dt
d e dt

d or Back emf e K dt
d

b b b b\ ` \ω ω θ θ θ= =     	 .....(1.15)

The Laplace transform of various time domain signals involved in this system are shown below.
	 L{va} = Va(s)  ;  L{eb} = Eb(s)  ;  L{T} = T(s)  ;  L{ia} = Ia(s)  ;  L{q} = q(s)

The differential equations governing the armature controlled DC motor speed control system are,

	 ; ; ;i R L dt
di e v T K i J

dt
d B dt

d T e K dt
d

2

2

a t aa a
a

b a b b
θ θ θ+ + = = + = =

v = input
a

+

_

v = Constant
f

+

_

i
f

R
f

L
f

i
a

J, B
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L ,R
a a

(Output)
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�

Fig 1.19 : Armature controlled DC motor.
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Fig 1.20 : Equivalent circuit of armature.
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Taking Laplace transform of the above equations with zero initial conditions we get,

	 Ia(s) Ra + LasIa(s) + Eb(s) = Va(s)		 .....(1.16)

	 T(s) = KtIa(s)	 .....(1.17)

	 Js2q(s) + B s q(s) = T(s)	 .....(1.18)

	 Eb(s) = Kbsq (s)	 .....(1.19)

On equating equations (1.17) and (1.18) we get,	

	 KtIa(s) = (Js2 + Bs) q(s)

	 ( ) ( ) ( )I s K
Js Bs s

2

a
t

θ= +     	 .....(1.20)

Equation (1.16) can be written as,

	 (Ra + sLa) Ia(s) + Eb(s) = Va(s)				                 .....(1.21)

Substituting for Eb(s) and Ia(s) from equation (1.19) and (1.20) respectively in equation (1.21),

	 ( ) ( ) ( ) ( ) ( )R sL K
Js Bs s K s s V s

2

a a
t

b aθ θ+ + + =

( ) ( ) ( ) ( )K
R sL Js Bs K K s s V s

2

t

a a b t
aθ

+ + +
=> H

The required transfer function is ( )
( )

V s
s

a

θ

 ( )
( )

( ) ( )V s
s

R sL Js Bs K K s
K
2

a a a b t

t`
θ =

+ + + 	
....(1.22)

		

R Js R Bs L Js L Bs K K s
K

2 3 2
a a a a b t

t=
+ + + +

  
.

( ) ( )s JL s JR BL s BR K K
K

2
a a a a b t

t=
+ + + +6 @

/

s s JL
JR BL s JL

BR K K
K JL

2

a

a a

a

a b t

t a=
+

+
+

+
c cm m; E

	 .....(1.23)

The transfer function of armature controlled dc motor can be expressed in another standard form as 
shown below. From equation (1.22) we get,

( )
( )

( ) ( )V s
s

R sL Js Bs K K s
K

R R
sL Bs Bs

Js K K s

K

1 1
2 2

a a a b t

t

a
a

a
b t

tθ =
+ + +

=
+ + +c cm m

      
( ) ( )

/

s sT sT R B
K K

K R B

1 1a m
a

b t

t a=
+ + +; E

	 .....(1.24) 
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where,     R
L T Electrical time constant

a

a
a= =

                 B
J T Mechanical time constantm= =

1.8   TRANSFER FUNCTION OF FIELD CONTROLLED DC MOTOR

The speed of a DC motor is directly proportional to armature voltage and inversely proportional to 
flux. In field controlled DC motor the armature voltage is kept constant and the speed is varied by varying 
the flux of the machine. Since flux is directly proportional to field current, the flux is varied by varying field 
current. The speed control system is an electromechanical control system. The electrical system consists 
of armature and field circuit but for analysis purpose, only field circuit is considered because the armature 
is excited by a constant voltage. The mechanical system consists of the rotating part of the motor and the 
load connected to the shaft of the motor. The field controlled DC motor speed control system is shown in 
fig 1.22.

Let,	Rf	 =	 Field resistance, Ω
	 Lf	 =	 Field inductance, H
	 if	 =	 Field current, A
	 vf	 =	 Field voltage, V
	 T	 =	 Torque developed by motor, N-m
	 Ktf	=	 Torque constant, N-m/A	
	 J	 =	 Moment of inertia of rotor and load, Kg-m2/rad

	 B	 =	 Frictional coefficient of rotor and load, N-m/(rad/sec)

The equivalent circuit of field is shown in fig 1.23.
By Kirchoff ’s voltage law, we can write 

	 R i L dt
di vf f f

f
f+ =  			               .....(1.25)	                                              

The torque of DC motor is proportional to product of flux and 
armature current. Since armature current is constant in this system, 
the torque is proportional to flux alone, but flux is proportional to field 
current.

	 T ∝ if ,   ∴Torque, T = Ktf if  		              .....(1.26)	

The mechanical system of the motor is shown in fig 1.24. The differential equation governing the 
mechanical system of the motor is given by,

J
dt
d B dt

d T
2

2θ θ+ =                         	               .....(1.27)

v = input
a

+

_

v = Constant
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Fig 1.22 : Field controlled DC motor.
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The Laplace transform of various time domain signals involved in this system are shown below.

	 L{if} = If(s)	 ;	 L{T} = T(s)	 ;	 L{vf} = Vf(s)	 ;	 L{θ} = θ(s)

The differential equations governing the field controlled DC motor are,

	 ; ;R i L dt
di v T K i J

dt
d B dt

d T
2

2

f f f
f

f tf f
θ θ+ = = + =

On taking Laplace transform of the above equations with zero initial condition we get,

	 RfIf(s) + LfsIf(s) = Vf(s)	 .....(1.28)

	 T(s) = Ktf If(s)	 .....(1.29)

	 Js2q(s) + B sq(s) = T(s)	 .....(1.30)

Equating equations (1.29) and (1.30) we get,

KtfIf(s) = Js2q(s) + B sq(s)

( ) ( ) ( )I s s K
Js B sf

tf

θ= + 	 .....(1.31)

The equation (1.28) can be written as,

(Rf + sLf) If(s) = Vf(s)					              .....(1.32)

On substituting for If(s) from equation (1.31) in equation (1.32) we get,

( ) ( ) ( ) ( )R sL s K
Js B s V sf f

tf
fθ+ + =

( )
( )

( ) ( )V s
s

s R sL B sJ
K

f f f

tfθ =
+ +

( ) ( )sR R
sL B B

sJ
K

s sT sT
K

1 1 1 1
f

f

f

tf

f m

m=
+ +

=
+ +

c am k
	 .....(1.33)

where,  K R B
K Motor gain constantm
f

tf= =

T R
L Field time constantf

f

f= =

T B
J Mechanical time constantm = =

1.9	 ELECTRICAL ANALOGOUS OF MECHANICAL TRANSLATIONAL SYSTEMS

Systems remain analogous as long as the differential equations governing the systems or transfer 
functions are in identical form. The electric analogue of any other kind of system is of greater importance 
since it is easier to construct electrical models and analyse  them.

The three basic elements mass, dash-pot and spring that are used in modelling mechanical translational 
systems are analogous to resistance, inductance and capacitance of electrical systems.
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f

v

K

x v dt� z

f Kx K v dt� � z

 The input force in mechanical system is analogous to either voltage source or current source in  
electrical systems. The output velocity (first derivative of displacement) in mechanical system is analogous 
to either current or voltage in an element in electrical system. 

Since the electrical systems has two types of inputs either voltage or current source, there are two  
types of analogies : force-voltage analogy and force-current analogy.

FORCE-VOLTAGE ANALOGY

The force balance equations of mechanical elements and their analogous electrical elements in 
force-voltage analogy are shown in table-1.2. The table-1.3 shows the list of analogous quantities in  
force-voltage analogy.

The following points serve as guidelines to obtain electrical analogous of mechanical systems based 
on force-voltage analogy.

1.	 In electrical systems the elements in series will have same current, likewise in mechanical 
	 systems, the elements having same velocity are said to be in series.
2.	 The elements having same velocity in mechanical system should have the same analogous current  
	 in electrical analogous system.
3.	 Each node (meeting point of elements) in the mechanical system corresponds to a closed loop  
	 in electrical system. A mass is considered as a node.
4.	 The number of meshes in electrical analogous is same as that of the number of nodes (masses)  
	 in mechanical system. Hence the number of mesh currents and system equations will be same  
	 as that of the number of velocities of nodes (masses) in mechanical system. 

Table- 1.2 : Analogous Elements in Force-Voltage Analogy

	      Mechanical system	      Electrical system
	 Input    : Force	 Input    : Voltage source
	 Output : Velocity	 Output : Current through the element

B
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dt
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dt
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i
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� e = Ri

x

f
M

a
d x
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d x

dt
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e v and v L
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� �
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Table -1.3 : Analogous Quantities in Force-Voltage Analogy

	 Item	 Mechanical system	 Electrical system
			   (mesh basis system)

	 Independent variable	 Force, f	 Voltage, e, v
	 (input)		
	 Dependent variable	 Velocity, v	 Current, i

	 (output)	 Displacement, x	 Charge, q

	 Dissipative element	 Frictional coefficient	 Resistance, R
		  of dashpot, B
	 Storage element	 Mass, M	 Inductance, L
		  Stiffness of spring, K	 Inverse of capacitance, 1/C
	 Physical law	 Newton’s second law	 Kirchoff ’s voltage law
		  ∑f = 0	 ∑v = 0

	 Changing the level of                      Lever                                           Transformer    

                                                     f
f

l
l1

2

1

2

= 	 e
e

N
N1

2

1

2

=

Table-1.4 : Analogous Elements in Force-Current Analogy

		  Mechanical system			   Electrical system

		  Input   :  Force				    Input   :  Current source
		  Output :  Velocity			   Output :  Voltage across the element

B

x

f

v
dx

dt
�

f
dx

dt
Bv� �

_

+

v

i

Ri i
R

v� 1

x

f
M

f M
d x

dt
M

dv

dt
� �

2

2

a
d x

dt

dv

dt
� �

2

2

_

+

v

i

Ci i C
dv

dt
�

f

v

K

f Kx K v dt� � z

x v dt� z

_

+

v

i

Li i =
1

L
v dtz

independent variable
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Table-1.5 : Analogous Quantities in Force-Current Analogy

	 Item	 Mechanical system	 Electrical system
			   (node basis system)

	 Independent variable	 Force, f	 Current, i
	 (input)		

	 Dependent variable	 Velocity, v	 Voltage, v
	 (output)	 Displacement, x	 Flux, φ
	 Dissipative element	 Frictional coefficient	 Conductance G=1/R
		  of dashpot, B
	 Storage element	 Mass, M	 Capacitance, C
		  Stiffness of spring, K	 Inverse of inductance, 1/L
	 Physical law	 Newton’s second law	 Kirchoff ’s current law
		  ∑f = 0	 ∑i = 0
	 Changing the level of	 Lever	 Transformer
	 independent variable

	 	

5.	 The mechanical driving sources (force) and passive elements connected to the node (mass)  
in mechanical system should be represented by analogous elements in a closed loop in 
analogous electrical system.

6.	 The element connected between two (nodes) masses in mechanical system is represented as 
a common element between two meshes in electrical analogous system.

FORCE-CURRENT ANALOGY

The force balance equations of mechanical elements and their analogous electrical elements in 
force-current analogy are shown in table-1.4. The table-1.5 shows the list of analogous quantities in force-
current analogy.

The following points serve as guidelines to obtain electrical analogous of mechanical systems based 
on force-current analogy.

1.	 In electrical systems elements in parallel will have same voltage, likewise in mechanical 
systems, the elements having same force are said to be in parallel.

2.	 The elements having same velocity in mechanical system should have the same analogous 
voltage in electrical analogous system.

3.	 Each node (meeting point of elements) in the mechanical system corresponds to a node in 
electrical system. A mass is considered as a node.

4.	 The number of nodes in electrical analogous is same as that of the number of nodes (masses) 
in mechanical system. Hence the number of node voltages and system equations will be same 
as that of the number of velocities of (nodes) masses in mechanical system.

5.	 The mechanical driving sources (forces) and passive elements connected to the node (mass) 
in mechanical system should be represented by analogous elements connected to a node in 
electrical system.

6.	 The element connected between two nodes (masses) in mechanical system is represented as 
a common element between two nodes in electrical analogous system.

f
f

l
l1

2

1

2

=
e
e

N
N1

2

1

2

=
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fm2

fb2

fk1

M2

Fig 3.

fb12

fk2

x2

v2

EXAMPLE 1.8

Write the differential equations governing the 
mechanical system shown in fig 1. Draw the force-voltage and 
force-current electrical analogous circuits and verify by writing 
mesh and node equations.

SOLUTION

The given mechanical system has two nodes (masses). The differential equations 
governing the mechanical system are given by force balance equations at these nodes. Let the 
displacements of masses M

1
 and M

2
 be x

1
 and x

2
 respectively. The corresponding velocities be 

v
1
 and v

2
.

The free body diagram of M
1
 is shown in fig 2. The opposing forces are marked as 

f
m1

, f
b1

, f
b12

  and f
k1

.

dt

d x
; f B

dt
dx

f M
2

2

m1 1
1

b1 1
1= =

dt
d (x x ) ; f (x x )f B Kb12 12 1 2 k1 1 1 2= − = −

By Newton’s second law, f
m1

 + f
b1

 + f
b12

 + f
k1

 = f(t)

dt

d x
B

dt
dx

B
dt
d ( ) (x ) ( )M x x K x f t

2

2

1
1

1
1

12 1 2 1 1 2
` + + − + − = 	 ......(1)

The free body diagram of M
2
 is shown in fig 3.The opposing forces are marked as f

m2
, f

b2
, f

b12
, f

k1
 and f

k2
 .

M
dt

d x
; f B

dt
dx

; f B
dt
d (x x )f

2

2

m2 2
2

b2 2
2

b12 12 2 1= = = −

f (x x ) ; f xK Kk1 1 2 1 k2 2 2= − =

By Newton’s second law, f
m2

 + f
b2

 + f
k2 + f

b12
 + f

k1
 = 0

dt

d x
B

dt
dx

K x B
dt
d (x ) K (x x ) 0M x

2

2

2
2

2
2

2 2 12 1 2 1 2 1
+ + + − + − =       .....(2) 

On replacing the displacements by velocity in the differential equations (1) and (2) of 

the mechanical system we get,

. .,
dt
d x ;i e

dt
dv

dt
dx v and x v dt

2

2
= = =c m#

M
dt
dv

B v B (v v ) K (v v ) dt ( )f t1
1

1 1 12 1 2 1 1 2+ + − + − =#     	          .....(3)

M
dt

dv
B v v dt B (v v ) K (v v ) dt 0K2

2
2 2 2 2 12 2 1 1 2 1+ + + − + − =# # 	                                                 .....(4)

FORCE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has two nodes (masses). Hence the force-voltage analogous electrical circuit 
will have two meshes. 

The force applied to mass, M
1
 is represented by a voltage source in first mesh. The elements M

1
, B

1
, K

1
 and B

12
 

are connected to first node. Hence they are represented by analogous element in mesh-1 forming a closed path. The 
elements K

1
, B

12
, M

2
, K

2
, and B

2
 are connected to second node. Hence they are represented by analogous element in 

mesh-2 forming a closed path.

The elements K
1
 and B

12
 are common between node-1 and 2 and so they are represented by analogous element 

as common elements between two meshes. The force-voltage electrical analogous circuit is shown in fig 4.
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The electrical analogous elements for the elements of mechanical system are given below.

	 f(t) → e(t)	 M
1
 → L

1	
B

1
 →  R

1
 	 K

1
 → 1/C

1
 

	  v
1
 →  i

1
	 M

2
 → L

2	
B

2
 →  R

2
 	 K

2
 → 1/C

2
 

	  v
2
 →  i

2
		  B

12
 → R

12
 

The mesh basis equations using Kirchoff ’s voltage law for the circuit shown in fig 4 are given below (Refer fig 5 and 6).

L
dt
di

R i R (i i )
C
1 (i i ) ( )dt e t1

1
1 1 12 1 2

1
1 2+ + − + − =# 	 .....(5)

L
dt
di

R i i R (i i )
C
1 (i i ) 0

C
dt dt1

2
2

2 2
2

2 12 2 1
1

2 1+ + + − + − =# # 	 .....(6)

It is observed that the mesh basis equations (5) and (6) are similar to the differential equations (3) and (4) 
governing the mechanical system.

FORCE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has two nodes (masses). Hence the force-current analogous electrical circuit 
will have two nodes.

The force applied to mass M
1
 is represented as a current source connected to node-1 in analogous electrical 

circuit. The elements M
1
, B

1
, K

1
 and B

12
 are connected to first node. Hence they are represented by analogous elements 

connected to node-1 in analogous electrical circuit. The elements K
1
, B

12
, M

2
, K

2
, and B

2
 are connected to second node. 

Hence they are represented by analogous elements as elements connected to node-2 in analogous electrical circuit.

The elements K
1
 and B

12
 are common between node-1 and 2 and so they are represented by analogous elements 

as common element between two nodes in analogous circuit. The force-current electrical analogous circuit is shown 
in fig 7.

The electrical analogous elements for the elements of mechanical system are given below.

	 f(t)  → i(t)	 M
1
  →  C

1
	 B

1
 → 1/R

1
 	 K

1
 → 1/L

1
 

	  v
1
 → v

1
	 M

2
  →  C

2
	 B

2
 → 1/R

2
 	 K

2
 → 1/L

2
 

	  v
2
 → v

2
	 B

12
 → 1/R

12
 

+

_

e(t)

Fig 4 : Force-voltage electrical analogous circuit.
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+
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Fig 5 : Mesh-1 of analogous circuit.
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Fig 6 : Mesh-2 of analogous circuit.

R (i )12 1–i
2

R i1 1
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~

R (i )12 2 – i
1

R12

C1

C1

L2

R i2 2 R2

C2

L2R1
L1

i1 i2

R12
R2

C1 C2

L1
R1

R12

L
di

dt
1

1

1

1
1 2

C
i dt(i )�z 1

2
2 1

C
i dt(i )�z 1

1
2

C
i dtz

L
di

dt
2

2
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The node basis equations using Kirchoff ’s current law for the circuit shown in fig 7 are given below (Refer 

fig 8 and 9).

C
dt
dv

R
1 v

R
1 (v v ) ( )

L
v v dt i t1

1
1

1
1

12
1 2

1
1 2+ + − + − =^ h# 	 .....(7)

C
dt

dv
R
1 v

L
1

R
1 (v v )

L
1 (v v ) 0v dt dt2

2

2
2

2
2

12
2 1

1
2 1+ + + − + − =# #      .....(8)

It is observed that the node basis equations (7) and (8) are similar to the differential equations (3) and (4) 
governing the mechanical system.

EXAMPLE 1.9

Write the differential equations governing the mechanical system shown in  
fig 1. Draw the force -voltage and force-current electrical analogous circuits and verify 
by writing mesh and node equations.

SOLUTION

The given mechanical system has three nodes masses. The differential 
equations governing the mechanical system are given by force balance equations 
at these nodes. Let the displacements of masses M

1
, M

2
 and M

3
 be x

1
, x

2
 and x

3 

respectively. The corresponding velocities be v
1
, v

2
 and v

3
. 

The free body diagram of M
1
 is shown in fig 2. The opposing forces are marked 

as f
m1

, f
b1

, f
k2

 and f
k1

.

C1
R1

C2

v1
v2

R12

L1

R2
i(t) L2

Fig 7 : Force-voltage electrical analogous circuit.

v2

v2

R12

L1

R1C1

i(t)

v1

Fig 8 : Node-1 of analogous circuit.

v1

v1

R12

L1

C2

v2

R2
L2

Fig 9 : Node-2 of analogous circuit.

1
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1 2R
v v( )�

C
dv

dt1

1 1

1

1R
v

1

1

1 2L
v v dt( )�z 1

1

2 1L
v v dt( )�z

1

12

2 1R
v v( )�

1

2

2L
v dtz

C
dv

dt2

2 1

2

2R
v

M1

x1

v1

f (t)1

fm1

fb1

fk1

fk2

Fig 2.

M2

x2

v2

f (t)2

fm2

fk2

fk3

Fig 3.

M3

x3

v3

fm3

fb3

fk3

Fig 4.

fb3

M1

M2

M3
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f (t)1
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x1

x2
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Fig 1.
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dt

M d x
;

dt
dx

; K (x x ) ; f K xf f B f
2

2

m1
1 1

b1 1
1

k2 2 1 2 k1 1 1= = = − =

By Newton’s second law, f
m1

 + f
b1

 + f
k2

 + f
k1

 = f
1
(t)

	  M
dt

d x
B

dt
dx

K (x x ) K x f (t)
2

2

1
1

1
1

2 1 2 1 1 1+ + − + =    				     .....(1)

Free body diagram of M
2
 is shown in fig 3. The opposing forces are marked as f

m2
, f

b3
, f

k2
  f

k3
.

	 M
dt

d x
; f B

dt
d (x x ) ; f K (x x ) ; f K (x x )f

2

2

m2 2
2

b3 3 2 3 k2 2 2 1 k3 3 2 3= = − = − = −

By Newton’s second law, 

M
dt

d x
B

dt
d (x x ) K (x x ) K (x x ) f (t)

2

2

2
2

3 2 3 2 2 1 3 2 23+ − + − + − = 	                                          .....(2)

The free body diagram of M
3
 is shown in fig 4. The opposing forces are marked as f

m3
, f

b3
 and f

k3
.

	 M
dt

d x
; f B

dt
d (x x ) ; f K (x x )f

2

2

m3 3
3

b3 3 3 2 k3 3 3 2= = − = −       

By Newton’s second law, 

	 M
dt

d x
B

dt
d (x x ) K (x x ) 0

2

2

3
3

3 3 2 3 3 2+ − + − = 	                                                                           .....(3)

On replacing the displacements by velocity in the differential equations (1), (2) and (3) governing the mechanical 

system we get,

	 . .,
dt
d x ;i e

dt
dv

dt
dx v and x v dt

2

2
= = =c m#

dt
dv

v K ( ) ( )M B K v dt v v dt f t1
1

1 1 1 1 2 1 2 1+ + + − =# #                                                                                             .....(4) 

dt
dv

B (v ) K ( ) K ( ) ( )M v v v dt v v dt f t2
2

3 2 3 2 2 1 3 2 3 2+ − + − + − =# # 		                                            .....(5)

dt
dv

B (v ) K ( ) 0M v v v dt3
3

3 3 2 3 3 2+ − + − =#                                                                                                   .....(6)

FORCE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has three nodes (masses). Hence the force-voltage analogous electrical circuit 
will have three meshes. The force applied to mass, M

1
 is represented by a voltage source in first mesh and the force 

applied to mass, M
2
 is represented by a voltage source in second mesh.

The elements M
1
, B

1
, K

1
 and K

2
 are connected to first node. Hence they are represented by analogous element 

in mesh-1 forming a closed path. The elements M
2
, B

3
, K

2
 and K

3
 are connected to second node. Hence they are 

represented by analogous element in mesh-2 forming a closed path. The elements M
3
, K

3
 and  B

3
 are connected to third  

node. Hence they are represented by analogous element in mesh-3 forming a closed path.

The element K
2
 is common between node-1 and 2 and so it is represented by analogous element as common 

element between mesh 1 and 2. The elements K
3
 and B

3
 are common between node-2 and 3 and so they are represented 

by analogous elements as common elements between mesh-2 and 3. The force-voltage electrical analogous circuit is 
shown in fig 5.

The electrical analogous elements for the elements of mechanical system are given below.

f
1
(t) → e

1
(t)	 v

1
 → i

1	
M

1
 → L

1
	 B

1
 → R

1	
K

1
 → 1/C

1
 

f
2
(t) → e

2
(t)	 v

2
 → i

2	
M

2
 → L

2
	 B

3
 → R

3	
K

2
 → 1/C

2
 

		  v
3
 → i

3	
M

3
 → L

3
		  K

3
 → 1/C

3
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The mesh basis equations using Kirchoff ’s voltage law for the circuit shown in fig 5 are given below (Refer fig 6, 7, 8).

dt
di

R i ( ) ( )L
C

i dt
C

i i dt e t1 1
1

1
1 1

1
1

2
1 2 1+ + + − =# # 	 .....(7)

dt
di

R (i ) ( ) (i ) ( )L i
C

i i dt
C

i dt e t1 1
2

2
3 2 3

3
2 3

2
2 1 2+ − + − + − =# # 	 .....(8)

dt
di

R (i ) ( ) 0L i
C

i i dt1
3

3
3 3 2

3
3 2+ − + − =# 	 .....(9)

It is observed that the mesh equations (7), (8) and (9) are similar to the differential equations (4), (5) and (6) 
governing the mechanical system.

FORCE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has three nodes (masses). Hence the force-current analogous electrical circuit 
will have three nodes.

The force applied to mass M
1
 is represented as a current source connected to node-1 in analogous electrical 

circuit. The force applied to mass M
2
 is represented as a current source connected to node-2 in analogous electrical circuit.

The elements M
1
, B

1
, K

1
 and K

2
 are connected to first node. Hence they are represented by analogous elements 

as elements connected to node-1 in analogous electrical circuit. The elements M
2
, B

3
, K

2
 and K

3
 are connected to second 

node. Hence they are represented by analogous elements as elements connected to node-2 in analogous electrical 
circuit. The elements M

3
, B

3
 and K

3
 are connected to third node. Hence they are represented by analogous elements 

as elements connected to node-3 in analogous electrical circuit.

The element K
2
 is common between node-1 and 2 and so it is represented by analogous element as common 

element between node-1 and 2 in analogous circuit. The elements B
3
 and K

3
 are common between node-2 and 3 and so 

they are represented by analogous elements as common elements between node-2 and 3. The force-current electrical 
analogous circuit is shown in fig 9.

The electrical analogous elements for the elements of mechanical system are given below.

f
1
(t) → i

1
(t)	 v

1
 → v

1	
M

1
 → C

1
	 B

1
 → 1/R

1	
K

1
 → 1/L

1
 

f
2
(t) → i

2
(t)	 v

2
 → v

2	
M

2
 → C

2
	 B

3
 → 1/R

3	
K

2
 → 1/L

2
 

		  v
3
 → v

3	
M

3
 → C

3	
	 K

3
 → 1/L

3
 

Fig 5 : Force-voltage electrical analogous circuit.
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Fig 7 : Mesh-2 of analogous circuit.
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+
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+
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1

1

1
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C
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Fig 8 : Mesh-3 of analogous circuit.

Fig 6 : Mesh-1 analogous circuit.
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The node basis equations using Kirchoff ’s current law for the circuit shown in fig 9. are given below. (Refer fig 
10, 11,12).

dt
dv

R
1 v ( ) ( )C

L
v dt

L
v v dt i t1 1

2
1

1

1
1 1 2 1

1
1+ + + − =# # 	 .....(10)

dt
dv

R
1 (v ) ( )

L
1 ( ) i ( )C v

L
v v dt v v dt t1

2
2

3
2 3

3
2 3

2
2 1 2

+ − + − + − =# #   	  .....(11)

dt
dv

R
1 (v ) ( ) 0C v

L
v v dt1

3
3

3
3 2

3
3 2

+ − + − =# 		  .....(12)

It is observed that node basis equations (10), (11) and (12) are similar to the differential equations (4), (5) and 
(6) governing the mechanical system.

i (t)1 L1
R1

C1

v1
L2 v2

Fig 10 : Node-1 of analogous circuit.

1

2

1 2L
v v dt( )�z

C
dv

dt1

1 v

R
1

1

1

1

1L
v dtz

i (t)2 C2

v2

R3

v1
L2

L3
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Fig 11 : Node-2 of analogous circuit.

1
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2 3R
v v( )�

1

3

2 3L
v v dt( )z �

C
dv

dt2

21

2

2 1L
v v dt( )z �

R3
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Fig 12 : Node-3 of analogous circuit.

1
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3 2R
v v( )�
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Fig 9 : Force-current electrical analogous circuit.
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EXAMPLE 1.10

Write the differential equations governing the mechanical system shown in 
fig 1.Draw force-voltage and force-current electrical analogous circuits and verify 
by writing mesh and node equations.

SOLUTION

The given mechanical system has three nodes (masses). The differential 
equations governing the mechanical system are given by force balance equations 
at these nodes. Let the displacements of masses M

1
, M

2
 and M

3
 be x

1
, x

2
 and x

3
 

respectively. The corresponding velocities be v
1
,v

2
 and v

3
.

The free body diagram of M
1
 is shown in fig 2. The opposing forces are marked as f

b1
, f

k1
, f

b2
, f

b3
, and f

m1
. 

f M
dt

d x
; f B

dt
dx

; f K x
2

2

m1 1
1

b1 1
1

k1 1 1= = =

( ) ; ( )f B
dt
d x x f B

dt
d x xb2 2 1 2 b3 3 1 3

= − = -

By Newton’s second law, f
m1

 + f
b1

 + f
k1

 + f
b2

 + f
b3

 = 0

dt

d x
B

dt
dx

K x B
dt
d (x x ) B

dt
d (x ) 0M x

2

2

1
1

1
1

1 1 2 1 2 3 1 3+ + + − + − =         .....(1)                            

The free body diagram of M
2
 is shown in fig 3. The opposing forces are marked as f

m2 
, f

b2 
, f

b23  
and f

k23
.

f M
dt

d x
; f B

dt
d ( )x x

2

2

2 2m 2
2

b 2 2 1
= = −

dt
d ( ) ; ( )f B x x f x xb23 23 2 3 k23 2 3

= − = -

By Newton’s second law, f
m2

 + f
b2

 + f
b23

 + f
k23

 = 0

M
dt

d x
B

dt
d (x x ) B

dt
d (x ) (x ) 0x K x

2

2

2
2

2 2 1 23 2 3 23 2 3+ − + − + − =       ......(2)

The free body diagram of M
3
 is shown in fig 4. The opposing forces are marked as f

m3 
, f

b3 
, f

b23 
, and f

k23
.

f M
dt

d x
; f B

dt
d ( )x x

2

2

m3 3
3

b3 3 3 1
= = −

dt
d ( ) ; ( )f B x x f K x xb23 23 3 2 k23 23 3 2

= − = -

By Newton’s second law, f
m3

 + f
b3

 + f
b23

 + f
k23

 = 0

M
dt

d x
B

dt
d (x x ) B

dt
d (x ) (x x ) 0x K

2

2

3
3

3 3 1 23 3 2 23 3 2+ − + − + − =       .....(3)                      

On replacing the displacements by velocity in the differential equations (1), (2) and (3) governing the mechanical 

system we get,

. .,
dt
d x ,i e

dt
dv

dt
dx v and x vdt

2

2
= = =c m#

dt

d
B K v B ( ) B ( ) 0M

v
v dt v v v v1

1
1 1 1 1 2 1 2 3 1 3+ + + − + − =# 		 .....(4)

dt

dv
B ( ) ( ) ( ) 0M v v B v v K v v dt2

2
2 2 1 23 2 3 23 2 3+ − + − + − =# 	 .....(5)

M
dt

dv
B (v ) (v ) ( ) 0v B v K v v dt3

3
3 3 1 23 3 2 23 3 2+ − + − + − =# 	 .....(6)

M1

K23

B2
B3B23 K1

B1

M2
M3

Fig 1.
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Fig 2.
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Fig 3.
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M3

Fig 4.
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FORCE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has three nodes (masses). Hence the force-voltage analogous electrical circuit 
will have three meshes. Since there is no applied force in mechanical system there will not be any voltage source in 
analogous electrical circuit.

The elements M
1
, K

1
, B

1
, B

3
 and B

2
 are connected to first node. Hence they are represented by analogous 

elements in mesh-1 forming a closed path. The elements M
2
, K

23
, B

23
 and B

2
 are connected to second node. Hence 

they are represented by analogous elements in mesh-2 forming a closed path. The elements M
3
, K

23
 , B

23
 and B

3
 are 

connected to third  node. Hence they are represented by analogous elements in mesh-3 forming a closed path.

The elements K
23

 and B
23

 are common between node-2 and 3 and so they are represented by analogous element 
as common elements between mesh-2 and 3. The element B

2
 is common between node-1 and 2 and so it is represented 

by analogous element as common element between mesh-1 and 2. The element B
3
 is common between node-1 and 

3 and so it is represented by analogous element between mesh-1 and 3. The force-voltage electrical analogous circuit 
is shown in fig 5.

The electrical analogous elements for the elements of mechanical system are given below.

v
1
 → i

1
	 M

1
 → L

1
	 K

1
   → 1/C

1	
B

2
  → R

2

v
2
 → i

2
	 M

2
 → L

2
	 K

23
 → 1/C

23	
B

3
  → R

3
 

v
3
 → i

3
	 M

3
 → L

3
	 B

1
  →  R

1
 	 B

23
 → R

23
 

The mesh basis equations using Kirchoff ’s voltage law for the circuit shown in fig 5 are given below. (Refer fig 6,7
and 8).

dt
di

R i
C
1 R (i ) R (i ) 0L i dt i i

31
1

1 1
1

1 2 1 2 3 1
+ + + − + − =# 	 .....(7)

L
dt
di

R (i i )
C
1 (i ) R (i ) 0i dt i2

2
2 2 1

23
2 3 23 2 3

+ − + − + − =# 	 .....(8)

i3

i2i1 L2

C23

L2

R3

L3

C1

R1
R2

L1
R23

Fig 5 : Force-voltage electrical analogous circuit.
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Fig 6 : Mesh-1 of analogous circuit.
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Fig 7 : Mesh-2 of analogous circuit.
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Fig 8 : .Mesh-3 of analogous circuit.
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R3

v1

v3

v2

R1L1
C1

Fig 10 : Node-1 of analogous circuit.

1

3

1 3R
v v( )�

1

2

1 2R
v v( )�

1

1

1R
v

1

1

1L
v dtzC

dv

dt1

1

L
dt
di

R (i i )
C
1 (i ) R (i ) 0i dt i3

3
3 3 1

23
3 2 23 3 2

+ − + − + − =# 	 .....(9)

It is observed that the mesh basis equations (7), (8) and (9) are similar to the differential equations (4), (5) and (6) 
governing the mechanical system.

FORCE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has three nodes (masses). Hence the force-current analogous electrical circuit 
will have three nodes. Since there is no applied force in mechanical system there will not be any current source in 
analogous electrical circuit.

The elements M
1
, K

1
, B

1
, B

2
 and B

3
 are connected to first node. Hence they are represented by analogous 

elements as elements connected to node-1 in analogous electrical circuit. The elements M
2
, K

23
, B

23
 and B

2
 are connected 

to second node. Hence they are represented by analogous elements as elements connected to node-2 in analogous 
electrical circuit. The elements M

3
, K

23
 , B

23
 and B

3
 are connected to third  node. Hence they are represented by analogous 

elements as elements connected to node-3 in analogous electrical circuit.

The elements K
23

 and B
23

 are common between node-2 and 3 and so they are represented by analogous element 
as common elements between node-2 and 3 in electrical analogous circuit. The element B

2
 is common between node-1 

and 2 and so it is represented by analogous element as common element between node-1 and 2 in electrical analogous 
circuit. The element B

3
 is common between node-1 and 3 and so it is represented by analogous element as common 

element between node-1 and 3 in electrical analogous circuit. The force-current electrical analogous circuit is shown 
in fig 9.

The electrical analogous elements for the elements of mechanical system are given below.

v
1
  →  v

1
		 M

1
	 →	 C

1
	 K

1
	 →	1/L

1
	 B

2
	 →	1/R

2
 

v
2
  →  v

2
		 M

2
	 →	 C

2
	 K

23
	→	1/L

23
	 B

3
	 →	1/R

3
 

v
3  

 →  v
3
		 M

3
	 →	 C

3	
B

1
	 →	1/R

1
       	 B

23
	→	1/R

23
 

R23

v1

v3

v2

C3

Fig 12 : Node-3 of analogous circuit.

L23

v3

1

3

3 1R
v v( )�

1

23

3 2L
v v( )dtz �

1

23

3 2R
v v( )�

C
dv

dt3

3

C2

R3

v1

v3

L23

C3

R2

v2

C1 L1 R1

R23

Fig 9 : Force-current electrical analogous circuit.

L23v2

v3

C2

Fig 11 : Node-2 of analogous circuit.
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fm2

fb2

M2

Fig 3.

fb1

fk1

x2

v2

fk2

f(t)

fm1

M1

Fig 2.

fb1

fk1

x1

v1

The node basis equations using Kirchoff ’s current law for the circuit shown in fig 9 are given below. (Refer fig 10, 11
and 12).

C
dt
dv

R
1 v

L
1 (v ) 0v dt

R
v

R
v v1 1

3
1

1

1
1

1
1

2
1 3 1 3+ + + − + − =^ h# 		  .....(10)

C
dt

dv
R
1 (v )

L
1 (v ) (v ) 0v v dt

R
v1

2
2

2
2 1

23
2 3

23
2 3

+ − + − + − =# 	 .....(11)

C
dt

dv
R
1 (v )

L
1 (v ) (v ) 0v v dt

R
v1

3
3

3
3 1

23
3 2

23
3 2

+ − + − + − =# 			  .....(12)

It is observed that the node basis equations (10), (11) and (12) are similar to the differential equations (4), (5) 

and (6) governing the mechanical system.

EXAMPLE 1.11

Write the differential equations governing the mechanical system shown in fig 1. 
Draw the force-voltage and force-current electrical analogous circuits and verify by writing 
mesh and node equations.

SOLUTION

The given mechanical system has two nodes (masses). The differential equations 
governing the mechanical system are given by force balance equations at these nodes. Let 
the displacement of masses M

1 
and M

2 
be x

1 
and x

2 
respectively. The corresponding velocities 

be v
1 
and v

2
.

The free body diagram of M
1
 is shown in fig 2. The opposing forces are marked as f

m1
, f

b1
 and f

k1
.

M
dt

d x
; f

( x )
; f K (x x )f B

dt
d x

2

2

m1 1
1

b1 1
1 2

k1 1 1 2= =
−

= −

By Newton’s second law,   f
m1

 + f
b1

 + f
k1

 = 0

   M
dt

d x
B

( )
K (x x ) 0

dt
d x x

2

2

1
1

1
1 2

1 1 2+
−

+ − =                                     .....(1)

The free body diagram of M
2
 is shown in fig 3. The opposing forces are marked as f

m2 
, f

b2 
, f

b1 
, f

k2
 and f

k1
.

M
dt

d x
; f B

dt
dx

; f
dt
d (x x )f B

2

2

m2 2
2

b2 2
2

b1 1 2 1= = = −

f
k2

 = K
2
x

2
            ;    f

k1
 = K

1
(x

2
-x

1
)

By Newton’s second law,  f
m2

 + f
b2

 + f
k2

 + f
b1
+ f

k1 
= f(t)

M
dt

d x
B

dt
dx

K x B
dt
d (x x ) K (x x ) ( )f t

2

2

2
2

2
2

2 2 1 2 1 1 2 1+ + + − + − =         .....(2)

On replacing the displacements by velocity in the differential equations (1) and (2) governing the mechanical  

system we get,

. .,
dt
d x ,i e

dt
dv

dt
dx v and x vdt

2

2
= = =c m#

dt
dv

B (v v ) K ( ) 0M v v dt1
1

1 1 2 1 1 2
+ − + − =#                                                                                    .....(3)

M
dt

dv
B v K v (v ) ( ) ( )dt B v K v v dt f t2

2
2 2 2 2 1 2 1 1 2 1+ + + − + − =# #                                                                        .....(4)

K2 B2

f(t)

x2

Fig 1.

M1 B1x1

K1

M2
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FORCE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has two nodes (masses). Hence the force voltage analogous electrical circuit will 
have two meshes. The force applied to mass, M

2
 is represented by a voltage source in second mesh.

The elements M
1
, K

1
 and B

1
 are connected to first node. Hence they are represented by analogous element 

in mesh 1 forming a closed path. The elements M
2
, K

2
, B

2
, B

1
 and K

1
 are connected to second node. Hence they are 

represented by analogous element in mesh 2 forming a closed path.

The elements B
1
 and  K

1
 are common between node 1 and 2 and so they are represented as common elements 

between mesh 1 and 2. The force-voltage electrical analogous circuit is shown in fig 4.

The electrical analogous elements for the elements of mechanical system are given below.

		  f(t) → e(t)	 v
1
	 →	 i

1
	 M

1
	 →	 L

1
	 K

1
	 →	 1/C

1
	 B

1
	 →	 R

1
 

			   v
2
	 →	 i

2
	 M

2
	 →	 L

2
	 K

2
	 →	 1/C

2
     	 B

2
	 →	 R

2
 

The mesh basis equations using Kirchoff’s voltage law for the circuit shown in fig 4. are given below,  
(refer fig 5 and 6).

L
dt
di

R (i i )
C
1 (i i ) 0dt1

1
1 1 2

1
1 2+ − + − =# 	                                    .....(5)

L
dt
di

R i
C
1 (i ) R (i ) ( )i dt

C
i dt i e t1

2
2

2 2
2

2
1

2 1 1 2 1
+ + + − + − =# # 	            .....(6)

It is observed that the mesh basis equations (5) and (6) are similar to the differential equations (3) and (4) 
governing the mechanical system.

FORCE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has two nodes (masses). Hence the force-current analogous electrical circuit will 
have two nodes. The force applied to mass M

2
 is represented as a current source connected to node-2 in analogous 

electrical circuit. 

The elements M
1
, K

1
 and B

1
 are connected to first  node. Hence they are represented by analogous elements 

as elements connected to node-1 in analogous electrical circuit. The elements M
2
, K

2
, B

2
, B

1
 and K

1
 are connected 

to second node. Hence they are represented by analogous elements as elements connected to node-1 in analogous 
electrical circuit.

+_

i2i1

C1

L1

R1

L2

e(t)

C2

R2

Fig 4 : Force-voltage electrical analogous circuit.

i2i1
+

_

+

_

+

_

L1

R1

C1

Fig 5 : Mesh-1 of analogous circuit.

L
di

dt1

1

1

1

1 2C
i dt(i )z �

R (i i )1 1 2�

+_

i2i1

+

_

R i2 2

e(t) L2

R1

C1
C2

R2

+

_

+ _
+

_

+

_

Fig 6 : Mesh-2 of analogous circuit.
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2
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The elements K
1
 and B

1
 is common to node-1 and 2 and so they are represented by analogous element as 

common elements between two nodes in analogous circuit. The force-current electrical analogous circuit is shown in fig 7.

The electrical analogous elements for the elements of mechanical system are given below.

	 f(t) → i(t)	 v
1
 → v

1
 	 M

1
 → C

1
	 B

1
 → 1/R

1	
K

1
 → 1/L

1
 

		  v
2
 → v

2	
M

2
 → C

2
	 B

2
 → 1/R

2
 	 K

2
 → 1/L

2

The node basis equations using Kirchoff ’s current law for the circuit shown in fig.7, are given below, (Refer 
fig 8 and 9).

C
dt
dv

( ) (v ) 0
R

v v
L

v dt1 1
1

1

1
1 2

1
1 2+ − + − =#   	 .....(7)

C
dt

dv
R
1 v

L
( ) ( ) ( )v dt

R
v v

L
v v i t1 1 1

2
2

2
2

2
2

1
2 1

1
2 1+ + + − + − =##                                                         .....(8)

It is observed that the node basis equations (7) and (8) are similar to the differential equations (3) and (4) 
governing the mechanical system.

1.10	 ELECTRICAL ANALOGOUS OF MECHANICAL ROTATIONAL SYSTEMS

The three basic elements moment of inertia, rotational dashpot and torsional spring that are used 
in modelling mechanical rotational systems are analogous to resistance, inductance and capacitance of 
electrical systems. The input torque in mechanical system is analogous to either voltage source or current 
source in electrical systems. The output angular velocity (first derivative of angular displacement) in 
mechanical rotational system is analogous to either current or voltage in an element in electrical system. 
Since the electrical systems has two types of inputs either voltage source or current source, there are two 
types of analogies: torque-voltage analogy and torque-current analogy.

TORQUE-VOLTAGE ANALOGY

The torque balance equations of mechanical rotational elements and their analogous electrical 
elements in torque-voltage analogy are shown in table-1.6. The table-1.7 shows the list of analogous 
quantities in torque-voltage analogy.

R1

L1

v1

C1
C2

R2
L2

v2

Fig 7 : Force-current electrical analogous circuit.

i(t)

C1

v1

v2

v2

R1

L1

Fig 8 : Node-1 of analogous circuit.
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L2R2
C2i(t)
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Fig 9 : Node-2 of analogous circuit.
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TABLE-1.6 : Analogous Element of  Torque-Voltage Analogy

     Mechanical rotational system                        Electrical system

	 Input    : Torque	 Input   : Voltage source

	 Output  :  Angular velocity	 Output : Current through the element

The following points serve as guidelines to obtain electrical analogous of mechanical rotational systems 
based on torque-voltage analogy.

1.	 In electrical systems the elements in series will have same current, likewise in mechanical 
systems, the elements having same angular velocity are said to be in series.

2.	 The elements having same angular velocity in mechanical system should have analogous 
same current in electrical analogous system.

3.	 Each node (meeting point of elements) in the mechanical system corresponds to a closed loop in 
electrical system. The moment of inertia of mass is considered as a node.

4.	 The number of meshes in electrical analogous is same as that of the number of nodes (moment 
of inertia of mass ) in mechanical system. Hence the number of mesh currents and system 
equations will be same as that of the number of angular velocities of nodes (moment of inertia 
of mass) in mechanical system.

5.	 The mechanical driving sources (Torque) and passive elements connected to the node (moment 
of inertia of mass) in mechanical system should be represented by analogous element in a 
closed loop in analogous electrical system.

6.	 The element connected between two nodes (moment of inertia) in mechanical system is 
represented as a common element between two meshes in electrical analogous system.

B

�T

T B
d

dt
B� �� �

� �� d

dt

e

+

_ _

+

v

i

R
e = v ; v = Ri

� e = Ri

J
T �

T J
d

dt
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d

dt
� �
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2

� � �� �d

dt

d

dt

2

2

� � e

+

_ _

+

v

i

L

e v v L
di

dt
� �;

�e = L
di

dt

K

T �
T K K dt� � z� � � �� z dt

e

+
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+
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i
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e i= v ; v =
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dtz

� ze =
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Table-1.7 : Analogous Quantities in Torque-Voltage Analogy

	 Item	             Mechanical rotational system	        Electrical system
			          	           (mesh basis system)

Independent variable	 Torque, T	 Voltage, e, v
	 (input)		

Dependent variable	 Angular Velocity, ω	 Current, i

	 (output)	 Angular displacement, θ	 Charge, q

Dissipative element	 Rotational coefficient	 Resistance, R
		  of dashpot, B

	Storage element	 Moment of inertia, J	 Inductance, L

		  Stiffness of spring, K	     Inverse of capacitance, 1/C 

	Physical law	 Newton’s second law	 Kirchoff ’s voltage law

		  ∑T = 0	 ∑v = 0

	Changing the level of	 Gear	 Transformer
		 	independent variable

		

TORQUE-CURRENT ANALOGY

The torque balance equations of mechanical elements and their analogous electrical elements in 
torque-current analogy are shown in table-1.8. The table-1.9 shows the list of analogous quantities in 
torque-current analogy.

The following points serve as guidelines to obtain electrical analogous of mechanical rotational 
systems based on Torque-current analogy.

1.	 In electrical systems the elements in parallel will have same voltage, likewise in mechanical 
systems, the elements having same torque are said to be in parallel.

2.	 The elements having same angular velocity in mechanical system should have analogous 
same voltage in electrical analogous system.

3.	 Each node (meeting point of elements) in the mechanical system corresponds to a node in 
electrical system. The moment of inertia of mass is considered as a node.

4.	 The number of nodes in electrical analogous is same as that of the number of nodes (moment 
of inertia of mass ) in mechanical system. Hence the number of node voltages and system 
equations will be same as that of the number of angular velocities of nodes (moment of inertia 
of mass) in mechanical system.

5.	 The mechanical driving sources (Torque) and passive elements connected to the node in 
mechanical system should be represented by analogous element connected to a node in 
analogous electrical system.

6.	 The element connected between two nodes (moment of inertia of mass) in mechanical system 
is represented as a common element between two nodes in electrical analogous system.

T
T

n
n

2

1

2

1= e
e

N
N

2

1

2

1=
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TABLE-1.8 : Analogous Elements in Torque-Current Analogy

        Mechanical rotational system	             Electrical system

	 Input    : Torque	 Input   : Current source
	 Output  : Angular velocity	 Output : Voltage across the element

Table-1.9 : Analogous Quantities in Torque-Current Analogy

	 Item	 Mechanical rotational system	 Electrical system
			   (node basis system)

Independent variable	 Torque, T	 Current, i
	 (input)		

Dependent variable	 Angular Velocity, ω	 Voltage, v

	 (output)	 Angular displacement, θ	 Flux, φ

Dissipative element	 Rotational frictional	 Conductance, G = 1/R
		  coefficient of dashpot, B

	 Storage element	 Moment of inertia, J	 Capacitance, C

		  Stiffness of spring, K	 Inverse of inductance, 1/L 

	 Physical law	 Newton’s second law	 Kirchoff ’s current law

		  ∑T = 0	 ∑i = 0

	Changing the level of	 Gear	 Transformer
	independent variable
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1

L
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+
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EXAMPLE 1.12

Write the differential equations governing the mechanical rotational 
system shown in fig 1. Draw the torque-voltage and torque-current electrical 
analogous circuits and verify by writing mesh and node equations.

SOLUTION

The given mechanical rotational system has two nodes (moment of 
inertia of masses). The differential equations governing the mechanical rotational system are given by torque balance 
equations at these nodes.

Let the angular displacements of J
1
 and J

2
 be θ

1
 and θ

2 
respectively. The corresponding angular velocities be

ω
1 
and ω

2
. 

The free body diagram of J
1
 is shown in fig 2. The opposing torques are marked as T

j1
, T

b1
 and T

k1
.

J
dt

d
; T B

dt
d

; T ( )T K
2

2

j1 1
1

b1 1
1

k1 1 1 2
θ θ

θ θ= = = −      

By Newton’s second law,  T
j1
 + T

b1
 + T

k1
 = T

dt

d
B K ( )J

dt
d

T
2

2

1
1

1
1

1 1 2

θ θ
θ θ+ + − = 	                                .....(1)	

The free body diagram of J
2
 is shown in fig 3. The opposing torques are marked as T

j2
, T

b2
, T

k2 
and T

k1
.

J
dt

d
; B

dt
d

T T
2

2

j2 2
2

b2 2
2θ θ

= = 	

T ; T ( )K Kk2 2 2 k1 1 2 1θ θ θ= = −

By Newton’s second law,  T
j2
 + T

b2
 + T

k2
 + T

k1
 = 0

dt

d
B

dt
d

K K ( )J
2

2

2
2

2
2

2 2 1 2 1
θ θ

θ θ θ+ + + −                     	      .....(2)	       

On replacing the angular displacements by angular velocity in the differential equations (1) and (2) governing 
the mechanical rotational system we get,

. .,
dt
d ;i e

dt
d

dt
d and dt

2

2θ ω θ ω θ ω= = =c m#

dt
d

B K ( )J dt T1
1

1 1 1 1 2
ω

ω ω ω+ + − =#    	 .....(3)

dt
d

B K K ( ) 0J dt dt2
2

2 2 2 2 1 2 1
ω

ω ω ω ω+ + + − =# # 	 .....(4)

TORQUE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has two nodes (J
1
 and J

2
). Hence the torque-voltage analogous electrical circuit 

will have two meshes. The torque applied to J
1
 is represented by a voltage source in first mesh. The elements J

1
, B

1
 

and K
1
 are connected to first node. Hence they are represented by analogous element in mesh-1 forming a closed path. 

The elements J
2
, B

2
, K

2
 and K

1
 are connected to second node. Hence they are represented by analogous elements  in 

mesh-2 forming a closed path.

The element K
1
 is common between node-1 and 2 and so it is represented by analogous element as common 

element between two meshes. The torque-voltage electrical analogous circuit is shown in fig 4.

The electrical analogous elements for the elements of mechanical rotational system are given below.

	 T	 → e(t)	 J
1
	 →	 L

1
	 B

1
	 →	 R

1	
K

1
	 →	 1/C

1
 

	 ω
1
	 → i

1
	 J

2
	 →	 L

2
	 B

2
	 →	 R

2	
K

2
	 →	 1/C

2
 

	 ω
2
	 → i

2
	

K1 K2

J2J1

T

B1
B2

Fig 1.

Tb1
Tj1��

J1

Fig 2.

Tk1
T

Tb2
Tj2��

J2

Fig 3.

Tk2
Tk1
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The mesh basis equations using Kirchoff ’s voltage law for the circuit shown in fig 4 are given below 
(Refer fig 5 and 6).

L
dt
di

R i
C
1 ( ) ( )i i e t1

1
1 1

1
1 2+ + − =#                                                                                                                         .....(5)

L
dt
di

R i
C
1 d (i ) 0i t

C
i dt1

2
2

2 2
2

2
2

2 1+ + + − =# #                                                                                          .....(6)

It is observed that the mesh basis equations (5) and (6) are similar to the differential equations (3) and (4) 

governing the mechanical system.

TORQUE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has two nodes (J
1
 and J

2
). Hence the torque-current analogous electrical circuit 

will have two nodes. The torque applied to J
1
 is represented as a current source connected to node-1 in analogous 

electrical circuit. 

The elements J
1
, B

1
 and K

1
 are connected to first node. Hence they are represented by analogous elements as 

elements connected to node-1 in analogous electrical circuit. The elements J
2
, B

2
, K

2
 and K

1
 are connected to second 

node. Hence they are represented by analogous elements as elements connected to node-2 in analogous electrical circuit.

The element K
1
 is common between node-1 and 2. So it is represented by analogous element as common 

element between node-1 and 2.  The torque-current electrical analogous circuit is shown in fig 7.

v1 v2

i(t)

C1 R1
C2 R2 L2

Fig 7 : Torque-current electrical analogous circuit.

L1

e(t)

Fig 4 : Torque-voltage electrical analogous circuit.

+
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+

_

Fig 5 : Mesh-1 of analogous circuit. Fig 6 : .Mesh-2 of analogous circuit.
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The electrical analogous elements for the elements of mechanical rotational system are given below.

	 T  →  i(t)	 B
1
 → 1/R

1	
ω

1
 → v

1
	 J

1
 → C

1
	 K

1
 → 1/L

1
 

		       	 B
2
 → 1/R

2	
ω

2
 → v

2
	 J

2
 → C

2
	 K

2
 → 1/L

2
 

The node basis equations using Kirchoff ’s current law for the circuit shown in fig 7 are given below (Refer fig 

8 and 9).

	
dt
dv

R
1 v

L
1 (v ) ( )C v dt i t1

1

1
1

1
1 2

+ + − =# 		  .....(7)

	
dt

dv
R
1 v

L
1 v

L
1 (v ) ( )C dt v dt i t1

2

2
2

2
2

1
2 1

+ + + − =# # 	 .....(8)

It is observed that the mesh basis equations (5) and (6) are similar to the differential equations (3) and (4) 
governing the mechanical system.

EXAMPLE 1.13

Write the differential equations governing the 
mechanical rotational system shown in fig 1. Draw the  
torque-voltage and torque-current electrical analogous 
circuits and verify by writing mesh and node equations.

SOLUTION

The given mechanical rotational system has three nodes (moment of inertia of masses). The differential equations 
governing the mechanical rotational system are given by torque balance equations at these nodes. 

Let the angular displacements of  J
1
, J

2
 and J

3
 be θ

1
, θ

2 
and θ

3 
respectively. The corresponding angular velocities 

be ω
1
, ω

2 
and ω

3
. 

The free body diagram of J
1
 is shown in fig 2. The opposing torques are marked as T

j1
, T

b1
 and T

k1
.

	 J
dt

d
;

( )
T T B

dt
d

2

2

j1 1
1

b1 1
1 2θ θ θ

= =
−

	 ( )T Kk1 1 1 2θ θ= −

By Newton’s second law, T
j1
 + T

b1
 + T

k1
 = T

dt
d ( )

K ( )J B
dt

d
T

2

2
1

1 1
1 2

1 1 2
θ θ θ

θ θ+
−

+ − = 		         .....(1)

The free body diagram of J
2
 is shown in fig 3. The opposing torques are marked as T

j2
, T

b2
, T

b1
and T

k1
.

	
dt

d
; T

( )
T J B

dt
d

2

2
3

j2 2
2

b2 2
2θ θ θ

= =
−

v1 v2

i(t)

C1 R1

Fig 8 : Node-1 of analogous circuit.
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v1 v2

C2 R2 L2

Fig 9 : Node-2 of analogous circuit.

L1

1

1

2 1
L

v v( )�z dt

C
dv

dt2

2 1

2

2R
v

1

2

2
L

vz dt

J1
J2 J3

B1

B2

K1

K3

Fig 1.
T

Tb1
Tj1��

J1

Fig 2.

Tk1
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+
_

+ _

i1
i2e(t)

+

_

_

+

C1

R1

L1

Fig 6 : Mesh-1 of analogous circuit.

+_

L1 L2 L3

C1

i1 i2 i3

R2

R1

e(t) C3

Fig 5 : Torque-voltage electrical
analogous circuit.

L
di

dt1

1

1

1

1 2
C

i(i )z � dt

R i1 1 2(i )�

( ) ; B
dt

d( )
T K Tk1 1 2 1 b1 1

2 1θ θ
θ θ

= − =
−

By Newton’s second law, T
j2
 + T

b2
 + T

b1
 + T

k1
 = 0

	 J
dt

d ( )
dt

d( )
( ) 0B

dt
d

B K
2

2

2
2

2
2 3

1
2 1

1 2 1
θ θ θ θ θ

θ θ+
−

+
−

+ − =                                                                  .....(2)

The free body diagram of J
3
 is shown in fig 4. The opposing torques are marked as T

j3
, T

b2
, and T

k3
.

T
dt

d
; B

dt
d( )

; KJ T T
2

2

j3 3
3

b2 2
3 2

k3 3 3
θ θ θ

θ= =
−

=

By Newton’s second law, T
j3
 + T

b2
 + T

k3
 = 0

dt

d ( )
0J B

dt
d

K
2

2

3
3

2
3 2

3 3`
θ θ θ

θ+
−

+ = 		         .....(3)

On replacing the angular displacements by angular velocity in the differential equations (1) and (2) governing 
the mechanical rotational system we get,

. .,
dt
d ;i e

dt
d

dt
d and dt

2

2θ ω θ ω θ ω= = =c m#

dt
d

B ( ) ( )J K dt T1
1

1 1 2 1 1 2
ω

ω ω ω ω+ − + − =#  	 .....(4)

dt
d

B ( ) B ( ) ( ) 0J K dt2
2

1 2 1 2 2 3 1 2 1
ω

ω ω ω ω ω ω+ − + − + − =# 	 .....(5)

dt
d

B ( ) 0J K dt3
3

2 3 2 3 3
ω

ω ω ω+ − + =# 	 .....(6)

TORQUE-VOLTAGE ANALOGOUS CIRCUIT
The given mechanical system has three nodes (J

1
, J

2
 and J

3
). Hence the torque-voltage analogous electrical 

circuit will have three meshes. The torque applied to J
1
 is represented by a voltage source in first mesh.

The elements J
1
, K

1
 and B

1
 are connected to first node. Hence they are represented by analogous element in 

mesh-1 forming a closed path. The elements J
2
, B

2
, B

1
 and K

1
 are connected to second node. Hence they are represented 

by analogous element in mesh-2 forming a closed path. The element J
3
, B

2
 and K

3
  are connected to third node. Hence 

they are represented by analogous element in mesh-3 forming a closed path.

The elements K
1
 and B

1
 are common between the nodes-1 and 2 and so they are represented by analogous 

element as common between mesh-1 and 2. The element B
2
 is common between the nodes-2 and 3 and so it is 

represented by analogous element as common element between the mesh-2 and 3. The torque-voltage electrical 
analogous circuit is shown in fig 5.

The electrical analogous elements for the elements of mechanical rotational system are given below.

T → e(t)	 ω
1
	 →	 i

1	
	 J

1
 	→	 L

1
	 B

1
	 →	 R

1	
	 K

1
	 →	 1/C

1
 

	 ω
2
	 → 	i

2	
	 J

2
	 →	 L

2
	 B

2
	 →	 R

2	
	 K

3
	 →	 1/C

3
 

	 ω
3
	 →	 i

3	
	 J

3
	 →	 L

3

Tb2
Tj2��

J2

Fig 3.

Tk1
Tb1

Tb2
Tj3��

J3

Fig 4.

Tk3
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R1

L1

v2
R

2
v3

C1 C2 C3

Fig 9 : Torque-current electrical
analogous circuit.

L3

v1

i(t)

Fig 10 : Node-1 of analogous circuit.

R1

L1

v2

C1

v1

i(t)

v3

1

1

1 2
R

v v( )�

1

1

1 2
L

v v dt( )�z
C

dv

dt
1

1

The mesh basis equations using Kirchoff ’s voltage law for the circuit shown in fig 5 are given below (Refer fig 6, 7

and 8).

dt
di

R (i ) ( i ) ( )L i
C

i dt e t1
1

1
1 1 2

1
1 2+ − + − =# 	 .....(7)

L
dt
di

R (i ) R (i ) (i i ) 0i i
C

dt1
2

2
1 2 1 2 2 3

1
2 1+ − + − + − =# 	 .....(8)

L
dt
di

R (i ) ii
C

dt1 03
3

2 3 2
3

3+ − + =# 	 .....(9)

It is observed that the mesh basis equations (7), (8) and (9) are similar to the differential equations (4), (5) and 
(6) governing the mechanical system.

TORQUE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has three nodes (J
1
, J

2
 and J

3
). Hence the torque-current analogous electrical circuit 

will have three nodes. The torque applied to J
1
 is represented as a current source connected to node-1 in analogous 

electrical circuit. 

The elements K
1
, J

1
 and B

1
 are connected to first node. Hence they are represented by analogous elements as 

elements connected to node-1 in analogous electrical circuit. The elements J
2
, B

2
, B

1 
and K

1
 are connected to second 

node. Hence they are represented by analogous elements as elements connected to node-2 in analogous electrical 
circuit. The elements J

3
, B

2
, and K

3
 are connected to third node. Hence they are represented by analogous elements 

as elements connected to node-3 in analogous electrical circuit.

The elements K
1
 and B

1
 are common between node-1 and 2 and so they are represented by analogous element 

as common elements between node-1 and 2. The element B
2
 is common between node-2 and 3 and so it is represented 

as common element between node-2 and 3 in analogous circuit. The torque-current electrical analogous circuit is shown 
in fig 9.

i1

i2

i3

+

_ +
_

+

_

+

_

R2

R1

C1

L2

Fig 7 : Mesh-2 of analogous circuit.

+

_
+

_

Fig 8 : Mesh-3 of analogous circuit.

i2

+ _

R2

i3

L3

C3

L
di

dt
2

2

1

1
2 1

C
i(i )�z dt

R i1 2 1(i )�

R i2 2 3(i )�

1

3

3

C
i dtz

L
di

dt
3

3

R i i
3 3 2
( )�
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The electrical analogous elements for the elements of mechanical rotational system are given below.

T → i(t)	    ω
1
 → v

1	
J

1
 	→	 C

1
		  B

1	
→	 1/R

1	
K

1
 	 →	 1/L

1
 

	    ω
2
 →	v

2	
J

2
 	→	 C

2
		  B

2
 	 →	 1/R

2
	 K

3
	 →	 1/L

3
 

	    ω
3
 → 	v

3
	 J

3
	 →	 C

3		   

The node basis equations using Kirchoff ’s current law for the circuit shown in fig 9 are given below (Refer fig 10, 11
and 12).

dt
dv

R
1 (v ) (v ) ( )C v

L
v dt i t1

1
1

1
1 2

1
1 2+ − + − =#         	 .....(10)

C
dt

dv
R
1 (v )

R
1 (v ) (v ) 0v v

L
v dt1

2
2

1
2 1

2
2 3

1
2 1+ − + − + − =#             	   .....(11)

dt
dv

R
1 (v ) 0C v

L
v dt1

3
3

2
3 2

3
3

+ − + =#                                     	      .....(12)

It is observed that the node basis equations (10), (11) and (12) are similar to the differential equations (4), (5) 

and (6) governing the mechanical system.

1.11	 BLOCK DIAGRAMS

A control system may consist of a number of components. In control engineering to show the 
functions performed by each component, we commonly use a diagram called the block diagram. A block 
diagram of a system is a pictorial representation of the functions performed by each component and of the 
flow of signals. Such a diagram depicts the interrelationships that exist among the various components. 
The elements of a block diagram are block, branch point and summing point.

BLOCK

In a block diagram all system variables are linked to each other through functional blocks. The 
functional block or simply block is a symbol for the mathematical operation on the input signal to the block 
that produces the output. The transfer functions of the components are usually entered in the corresponding 
blocks, which are connected by arrows to indicate the direction of the flow of signals. Figure 1.25 shows 
the block diagram of functional block.

The arrowhead pointing towards the block  indicates the input, 
and the arrowhead leading away from the block represents the output. 
Such arrows are referred to as signals. The output signal from  the  block  
isgiven  by  the product of input signal and transfer function in  the block.

Transfer
function

G(s)

Input, A

B = A G(s)

Output, B

Fig 1.25 : Functional block.

Fig 11 : Node-2 of analogous circuit.

R1

L1

C2

v1

v3

R2

v2

v1

L3

C3

v3

R2

v2

Fig 12 : Node-3 of analogous circuit.
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3 2

R
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v dtzc
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dt3
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R
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dv

dt2

2

1
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L
v v dt�z b g

1

1
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I (s)a
T(s)

Kt

Fig 2.

SUMMING POINT

Summing points are used to add two or more signals in the system. 
Referring to figure 1.26, a circle with a cross is the symbol that indicates 
a summing operation.

The plus or minus sign at each arrowhead indicates whether the 
signal is to be added or subtracted. It is important that the quantities being added or subtracted have the 
same dimensions and the same units.
BRANCH POINT

A branch point is a point from which the signal from a block goes 
concurrently to other blocks or summing points.

CONSTRUCTING BLOCK DIAGRAM FOR CONTROL SYSTEMS

A control system can be represented diagramatically by block diagram. The differential equations 
governing the system are used to construct the block diagram. By taking Laplace transform the  
differential equations are converted to algebraic equations. The equations will have variables and  
constants. From the working knowledge of the system the input and output variables are identified and 
the block diagram for each equation can be drawn. Each equation gives one section of block diagram.  
The output of one section will be input for another section. The various sections are interconnected  
to obtain the overall block diagram of the system.

EXAMPLE 1.14

Construct the block diagram of armature controlled dc motor.

SOLUTION

The differential equations governing the armature controlled dc motor are (refer section 1.7),

V i R L
dt
di

ea a a a
a

b= + + 	                                                                                             .....(1)

T = K
t
i
a
       	   .....(2)

T J
dt
d Bω ω= +      	 .....(3)

eb = Kbw             	   .....(4)

dt
dω θ=                   	    .....(5)

On taking Laplace transform of equation (1) we get,

V
a
(s) = I

a
(s)R

a
 + L

a 
s I

a
(s) + E

b
(s)				           .....(6)

In equation (6), V
a
(s) and E

b
(s) are inputs and I

a
(s)  is the output. Hence the 

equation (6) is rearranged and the block diagram for this equation is shown in fig 1.

V
a
(s) - E

b
(s) = I

a
(s) [R

a
 + s L

a
]

I (s) [ ( ) ( )]
R s L

V s E s1
a

a a
a b` =

+
−

On taking Laplace transform of equation (2) we get,

	 T(s) = K
t
 Ia(s)                                                        .....(7)

In equation (7), I
a
(s) is the input and T(s) is the output. The block diagram for this equation is shown in fig 2.

A A–B

B

Fig 1.26 : Summing point.

+
–

Branch point

B
G

A

A B = AG

Fig 1.27 : Branch point.

�

I (s)a

V (s)a –E (s)b

V (s)a

E (s)b

Fig 1.

+-+
–

1

R sLa a�
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On taking Laplace transform of equation (3) we get,

	 T(s) = Js ω(s) + B ω(s)	                                    			    .....(8)

In equation (8), T(s) is the input and ω(s) is the output. Hence the equation (8) is rearranged and the block 

diagram for this equation is shown in fig (3).

T(s) = (Js + B) w(s)  

( ) ( )s
Js B

T s1` ω =
+

On taking Laplace transform of equation (4) we get,

E
b
(s) = K

b 
ω(s)				               		    .....(9)

In equation (9), ω(s) is the input and E
b
(s) is the output. The block diagram for 

this equation is shown in fig 4.

On taking Laplace transform of equation (5) we get,

	 ω(s) = s θ(s)                                                                                  	  .....(10)	

In equation (10), ω(s) is the input and θ(s) is the output. Hence equation (10) is rearranged and the block diagram 

for this equation is shown in fig 5.

	 ( ) ( )s
s

s1θ ω=

The overall block diagram of armature controlled dc motor is obtained by connecting the various sections shown in 
fig 1 to fig 5. The overall block diagram is shown in fig 6.

EXAMPLE 1.15

Construct the block diagram of field controlled dc motor.

SOLUTION

The differential equations governing the field controlled dc motor are (refer section 1.8),

v i
dt
di

R Lf f f
f

f
= + 					            .....(1)

T K itf f= 						             .....(2)

dt
dT J B

dt
d

2

2θ θ= + 				                                               .....(3)

On taking Laplace transform of equation (1) we get,

	 V
f
(s) = R

f
I
f
 (s) + L

f 
s I

f
(s)

 
                                                                                                                   .....(4)

T(s) �(s)

Fig 3.

1

Js B�

E (s)b�(s)

Fig 4.

Kb

�(s)�(s)

Fig 5.

1/s

Kt

Kb

V (s)a –E (s)b

V (s)a

E (s)b

I (s)a T(s) �(s) �(s)

�(s)

Fig 6 : Block diagram of armature controlled dc motor.

+-+
–

1/s
1

Js B�
1

R sLa a�
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In equation (4), V
f
 (s) is the input and I

f
 (s) is the output. Hence the equation (4) is rearranged and the block 

diagram for this equation is shown in fig 1.

( ) I (s)V s R sLf f f f= +6 @

I (s) ( )
R sL

V s1
f

f f
f

` =
+

On taking Laplace transform of equation (2) we get,

	 T(s) = K
tf

 I
f
  (s)			                     .....(5)

In equation (5), I
f
 (s) is the input and T(s) is the output. The block diagram for 

this equation is shown in fig 2.

On taking Laplace transform of equation (3) we get,

	 T(s) = J s2 θ(s) + B s θ(s)	                                        	                    .....(6)

In equation (6), T(s) is input and θ(s) is the output. Hence equation (6) is rearranged 
and the block diagram for this equation is shown in fig 3.

( ) ( ) ( )T s Js Bs s2 θ= +

( ) ( )s
Js Bs

T s1
2

` θ =
+

The overall block diagram of field controlled dc motor is obtained by connecting the various section shown in  
fig 1 to fig 3. The overall block diagram is shown in fig 4.

BLOCK DIAGRAM REDUCTION

The block diagram can be reduced to find the overall transfer function of the system. The following rules can 
be used for block diagram reduction . The rules are framed such that any modification made on the diagram does not 
alter the input-output relation.

RULES OF BLOCK DIAGRAM ALGEBRA

Rule-1 :	 Combining the blocks in cascade

Rule-2 :	 Combining Parallel blocks (or combining feed forward paths)

Rule-3 :	 Moving the branch point ahead of the block

V (s)f

Fig 1.

I (s)f1

R sLf f�

Ktf

I (s)f
T(s)

Fig 2.

T(s) �(s)

Fig 3.

1
2Js Bs�

Ktf
V (s)f

I (s)f T(s)
�(s)

Fig 4 : Block diagram of field controlled dc motor.

1

R sLf f�
1

2Js Bs�

A AG1 AG G1 2 � G G1 2

AG G1 2A
G1

G2

A

AG1

AG2
AG +AG = A(G +G )1 2 1 2 A A(G +G )1 2

G +G1 2

�
G1

G2
+-++

A

A

AG AGA

AG A
�

1/G

G G
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Rule-4 :	 Moving the branch point before the block

Rule-5 :	 Moving the summing point ahead of the block

Rule-6 :	 Moving the summing point before the block

Rule-7 :	 Interchanging summing point

Rule-8 :	 Splitting summing points

Rule-9 :	 Combining summing points

Rule-10 :	Elimination of (negative) feedback loop

Proof :
C = (R - CH)G	 ⇒	 C =  RG - CHG	 ⇒	 C + CHG = RG

C(1 + HG) = RG	 ⇒	 R
C

1 GH
G= +

Rule-11 : Elimination of (positive) feedback loop

R

CH
�

(R CH)–

C

C R C+-+
–

(R CH)G–

H

G G

GH1�

R

�

C

R C
++ G

H

G

GH1�

AGA

AG

AG

AG

A

�
G

G

G

A

B

A+B ( )GA+B

A

B

AG

BG

AG + BG = (A+B)G

�
G+-++

+-++
G

G

�
AGA

B

AG+B

B

A

B/G

AG+B
+-++ +-++

G

1/G

G

A
B

G
�

A+B A+B–CA

B

C

A–C A A+B– –C+B= C

C

B

A�+-+
+ +-+ +-+ +-+

+

– –

A

B

C

A+B–C A

B

C

A+B A+B–C�+-+
+ +-+

+ +-+_
–

A

B

C

A+B A+B–C

C

A

B

A+B–C
�+-+

+ +-+ +-+
+

– –
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EXAMPLE 1.16

Reduce the block diagram shown in fig 1 and find C/R.

SOLUTION

Step 1: Move the branch point after the block.

Step 2: Eliminate the feedback path and combining blocks in cascade.

Step 3: Combining parallel blocks

Step 4: Combining blocks in cascade

1 G H
G

G
G

1 G
G

G
G G G

1 G H
G G G

R
C G

H1

1
2

1

3

1

1

1

1 2 3

1

1 2 3=
+

+ =
+

+
=

+
+

f f f fp p p p

RESULT

The overall transfer function of the system,  
1 G H

G G G
R
C

1

1 2 3

+
+=

R C

Fig 1.

+-+ +-+
+

–
G1

H

G2

G3

R C
+-+ +-+

+

–
G1

G3

G2

H

CR +-+ +-+
+

–
G1

H

1/G1
G3

G2

R C
+-++

G /G3 1

G2

G

G H
1

11�

R CG

G H
1

11�
G

G

G
2

3

1

�
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EXAMPLE 1.17

Using block diagram reduction technique find closed loop transfer function of the system whose block diagram 
is shown in fig 1.

SOLUTION

Step 1: Moving the branch point before the block

Step 2: Combining the blocks in cascade and eliminating parallel blocks

Step 3: Moving summing point before the block.

Step 4: Interchanging summing points and modifying branch points.

R C

Fig 1.

+-+
–

+-+
–

+-+
–

+-+
+G1 G2

G4

G3

H2

H1

R C+-+
–

+-+
–

+-+
–

+-+
+G1 G2

H2

H1

G4

G3

R C+-+
++-+

–
+-+

–

+-+
–

G1

G4

G2 G3

H2

G2H1

R C+-+
–

+-+
–

+-+
–

G1
G G +G2 3 4

H2

H G1 2

R C+-+
–

+-+
–

+-+
–

G1 G G +G2 3 4

H21/G1

H G1 2
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Step 5: Eliminating the feedback path and combining blocks in cascade

Step 6: Eliminating the feedback path

1
1 G G H

G (G G G )
G
H

1 G G H
G (G G G )

1

1

2 1

2 3

2 1

2 3

1 4

1

2

1 4

+
+

+
+

+

    ⇒    

1 G G H
1 G G H G G H G H

1 G G H
G G G G G

1

1 2 1

1 2 1 2 3 2 4 2

2 1

1 2 3 1 4

+
+ + +

+
+

    ⇒    
1 G G H G G H G H

G G G G G

1 2 1 2 3 2 4 2

1 2 3 1 4

+ + +
+

Step 7: Eliminating the feedback path

	

	

1 G G H G G H G H
G G G G G

1 G G H G G H G H
G G G G G

1 G G H G G H G H G G G G G
G G G G G

R
C

1
1 2 1 2 3 2 4 2

1 2 3 1 4

1 2 1 2 3 2 4 2

1 2 3 1 4

1 2 1 2 3 2 4 2 1 2 3 1 4

1 2 3 1 4=
+

+ + +
+

+ + +
+

=
+ + + + +

+

RESULT

The overall transfer function is given by,

	
1 G G H G G H G G G G G

G G G G G
R
C

1 2 1 2 3 2 1 2 3 1 4

1 2 3 1 4=
+ + + +

+

EXAMPLE 1.18

Determine the overall transfer function 
( )
( )

R s
C s  for the system shown in fig 1.

R C
+-+

–
+-+

–
+-+

–
G1 G G +G2 3 4

H G1 2

H21/G1

G

G H G
1

1 1 1 2�

R C+-+
–

+-+
–

G G G G

G G H
1 2 3 4

1 2 11

( )

( )

�
�

H

G
2

1

R C+-+
–

G G G G G

G G H G G H G H
1 2 3 1 4

1 2 1 2 3 2 4 21

�
� � �

R(s) C(s)

Fig 1.

+-+
–

+-+
– +-+

–
G1 G2

H2

G3
G4
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R(S) C(S)
+-+

–
G1 G4

G4

G G

G H G

G G

G H G
H

2 3

4 1 3

2 3

4 1 3
2

1

1
1

�

�
�

G G

G G H G G H
2 3

3 4 1 2 3 21� �

SOLUTION

Step 1: Moving the branch point before the block

Step 2 : Combining the blocks in cascade and rearranging the branch points

Step 3 : Eliminating the feedback path

Step 4 : Combining the blocks in cascade and eliminating feedback path

Step 5 :  Combining the blocks in cascade

R(s) C(s)+-+
–

+-+
– +-+

–
G1 G2

H2

H1

G3 G4

R(s) C(s)
+-+

–
+-+

– +-+
–

G1 G2

H2

G3 G4

G4H1

G4

R(s) C(s)
+-+

–
+-+

–
+-+

–
G1

H2

G2 G3 G4

G H4 1

G4

R(s)
C(s)

+-+
–

G1 +-+
–

G2

H2

G4

G4

G

G H G
3

4 1 31�
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Step 6 :  Eliminating the feedback path

Step 7 : Combining the blocks in cascade

	

RESULT

The overall transfer function of the system is given by,

	
( )
( )

1 G G H G G H G G G G
G G G G

R s
C s

3 4 1 2 3 2 1 2 3 4

1 2 3 4=
+ + +

EXAMPLE 1.19

For the system represented by the block diagram shown in fig 1. Evaluate the closed loop transfer function when 

the input R is (i) at station-I (ii) at station-II.

SOLUTION

(i)	 Consider the input R is at station-I and so the input at station-II is made zero. Let the output be C1. Since 
there is no input at station-II that summing point can be removed and resulting block diagram is shown 
in fig 2.

R(S) C(S)
+-+

–
G4

G4

G G G

G G H G G H
1 2 3

3 4 1 2 3 21� �

R(S) C(S)
G4

1
1

1
1

1 2 3

3 4 1 2 3 2

1 2 3

3 4 1 2 3 2
4

� � �

�
� �

�

G G G

G G H G G H

G G G

G G H G G H
G

G G G

G G H G G H G G G G
1 2 3

3 4 1 2 3 2 1 2 3 41� � �

C(S)

Fig 1.

Station-I Station-II

+-
+

–
+-+

–
G1 G2

H3

+-+
–

+-+
+

H2

G3

H1
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R C
+-+

–

H1

G G G

G H G H
1 2 3

3 2 2 31� �

     Step 1 : Shift the take off point of feedback H
3
 beyond G3and rearrange the branch points

Step 2 :  Eliminating the feedback H
2
 and combining blocks in cascade

Step 3:  Eliminating the feedback path

1
1 G H

G G
G
H

1 G H
G G

1
1 G H

G H
1 G H

G G

1 G H G H
G G

3 2

2 3

3

3

3 2

2 3

3 2

2 3

3 2

2 3

3 2 2 3

2 3

#
+ +

+

+
=

+

+
=

+ +
	

Step 4: Combining the blocks in cascade

Step 5: Eliminating feedback path H
1

	

1
1 G H G H

G G G
H

1 G H G H
G G G

1 G G H G G G H
G G G

H

3 2 2 3

1 2 3
1

3 2 2 3

1 2 3

3 2 2 3 1 2 3 1

1 2 3

#
+ +

+

+ +
=

+ + +

C1

Fig 2.

R

+-
+

–
G1

+-+
–

G2 +-+
–

G3

H2

H3

H1

C1

R

+-
+

–
G1 +-+ G2

+-+
–

G3

H3
1/G3

H2

H1

–

R

+-
+

–
G1

+-+
–

H1

H /G3 3

C1
G G

G H
2 3

3 21�

R C
+-+

–
G1

H1

G G

G H G H
2 3

3 2 2 31� �
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R

C2

+-++
G3

G

G H
2

2 31�

� �G H
H

G
1 1

2

2

R(s)
C (s)

1 G H G H G G G H
G G G1

3 2 2 3 1 2 3 1

1 2 3` =
+ + +

(ii)	 Consider the input R at station-II, the input at station-I is made zero. Let output be C
2
. Since there is no 

input in station-I that corresponding summing point can be removed and a negative sign can be attached 
to the feedback path gain H

1
. The resulting block diagram is shown in fig 3.

Step 1: Combining the blocks in cascade, shifting the summing point of H
2
 before G

2 
and rearranging the branch 

points.

Step 2: Interchanging summing points and combining the blocks in cascade.

Step 3: Combining parallel blocks and eliminating feedback path

Step 4: Combining the blocks in cascade 

1 G H
H

G
H

1 G H
G G H G

(1 G H )G
G (G G H H )G

G
G

H

2 3

2
1 1

2

2

2 3

2

2

1 1 2 2

2 3 2

2 1 2 1 2# #+
− − =

+
− −

=
+

− +
f f f fp p p p

C2

Fig 3.

R

+-+
–

G1 G2
+-+

++-+
–

H3

G3

H2

–H1

C2

R

+-+
– +-+

–
G2 +-+

+ G3

1/G2 H2

–G H1 1

H3

C2

R

+-+
–

+-+
–

G2
+-+

+
G3

H /G2 2

–G H1 1

H3
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Step 5: Eliminating the feedback path

	

1
1 G H

(G G H H )
G

G

1 G H
1 G H G (G G H H )

G
1 G H G (G G H H )

G (1 G H )

2 3

1 2 1 2
3

3

2 3

2 3 3 1 2 1 2

3

2 3 3 1 2 1 2

3 2 3

−
+

− +
=

+
+ + +

=
+ + +

+

f p

R
C

1 G H G (G G H H )
G (1 G H )2

2 3 3 1 2 1 2

3 2 3` =
+ + +

+

RESULT

The transfer function of the system with input at station-I is,

	
R
C

1 G H G H G G G H
G G G1

3 2 2 3 1 2 3 1

1 2 3=
+ + +

The transfer function of the system with input  at station-II is,

	
R
C

1 G H G (G G H )
G (1 H )

H
G2

2 3 3 1 2 1 2

3 2 3=
+ + +

+

EXAMPLE 1.20

For the system represented by the block diagram shown in the fig 1, determine  and .

SOLUTION

Case (i) To find 
R
C

1

1

In this case set R
2
 = 0 and consider only one output C

1
. Hence we can remove the summing point which adds 

R
2
 and need not consider G

6
, since G

6
 is on the open path. The resulting block diagram is shown in fig 2.

Fig 1

R1

R2

C1

C2

+-+
+

–

G1
G2 G3

H2

+-+
+ +-+

–
G4

H1

G5 G6

R C2+-++ G3

� �
�

G G G H H

G H G

2 1 2 1 2

2 3 21

( )

( )
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Step 1: Eliminating the feedback path

Step 2: Combining the blocks in cascade and splitting the summing point

Step 3: Eliminating the feedback path

Step 4: Combining the blocks in cascade

Fig 2.

R1
C1

+-+
+

–

G1
G2 G3

H2

G4

H1

G5+-+
–

R1 C1+-+
+

–

G1
G2 G3

H2

H1

G5

G

G
4

41�

C1

R1 +-+
–

G2 G3

G

G G G H H

G

1

1 4 5 1 2

4

1
1

�
�

C1R1 +-+
–

G1
G2 G3

G G H H

G
4 5 1 2

41�
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Step 5 : Eliminating the feedback path

Step 6: Combining the blocks in cascade

R
C

(1 G G )(1 G ) G G G H H
G G G (1 G )

1

1

1 2 4 1 4 5 1 2

1 2 3 4=
+ + −

+

Case 2 : To find 
R
C

1

2

In this case set R
2
 = 0 and consider only one output C

2
. Hence we can remove the summing point which adds 

R
2
 and need not consider G

3
, since G

3
 is on the open path. The resulting block diagram is shown in fig 3.

Step 1: Eliminate the feedback path.

C1R1

G3

G G G

G G G G H H

G G G

G G G G H H

1 2 4

4 1 4 5 1 2

1 2 4

4 1 4 5 1 2

1

1

1
1

1

( )

( )

( )

( )

�
� �

� �
� �

C1R1
G3

G G G

G G G G G G H H
1 2 4

1 2 4 1 4 5 1 2

1

1 1

( )

( )( )

�
� � �

Fig 3.

R1

C2

+-+
+

–
G1 G2

H2

G4
G5 G6

H1

C1R1

+-+
–

G3

G G G

G G G G HH

1 2 4

4 1 4 5 1 2

1

1

�
� �

b g

b g
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Step 2: Combining blocks in cascade and splitting the summing point

Step 3: Eliminating the feedback path		  Step 4 : Combining the blocks in cascade	 	
	

Step 5: Eliminating the feedback path

Step 6: Combining the blocks in cascade

		
R
C

(1 G )(1 G G ) G G G H H
G G G G H

1

2

4 1 2 1 4 5 1 2

1 4 5 6 2=
+ + −

R1
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+-+
+

–
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H1

H2 G5 G6
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G
4

41�
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C2
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+-++
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H1

G6

G G G H

G G G
1 4 5 2

4 1 21 1( )( )� �

G G G H
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G G G
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4 1 2

1 4 5 2 1

4 1 2
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1
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G G G H
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G1
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G6

G G H

G
4 5 2

41�

R1

C2

+-+
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H1

G6

G
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1 21�
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RESULT

The transfer function of the system when the input and output are R
1
 and C

1
 is given by, 

R
C

(1 G G )(1 G ) G G G H H
G G G (1 G )

1

1

1 2 4 1 4 5 1 2

1 2 3 4=
+ + −

+      						    

The transfer function of the system when the input and output are R
1
 and C

2
 is given by, 

R
C

(1 G )(1 G G ) G G G H H
G G G G H

1

2

4 1 2 1 4 5 1 2

1 4 5 6 2=
+ + −

 					     	

EXAMPLE 1.21

Obtain the closed loop transfer function C(s)/R(s) of the system whose block diagram is shown in fig 1.

SOLUTION

Step 1 : Splitting the summing point and rearranging the branch points

Step 2 : Eliminating the feedback path

Step 3 : Shifting the branch point after the block.

Fig 1.

C(S)R(S)
+-+

+
G1 +-+

–

–

H2

G2 +-+
+

G3

H1

G4

C(S)R(S)
+-+

+
G1

+-+
–

–
G2 G3

+-+
+

H1

G4

H2

C(S)R(S)
+-+

+
G1 +-+

–
+ G2 G3 +-+

+

H1H1

H2

G4

C(S)R(S)
+-+

+
G1 +-+

–
G3 +-+

+

H1

H2

G4

G

G H
2

2 11�
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R(S) C(S)
+-+ G1+

G4

H /G1 3

+-++
G G

G H G G H
2 3

2 1 2 3 21� �

G G

G H

G G H

G H

2 3

2 1

2 3 2

2 1

1

1
1

�

�
�

Step 4 : Combining the blocks in cascade and eliminating feedback path

Step 5 : Combining the blocks in cascade and eliminating feedback path

Step 6 : Eliminating forward path

	

	
( )
( )

1 G H G G H G G H
G G G

G
R s
C s

2 1 2 3 2 1 2 1

1 2 3
4` =

+ + −
+ 	

RESULT

The transfer function of the system is 
( )
( )

1 G H G G H G G H
G G G

G
R s
C s

2 1 2 3 2 1 2 1

1 2 3
4=

+ + −
+

EXAMPLE 1.22

The block diagram of a closed loop system is shown in fig 1. Using the block diagram reduction technique 
determine the closed loop transfer function C(s)/R(s).

SOLUTION

Step 1 : Splitting the summing point.

C(S)R(S)
+-+

+
G1 +-+

–
G3 +-+

+

H1

H2

G4

1/G3

G

G H
2

2 11�
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+-+
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– –

G (s)1 G (s)2
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Fig 1.
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Step 2 : Eliminating the feedback path.

Step 3 : Moving the summing point after the block.

Step 4 : Interchanging the summing points and combining the blocks in cascade

Step 5 : Eliminating the feedback path and feed forward path

Step 6 : Combining the blocks in cascade

	

( )
( )

1 G (s)H (s) G (s)G (s)H (s)
G (s) [G (s) 1]

R s
C s

2 2 1 2 1

2 1` =
+ +

+

RESULT

The transfer function of the system is,

	
( )
( )

1 G (s)H (s) G (s)G (s)H (s)
G (s) [G (s) 1]

R s
C s

2 2 1 2 1

2 1=
+ +

+
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+-+

++-+
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–

G (s)1

H (s)1

G s

G s H s
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2 21
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G s

G s H s G s s H s
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EXAMPLE 1.23

Using block diagram reduction technique find the transfer function C(s)/R(s) for the system shown in fig 1.

SOLUTION

Step 1 : Rearranging the branch points

Step 2 : Combining the blocks in cascade and eliminating the feedback path.

Step 3 :  Moving the branch point after the block.

C(S)R(S)
G1+ G2

H3

+-+++-+ +G3 G4

H4

H1 H2

Fig 1.

C(S)R(S)
G1+ G2

H3

+-++ +G3 G4

H4

H1 H2

+

C(S)R(S)
G1+ G2

H3

+-++ +G3 G4

H4

H1 H2

+

C(S)R(S)
G1+ G2

H3

+-++ G3

H4

+
G

G H H
4

4 1 21�
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Step 4 : Moving the branch point and combining the blocks in cascade.

Step 5 :  Combining the blocks in cascade

Step 6 : Eliminating feedback path and interchanging the summing points.

1
1 G H H
G G G H

1 G H H
G G G

1 G H H G G G H
G G G

4 1 2

2 3 4 3

4 1 2

2 3 4

4 1 2 2 3 4 3

2 3 4

−
+

+
=

+ −

Step 7 : Combining the blocks in cascade and eliminating the feedback path

1 G H H G G G H
G G G G

G G
H (1 G H H

1 G H H G G G H
G G G G

1 G H H G G G H G G H (1 G H H )
G G G G

1
4 1 2 2 3 4 3

1 2 3 4

3 4

4 4 1 2

4 1 2 2 3 4 3

1 2 3 4

4 1 2 2 3 4 3 1 2 4 4 1 2

1 2 3 4

+
+ −

+
+ −

=
+ − + +

f fp p
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+-++ G3
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+
G

G H H
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4 1 21�

1

3G
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G1+

H3

+-++ G2G3+
G

G H H
4

4 1 21�

1 4 1 2

4

� G H H

G

H

G
4

3

C(S)R(S)
G1+

H3

+-+++
G G G

G H H
2 3 4

4 1 21�

H G H H

G G
4 4 1 2

3 4
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G G G

G H H G G G H
2 3 4
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Step 8 : Eliminating the unity feedback path.

( )
( )

1 G H H G G G H G G H (1 G H H )
G G G G

1 G H H G G G H G G H (1 G H H )
G G G G

R s
C s

1
4 1 2 2 3 4 3 1 2 4 4 1 2

1 2 3 4

4 1 2 2 3 4 3 1 2 4 4 1 2

1 2 3 4

` =
+

+ − + +

+ − + +

1 G H H G G G H G G H (1 G H H ) G G G G
G G G G

4 1 2 2 3 4 3 1 2 4 4 1 2 1 2 3 4

1 2 3 4=
+ − + + +

1 H H ( G G G H ) G G (H G G ) G G G H
G G G G

G1 2 4 1 2 4 4 1 2 4 3 4 2 3 4 3

1 2 3 4=
+ + + + −

RESULT

The transfer function of the system is,

( )
( )

1 H H ( G G G H ) G G (H G G ) G G G H
G G G G

R s
C s

G1 2 4 1 2 4 4 1 2 4 3 4 2 3 4 3

1 2 3 4=
+ + + + −

1.12	 Signal flow graph

The signal flow graph is used to represent the control system graphically and it was developed by 
S.J. Mason.

A signal flow graph is a diagram that represents a set of simultaneous linear algebraic equations. 
By taking Laplace transform, the time domain differential equations governing a control system can 
be transferred to a set of algebraic equations in s-domain. The signal flow graph of the system can be 
constructed using these equations.

It should be noted that the signal flow graph approach and the block diagram approach yield the 
same information. The advantage in signal flow graph method is that, using Mason’s gain formula the 
overall gain of the system can be computed easily. This method is simpler than the tedious block diagram 
reduction techniques.

The signal flow graph depicts the flow of signals from one point of a system to another and gives the 
relationships among the signals. A signal flow graph consists of a network in which nodes are connected 
by directed branches. Each node represents a system variable and each branch connected between two 
nodes acts as a signal multiplier. Each branch has a gain or transmittance. When the signal pass through a 
branch, it gets multiplied by the gain of the branch. 

In a signal flow graph, the signal flows in only one direction. The direction of signal flow is indicated 
by an arrow placed on the branch and the gain (multiplication factor) is indicated along the branch.

R(S) C(S)
+-+

–

G G G G

G H H G G G H G G H G H H
1 2 3 4

4 1 2 2 3 4 3 1 2 4 4 1 21 1� � � �( )
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EXPLANATION OF TERMS USED IN SIGNAL FLOW GRAPH

Node	 :	 A node is a point representing a variable or signal.

Branch	 :	 A branch is directed line segment joining two nodes. The arrow on the 
		  branch	indicates the direction of signal flow and the gain of a branch is the  
		  transmittance.

Transmittance	 :	 The gain acquired by the signal when it travels from one node to another is 		
		  called transmittance. The transmittance can be real or complex.

Input node ( Source)	 :	 It is a node that has only outgoing branches.	

Output node ( Sink )	 :	 It is a node that has only incoming branches.

Mixed node	 :	 It is a node that has both incoming and outgoing branches.

Path	 :	 A path is a traversal of connected branches in the direction of the branch 		
		  arrows. The path should not cross a node more than once.

Open path	 :	 A open path starts at a node and ends at another node.

Closed path	 :	 Closed path starts and ends at same node.

Forward path	 :	 It is a path from an input node to an output node that does not cross any node 	
		  more than once.

Forward path gain	 :	 It is the product of the branch transmittances (gains) of a forward path.	

Individual loop           	 :	 It is a closed path starting from a node and after passing through a certain 
		  part of a graph arrives at same node without crossing any node more than once.

Loop gain	 :	 It is the product of the branch transmittances (gains) of a loop.

Non-touching Loops	 :	 If the loops does not have a common node then they are said to be non- touching 
		  loops.

PROPERTIES OF SIGNAL FLOW GRAPH

The basic properties of signal flow graph are the following :

(i)	 The algebraic equations which are used to construct signal flow graph must be in the form 
of cause and effect relationship.

(ii)	 Signal flow graph is applicable to linear systems only.

(iii)	 A node in the signal flow graph represents the variable or signal.

(iv)	 A node adds the signals of all incoming branches and transmits the sum to all outgoing 
branches.
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(v)	 A mixed node which has both incoming and outgoing signals can be treated as an output 
node by adding an outgoing branch of unity transmittance.

(vi)	 A branch indicates functional dependence of one signal on the other.

(vii)	 The signals travel along branches only in the marked direction and when it travels it gets 
multiplied by the gain or transmittance of the branch.

(viii)	 The signal flow graph of system is not unique. By rearranging the system equations different 
types of signal flow graphs can be drawn for a given system.

SIGNAL FLOW GRAPH ALGEBRA

Signal flow graph for a system can be reduced to obtain the transfer function of the system using 
the following rules. The guideline in developing the rules for signal flow graph algebra is that the signal 
at a node is given by sum of all incoming signals.

Rule 1	 :	 Incoming signal to a node through a branch is given by the product of a signal at previous 
node and the gain of the branch.

		  Example:

Rule 2	 :	 Cascaded branches can be combined to give a single branch whose transmittance is equal 
to the product of individual branch transmittance.

		  Example:

Rule 3	 :	 Parallel branches may be represented by single branch whose transmittance is the sum of 
individual branch transmittances.

		  Example:
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b

1 bc�
x

2
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Rule 4	 :	 A mixed node can be eliminated by multiplying the transmittance of outgoing branch 
(from the mixed node) to the transmittance of all incoming branches to the mixed node.

		  Example

Rule 5	 :	 A loop may be eliminated by writing equations at the input and output node and rearranging 
the equations to find the ratio of output to input. This ratio gives the gain of resultant 
branch.

		  Example

Proof :

x2 = ax1 + cx3   ;   x3 = bx2

Put, x2 = ax1 + cx3 in the equation for x3.

∴ x3 = b(ax1 + cx3)     ⇒     x3 = abx1 + bcx3    ⇒    x3- bcx3 = abx1    ⇒    x3(1- bc) = abx1

x
x

bc
ab

11

3` =
−

SIGNAL FLOW GRAPH REDUCTION

The signal flow graph of a system can be reduced either by using the rules of a signal flow graph 
algebra or by using Mason’s gain formula. 

For signal flow graph reduction using the rules of signal flow graph, write equations at every node  
and then rearrange these equations to get the ratio of output and input (transfer function).

The signal flow graph reduction by above method will be time consuming and tedious. S.J.Mason 
has developed a simple procedure to determine the transfer function of the system represented as a signal 
flow graph. He has developed a formula called by his name mason’s gain formula which can be directly 
used to find the transfer function of the system.

MASON’S GAIN FORMULA

The Mason’s gain formula is used to determine the transfer function of the system from the signal 
flow graph of the system.

Let,   R(s) = Input to the system

         C(s) = Output of the system

Now,	 Transfer function of the system, ( ) ( )
( )T s R s
C s= 		            .....(1.34)

Mason’s gain formula states the overall gain of the system [transfer function] as follows,

,Overall gain T P1
k

k kT
T= / 					               .....(1.35)

x
2

a

b
x

3

c

x
4

x
1

x
2

ac

bc

x
1

x
4�
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where,	 T	 =	 T(s) = Transfer function of the system
	 PK	 =	 Forward path gain of Kth forward path
	 K	 =	 Number of forward paths in the signal flow graph
	 ∆	 =	 1 − (Sum of individual loop gains)

Sum of gain products of all possible
combinations of two non touching loops

+
−

e o

Sum of gain products of all possible
combinations of three non touching loops

-
-

e o

			      + ..............................
	 ∆K	 =	 ∆ for that part of the graph which is not touching Kth forward path

CONSTRUCTING SIGNAL FLOW GRAPH FOR CONTROL SYSTEMS

A control system can be represented diagrammatically by signal flow graph. The differential equations 
governing the system are used to construct the signal flow graph.The following procedure can be used to 
construct the signal flow graph of a system. 

1.	 Take Laplace transform of the differential equations governing the system in order to  		
		  convert them  to algebraic equations in s-domain.

2.	 The constants and variables of the s-domain equations are identified.
3.	  From the working knowledge of the system, the variables are identified as input, output and   

		   intermediate variables. 
4.	 For each variable a node is assigned in signal flow graph and constants are assigned as the 	

		  gain or transmittance of the branches connecting the nodes. 
5.	 For each equation a signal flow graph is drawn and then they are interconnected to give 		

		  overall signal flow graph of the system.

PROCEDURE FOR CONVERTING BLOCK DIAGRAM TO SIGNAL FLOW GRAPH

The signal flow graph and block diagram of a system provides the same information but there is 
no standard procedure for reducing the block diagram to find the transfer function of the system. Also the 
block diagram reduction technique will be tedious and it is difficult to choose the rule to be applied for 
simplification. Hence it will be easier if the block diagram  is converted to signal flow graph and Mason’s 
gain formula is applied to find the transfer function. The following procedure can be used to convert block 
diagram to signal flow graph.

1.	 Assume nodes at input, output, at every summing point, at every branch point and in between 
cascaded blocks.

2.	 Draw the nodes separately as small circles and number the circles in the order 1, 2, 3, 4, ..... etc.
3.	 From the block diagram find the gain between each node in the main forward path and connect 

all the corresponding circles by straight line and mark the gain between the nodes.
4.	 Draw the feed forward paths between various nodes and mark the gain of feed forward path 

along with sign.
5.	 Draw the feedback paths between various nodes and mark the gain of feedback paths along 

with sign.
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V (s)a
V (s) E (s)a b�

1

R sLa a� I (s)a Kt
T(s)

1

Js B� �(s) 1/s �(s)

KbE (s)b

�1

1

EXAMPLE 1.24

Construct a signal flow graph for armature controlled dc motor.

SOLUTION

The differential equations governing the armature controlled dc motor are (refer  section 1.7).

v i R L
dt
di

e ; i ; ; ; /T K T J
dt
d B e K d dta a a a

a
b a b bt

ω ω ω ω θ= + + = = + = =  

On taking Laplace transform of  above equations we get,

Va(s) = Ia(s) Ra + La s Ia(s) + Eb(s) 			          .....(1)

T(s)  =  K
t
I
a
(s)						            .....(2)

T(s)  = J s ω(s) + B ω(s)					            .....(3)

Eb(s) = Kb ω(s) 						             .....(4)

ω(s)  = s θ (s)						          .....(5)

The input and output variables of armature controlled dc motor are armature voltage  Va(s) and angular 
displacement θ(s) respectively. The variables Ia(s), T(s), Eb(s) and ω(s)  are  intermediate variables.

The equations (1) to (5) are rearranged & individual signal flow graph are shown in fig 1 to fig 5.

V
a
(s) - E

b
(s) = I

a
(s) [R

a
 + s L

a
]

( ) ( ) ( )I s
R sL

V s E s1
a

a a
a b` =

+
−6 @

T(s) = K
t
I
a
(s)

T(s) = w(s) [Js + B]

( ) ( )s
Js B

T s1` ω =
+

Eb(s) = Kb ω(s)

w(s) = sq(s)

( ) ( )s
s

s1` θ ω=

The overall signal flow graph of armature controlled dc motor is obtained by interconnecting the individual signal 

flow graphs shown in fig 1 to fig 5. The overall signal flow graph is shown in fig 6.

				    Fig 6 : Signal flow graph of armature controlled dc motor.

V (s)a 1 V
(s)

E
(s)

a

b� 1

R sLa a� I (s)a

�1

E (s)bFig 1

T(s)I (s)a Kt

Fig 2

T(s) �(s)

1

Js B�
Fig 3

E (s)
b

K
b

�(s)

Fig 4

�(s) �(s)1/s
Fig 5
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R(s) 1

2 3 4 5 6 7 8

G
4 G

5 1 C(s)

G
6 Fig 3 : Forward path-2.

R(s) G
1

G
2

G
3

G
4

G
5

�H
2

�H
1

G
6

�H
3

1

2 3 4 5 6 7 81

EXAMPLE 1.25

Find the overall transfer function of the system whose signal flow graph is shown in fig 1.

SOLUTION

I.  Forward Path Gains

There are two forward paths.   ∴ K = 2

Let forward path gains be P
1
 and P2.

Gain of forward path-1,   P1 =  G1  G2 G3 G4 G5 

Gain of forward path-2,   P2 =  G4G5G6

II.  Individual Loop Gain

There are three individual loops. Let individual loop gains be P
11

, P
21

 and P
31

.

Loop gain of individual loop-1,   P
11

  = - G
2
H

1
 

Loop gain of individual loop-2,   P
21

  = - G
2
G

3
H

2
 

Loop gain of individual loop-3,   P
31

  = - G
5
H

3

III.  Gain Products of Two Non-touching Loops

There are two combinations of two non-touching loops. Let the gain products of two non touching loops be P
12

 and P
22

.

P P P ( G H )( G H ) G G H HGain product of first combination

of two non touching loops
12 11 31 2 1 5 3 2 5 1 3= = − − =4

P P P ( G G H )( G H ) G G G H HGain product of second combination

of two non touching loops
22 21 31 2 3 2 5 3 2 3 5 2 3= = − − =4

3 4
G

2

�H
1

�H
2

G
2 G

3

G
5

�H
3

3 5

4

6 7

Fig 4 : Loop-1. Fig 5 : Loop-2. Fig 6 : Loop-3.

3 4

G
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6 7

G
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Fig 7 : First combination of 2 non-touching loops.

3 4 5

G
2

G
3

�H
2

G
5

6 7
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Fig 8 : Second combination of 2 non-touching loops.
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G
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G
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G
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G
5

2 3 4 5 6 7 81

1 C(s)

Fig 2 : Forward path-1.
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G1G2

G4
G8

G6

�H1

G3 G5

G7

�H2

1R(s) 1 C(s)

Fig 1

IV.  Calculation of ∆ and ∆K

∆   =  1 - (P
11

 
+ P

21

 
+ P

31
) + (P

12

 
+ P

22
)

      =	1 - (-G
2
H

1
- G

2
G

3
H

2
 - G

5
H

3
) + (G

2
G

5
H

1
H

3 
+ G

2
G

3
G

5
H

2
H

3
)

     =	1 +  G
2
H

1
 + G

2
G

3
H

2

 
 + G

5
H

3
 + G

2
G

5
H

1
H

3
 + G

2
G

3
G

5
H

2
H

3

 

∆
1
 
 =	1, Since there is no part of graph which is not touching with first forward path.	

The part of the graph which is non touching with second forward path is shown in fig 9.

∆
2
  
=  1 - P

11
 = 1 - (-G

2
H

1
)  =  1 + G

2
H

1
 

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

(P P ) ( )T P1 1 Number of forward paths is 2 and so K 2
K

1 1 2 2K KT
T

T
T T= = + =/

1 G H G G H G H G G H H G G G H H
G G G G G G G G (1 G H )

2 1 2 3 2 3 3 2 5 1 3 2 3 5 2 3

1 2 3 4 5 4 5 6 2 1=
+ + + + +

+ +

1 G H G G H G H G G H H G G G H H
G G G G G G G G G G G G H

2 1 2 3 2 5 3 2 5 1 3 2 3 5 2 3

1 2 3 4 5 4 5 6 2 4 5 6 1=
+ + + + +

+ +

1 G H G G H G H G G H H G G G H H
G G G [G G G /G G H ]

2 1 2 3 2 5 3 2 5 1 3 2 3 5 2 3

2 4 5 1 3 6 2 6 1=
+ + + + +

+ +

EXAMPLE 1.26

Find the overall gain of the system 
whose signal flow graph is shown in fig 1.

SOLUTION

Let us number the nodes as shown in fig 2.

I.  Forward Path Gains

There are six forward paths.  ∴ K = 6

Let the forward path gains be P1, P2, P3, P4, P5  and P6.

R(s) 1

2

G2

3 4

5 6

C(s)1

G6

G4

7 8

Fig 3 : Forward path-1.

3 4

R(s) 1

2 G3

G5

G7
5 6

C(s)1

7 8
Fig 4 : Forward path-2.

R(s) 1
G2

G1

G4
G8

G5

G3

�H2

G7

1 C(s)

�H1

3

G6

4

87

2 5

Fig 2

6

G
2

3 4

�H
1

Fig 9
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Gain of forward path-1, P
1
 = G

2
G

4
G

6
 

Gain of forward path-2, P
2
 = G

3
G

5
G

7
 

Gain of forward path-3, P
3
 = G

1
G

2
G

7
 

Gain of forward path-4, P
4
 = G

3
G

8
G

6
 

Gain of forward path-5, P
5
 = -G

1
G

3
G

7
G

8
H

1
 

Gain of forward path-6, P
6
 = -G

1
G

2
G

6
G

8
H

2

II.  Individual Loop Gain

There are three individual loops. 

Let individual loop gains be P
11

, P
21

 and P
31

.

Loop gain of individual loop-1,   P
11

 = -G
4
H

1
 

Loop gain of individual loop-2,   P
21

 = -G
5
H

2
 

Loop gain of individual loop-3,   P
31

 =   G
1
G

8
H

1
H

2
 

III.  Gain Products of Two Non-touching Loops

There is only one combination of two non-touching 
loops. Let gain product of two non-touching loops be P12.

P P P ( G H )( G H ) G G H HGain product of first combination

of two non touching loops
12 11 21 4 1 5 2 4 5 1 2

-
= = − − =4

IV.  Calculation of ∆ and ∆K

∆  =	 1 - (P
11

 + P
21

 + P
31

) + P
12

  = 1 - (-G
4
H

1
 - G

5
H

2
 + G

1
G

8
H

1
H

2
) + G

4
G

5
H

1
H

2

     =	 1 + G
4
H

1
 + G

5
H

2
 - G

1
G

8
H

1
H

2
 + G

4
G

5
H

1
H

2

R(s) C(s)

2

1

3

8

5 6

1

7

4

G2

G1

G7

Fig 5 : Forward path-3
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Fig 6 : Forward path-4
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Fig 7 : Forward path-5
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The part of the graph non-touching forward path - 1 is shown in fig 13.

	 ∴ ∆
1
 = 1 - (-G

5
H

2
) = 1 + G

5
H

2

The part of the graph non-touching forward path -2 is shown in fig 14.

	 ∴ ∆
2
 = 1 - (-G

4
H

1
) = 1 + G

4
H

1

There is no part of the graph which is non-touching with forward paths 3, 4, 5 and 6.

	 ∴ ∆
3
 = ∆

4
 = ∆

5
 = ∆

6
 = 1

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

( )T P1 Number of forward paths is six and so K 6
K

K KT
T= =c m/

1 (P P P P P P )
1 1 2 2 3 3 4 4 5 5 6 6T
T T T T T T= + + + + +

G G G (1 G H ) G G G (1 G H ) G G G G G G

G G G G H G G G G H

4 1 5 2 1 8 1 2 4 5 1 2

2 4 6 5 2 3 5 7 4 1 1 2 7 3 6 8

1 3 7 8 1 1 2 6 8 2=

+ + + + +
− −

1 G H G H G G H H G G H H+ + − +
	

EXAMPLE 1.27

Find the overall gain C(s)/R(s) for the signal flow graph shown in fig 1.

SOLUTION

I.  Forward Path Gains

There are two forward paths.   ∴ K = 2.   Let the forward path gains be P
1
 and P

2
.

Gain of forward path-1,   P
1
 = G

1
G

2
G

3
G

4

Gain of forward path-2,   P
2
 = G

1
G

2
G

6

R(s) C(s)

21 3 54

G2G1 G4G3

Fig 2 : Forward path-1

R(s) C(s)

21 3 54

G2G1

G6Fig 3 : Forward path-2

87

�H2
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�H1

3

G5

Fig 13

Fig 14

R(s)

C(s)
21 3 54

G2G1

-H2

G4G3

�H1

G5

G6-H3

Fig 1
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II.  Individual Loop Gain

There are five individual loops. Let the individual loop gains be p
11

, p
21

, p
31

, p
41

 and p
51

. 

Loop gain of individual loop-1,   P
11

 = - G
2
G

3
H

1
 

Loop gain of individual loop-2,   P
21

 = - H
2
G

2

Loop gain of individual loop-3,   P
31

 = - G
2
G

6
H

3
 

Loop gain of individual loop-4,   P
41

 = - G
2
G

3
G

4
H

3
 

Loop gain of individual loop-5,   P
51

 = G
5

III.  Gain Products of Two Non-touching Loops

There are two combinations of two non-touching loops.

Let the gain products of two non-touching loops be P
12

 and P
22 

.

of two non touching loops
P P P ( G H )(G ) G G HGain product of first combination

12 21 51 2 2 5 2 5 2= = − = −4

of two non touching loops
P P P ( G G H )(G ) G G G HGain product of second combination

22 31 51 2 6 3 5 2 5 6 3= = − = −4

IV.  Calculation of ∆ and ∆K

D = 1 - (P
11

 + P
21

 + P
31

 + P
41

 + P
51

) + (P
12

 + P
22

)

   = 1 - (-G
2
G

3
H

1
 - H

2
G

2
 - G

2
G

3
G

4
H

3
 + G

5
 - G

2
G

6
H

3
) + (- G

2
H

2
G

5
 - G

2
G

5
G

6
H

3
)	

Since there is no part of graph which is not touching forward path-1, ∆
1 
= 1. 

The part of graph which is not touching forward path-2 is shown in fig 11.

	 ∴ ∆
2 
= 1 - G

5
 

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,	

(T P1 Number of forward path is 2 and so K 2)
K

K KT
T= =/

Fig 11

G5

4

G5

Fig 8 : loop-5
4

�H2

G2

4

G2

�H1

3

G3

2

2 3
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-H2

-H1

G4

Fig 1

G3
G2G1

R(s) C(s)1

1 2 3 4 5

-1

6

1

7

P G G G G 1 G G (1 )P G G1 1
1 1 2 2 1 2 3 4 1 2 6 5#

T
T T

T
= + = + −6 6@ @  

1 G G H H G G G G H G G G H G G H G H G G G G H
G G G G G G G G G G G

2 3 1 2 2 2 3 4 3 5 2 6 5 2 6 3 2 2 5 2 5 6 3

1 2 3 4 1 2 6 1 2 5 6=
+ + + − + − − −

+ −  

EXAMPLE 1.28

Find the overall gain C(s)/R(s) for the signal flow graph shown in fig 1.

SOLUTION

I.  Forward Path Gains

There is only one forward path.   ∴ K = 1.

Let the forward path gain be P
1
.

Gain of forward path-1, P
1
 = G

1
G

2
G

3
G

4

II.  Individual Loop Gain

There are three individual loops. Let the loop gains be P
11

, P
21

, P
31

.

Loop gain of individual loop-1,   P
11

 = - G
3
G

4
H

1
 

Loop gain of individual loop-2,   P
21

 = - G
2
G

3
H

2

Loop gain of individual loop-3,   P
31

 = - G
1
G

2
G

3
G

4

III.  Gain Products of Two Non-touching Loops

There are no possible combinations of two non-touching loops, three non-touching loops, etc.

IV.  Calculation of ∆ and ∆K

D = 1 - (P
11

 + P
21

 + P
31

)

   = 1 - (-G
3
G

4
H

1
 - G

2
G

3
H

2
 - G

1
G

2
G

3
G

4
)

   = 1 + G
3
G

4
H

1
 + G

2
G

3
H

2
 + G

1
G

2
G

3
G

4

Since no part of the graph is non-touching with forward path-1, ∆
1
 = 1. 

G4

Fig 2 : Forward path-1
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H1

G2

2 3 3 4

H2

4 5

H3

G3
G4

4 5

G6

H2 H3

3

Fig 4 : loop-1 Fig 5 : loop-2 Fig 6 : loop-3 Fig 7 : loop-4

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

R(s)
C(s) 1 P 1 P ( )T Number of forward path is1and so K 1

K
K K 1 1T
T

T
T == = =/

    
1 G G H G G H G G G G

G G G G

3 4 1 2 3 2 1 2 3 4

1 2 3 4=
+ + +

	

EXAMPLE 1.29

The signal flow graph for a feedback control system is shown in fig 1. Determine the closed loop transfer function 

 C(s)/R(s).

SOLUTION

I.  Forward Path Gains

There are two forward paths.   ∴  K = 2.
Let forward path gains be P

1
 and P

2
.

Gain of forward path-1,   P
1
 = G

1
G

2
G

3
G

4
G

5

Gain of forward path-2,   P
2
 = G

1
G

2
G

6
G

5

II.  Individual Loop Gain

There are four individual loops. Let individual loop gains be P
11

, P
21

, P
31

 and P
41

.

Loop gain of individual loop-1,   P
11

 =  G
2
H

1
 

Loop gain of individual loop-2,   P
21

 =  G
3
H

2

Loop gain of individual loop-3,   P
31

 =  G
4
H

3
 

Loop gain of individual loop-4,   P
41

 =  G
6
H

2
H

3
 

III.  Gain Products of Two Non-touching Loops
There is only one combination of two non-touching loops. Let the 

gain products of two non-touching loops be P
12

.

H1

G5

Fig 1
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Fig 8 : First combination of
two non touching loops
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of two non touching loops-
Gain product of first combination P (G H )(G H )12 2 1 4 3=4

                                            =G G H H2 4 1 3

IV.  Calculation of ∆ and ∆K

D = 1 - (P
11

 + P
21

 + P
31

 + P
41

) + P
12

 = 1 - (G
2
H

1
 + G

3
H

2
 + G

4
H

3
 + G

6
H

2
H

3
) + G

2
G

4
H

1
H

3

 = 1 - G
2
H

1
 - G

3
H

2
 - G

4
H

3
 - G

6
H

2
H

3
 + G

2
G

4
H

1
H

3

Since there is no part of graph which is non-touching with forward path-1 and 2, ∆
1
 = ∆

2
 = 1 

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

T 1 P 1 (P P ) ( )Number of forward paths is two and so K 2
K

K K 1 1 2 2T
T

T
T T == = +/

   
1 G H G H G H G H H G G H H

G G G G G G G G G

2 1 3 2 4 3 6 2 3 2 4 1 3

1 2 3 4 5 1 2 5 6=
− − − − +

+
	

EXAMPLE 1.30

Convert the given block diagram to signal flow graph and determine C(s)/R(s).

SOLUTION

The nodes are assigned at input, output, at every summing point & branch point as shown in fig 2.

The signal flow graph of the above system is shown in fig 3.

I.  Forward Path Gains

There are two forward paths.  ∴ K = 2

Let the forward path gains be P
1
 and P

2
.

Fig 1

+-�+ G1 G2
+-+

�

G3

H

R(s) C(s)

1

Fig 2

+-�+ G1 G2
+-+

�

G3

H

R(s) C(s)

2
3 4 5 6

�H
Fig 3

G2
R(s) C(s)

1 2 3 4 5 6

�G3

G1
1 1 1
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Fig 2

+-�+ G1 G2

G4

+-+�R(s) C(s)
+-�+ +-�+ G3

H1

1 2 3 4 5 6 7 8 9

10H2

Gain of forward path-1,   P
1
= G

1
G

2

Gain of forward path-2,   P
2
= -G

3

II.  Individual Loop Gain

There is only one individual loop. Let the individual loop gain be P
11

.

Loop gain of individual loop-l, P
11 

= -G
1
H.

III.  Gain Products of Two Non-touching Loops

There are no combinations of non-touching loops.

IV.  Calculation of ∆ and ∆K

∆ = 1 − [P
11

]  = 1 + G
1
H

Since there are no part of the graph which is non-touching with forward path-1 and 2,

∆
1 
= ∆

2 
= 1 

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

1 P 1 P P
1 G H

G G G
T

K
K K 1 1 2 2

1

1 2 3
T

T
T

T T= = + =
+
−

6 @/ 	

EXAMPLE 1.31

Convert the block diagram to signal flow graph and determine the transfer function using Mason’s gain formula.

SOLUTION

The nodes are assigned at input, ouput, at every summing point & branch point as shown in fig 2.

Fig 4 : Forward path-1

G2
R(s) C(s)

1 2 3 4 5 6

G111 1

Fig 5 : Forward path-2

�G3

R(s) C(s)

1 2 3 4 5 6

1 1 1

�H
Fig 6 : loop-1

2 3 4

G1
1

Fig 1

+-�+ G1 G2

G4

+-+
R(s) C(s)

+-�+ +-�+ G3

H1

H2

+
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R(s) C(s)

1

1 G11 1

G4

1 1

8 9765432

Fig 5 : Forward path-2

�H1

R(s) C(s)

1

1 G11 1 G2

G4

G3 1 1

8 9765432

10

1

�H2

�1

Fig 3

The signal flow graph for the above block diagram is shown in fig 3.

I.  Forward Path Gains

There are two forward paths.    ∴  K=2.
Let the gain of the forward paths be P

1
 and P

2
.

Gain of forward path-1,   P
1
= G

1
G

2
G

3

Gain of forward path-2,   P
2
= G

1
G

4

II.  Individual Loop Gain

There are five individual loops. Let the individual loop gain be P
11

, P
21

, P
31

, P
41

 and P
51

.

Loop gain of individual loop-1,   P
11

 = - G
1
G

2
G

3

Loop gain of individual loop-2,   P
21 

 = - G
2
G

1
H

1

Loop gain of individual loop-3,   P
31

 
 
= - G

2
G

3
H

2

Loop gain of individual loop-4,   P
41 

 = - G
1
G

4

Loop gain of individual loop-5,   P
51 

 = - G
4
H

2

1
G4

1

87654

10

1

�H2

Fig 10 : loop-5.

R(s) C(s)

1

1 G11 1 G2 G3 1 1

8 9765432

Fig 4 : Forward path-1

G11 1 G2 G3 1

8765432
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1

�1Fig 6 : loop-1.

�H1

G1
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Fig 7 : loop-2.
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Fig 9 : loop-4.
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��2

Fig 8 : loop-3.
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III.  Gain Products of Two Non-touching Loops

There are no possible combinations of two non-touching loops, three non-touching loops, etc.,.

IV.  Calculation of ∆ and ∆K

∆ = 1- [ P
11

 + P
21

 + P
31

 + P
41

 + P
51

]  = 1 + G
1
G

2
G

3 
+ G

1
G

2
H

1 
+ G

2
G

3
H

2 
+ G

1
G

4 
+ G

4
H

2

Since no part of graph is non touching with forward paths-1 and  2,   ∆
1 
= ∆

2 
= 1.

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

P 1 P PT 1

K
K K 1 1 2 2T
T

T
T T= = +6 @/

   
1 G G G G G H G G H G G G H

G G G G G

1 2 3 1 2 1 2 3 2 1 4 4 2

1 2 3 1 4=
+ + + + +

+
	

EXAMPLE 1.32

Convert the block diagram to signal flow graph and determine the transfer function using Mason’s gain formula.

SOLUTION

The nodes are assigned at input, output, at every summing point & branch point as shown in fig 2.

The signal flow graph for the above block diagram is shown in fig 3.

I.  Forward Path Gains

There are two forward path,   ∴ K=2.

Let the forward path gains be P
1
 and P

2
.

Fig 1

G1 G2

H2

+-+
R(s) C(s)

++ +-�+ G3

G4

H1
9

+
�

+

Fig 2

G1 G2

H2

+-+
R(s) C(s)

+-+ +-�+ G3

G4

H1

1 2 3 4

9

5 6
7

8+
�

+

Fig 3

G2
R(s) C(s)

2 3
��

G1
1

1

1 G3

G4

4 5 6 7 8

11

9

�H2

H1

�



1. 87Chapter 1 - Mathematical Models of Control Systems

Gain of forward path-1,   P
1
= G

1
G

2
G

3

Gain of forward path-2,   P
2
=G

4

II.  Individual Loop Gain

There are three individual loops with gains P
11

,P
21

 and P
31

.

Gain of individual loop-1,   P
11 
=  - G

1
G

2
H

1

Gain of individual loop-2,   P
21 
=  − G

2
G

3
H

2

Gain of individual loop-3,   P
31 
=  − G

2
H

1

III.  Gain Products of Two Non-touching Loops

There are no possible combinations of two-non touching loops, three non-touching loops, etc.,.

IV.  Calculation of ∆ and ∆K

∆  =  1 − [ P
11

 + P
21

 + P
31

 ]  =  1 + G
1
G

2
H

1
 + G

2
G

3
H

2
 + G

2
H

1
 

Since no part of graph touches forward path-1, ∆
1
  = 1. 

The part of graph non touching forward path-2 is shown in fig 9.

∴ ∆
2 
 =  1 − [-G

1
G

2
H

1
 − G

2
G

3
H

2
 − G

2
H

1
]

	
 
   =  1 + G

1
G

2
H

1 
+ G

2
G

3
H

2
 + G

2
H

1

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

1 P 1 P PT (Number of forward paths is 2 and so K 2)
K

K K 1 1 2 2T
T

T
T T= = + =6 @/

G G G G (1 G G H G G H G H )1
1 2 3 4 1 2 1 2 3 2 2 1T

= + + + +6 @

G G G G G G H G G G H G G H1
1 2 3 4 1 2 1 2 3 4 2 2 4 1T

= + + + +6 @

G G H G G H G H
G G G G G G G H G G G H G G H

1 1 2 1 2 3 2 2 1

1 2 3 4 1 2 4 1 2 3 4 2 2 4 1=
+ + +

+ + + +

Fig 4 : Forward path-1.
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H1�G4 Fig 3

G3
G1

1

1 2 3 4 5 6

1

7

�G2

11

8

�H2

EXAMPLE  1.33

Draw a signal flow graph and evaluate the closed loop transfer function of a system whose block diagram is 
shown in fig 1.

SOLUTION

The nodes are assigned at input, output, at every summing point & branch point as shown in fig 2.

The signal flow graph for the block diagram of fig 2, is shown in fig 3.

I.  Forward Path Gains

There are four forward paths,  ∴ K = 4

Let the forward path gains be P
1
, P

2
, P

3
 and P

4
.

+-�+ G1 G3
+-+

�

G2

R(s) C(s)

H2
+-�+

G4

H1

Fig 1
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Fig 2
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Fig 4 : Forward path-1.
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Gain of forward path-1,   P
1
 =    G

1
G

3

Gain of forward path-2,   P
2
 =  -G

1
G

2

Gain of forward path-3,   P
3
 =   G

1
G

3
G

4
H

2

Gain of forward path-4,   P
4
 = -G

1
G

2
G

4
H

2

II.  Individual Loop Gain

There are two individual loops, let individual loop gains be P
11

 and P
21

.

Loop gain of individual loop-1,   P
11

 = − G
1
G

3
H

1
H

2
 

Loop gain of individual loop-2,   P
21

 = G
1
G

2
H

1
H

2

III.  Gain Products of Two Non-touching Loops

There are no possible combinations of two non-touching loops, three non-touching loops, etc.,.

IV.  Calculation of ∆ and ∆K

∆ = 1−  [ sum of individual loop gain ] = 1 −  (P
11

+ P
21

)

			      
 
= 1− [− G

1
G

3
H

1
H

2
 + G

1
G

2
H

1
H

2
]  =  1 + G

1
G

3
H

1
H

2 
−  G

1
G

2
H

1
H

2

Since no part of graph is non touching with the forward paths,   ∆
1 
= ∆

2 
= ∆

3 
= ∆

4 
= 1. 

V.  Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

P
P P P P

(Number of forward paths is 4 and so K 4)T 1

K
K K

1 2 3 4
T

T
T

== =
+ + +/

1 G G H H G G H H
G G G G G G G H G G G H

1 3 1 2 1 2 1 2

1 3 1 2 1 3 4 2 1 2 4 2=
+ −

− + −

1 G H H (G G )
G (G G ) G G H (G G )

1 G H H (G G )
G (G G )( G H )1

1 1 2 3 2

1 3 2 1 4 2 3 2

1 1 2 3 2

1 3 2 4 2=
+ −
− + −

=
+ −

− +

1.13  THERMAL SYSTEM

List of symbols used in thermal system
q	 =	 Heat flow rate, Kcal/sec
θ1	 =	 Absolute temperature of emitter, °K
θ2	 =	 Absolute temperature of receiver, °K
∆θ	 =	 Temperature difference, ºC
A	 =	 Area normal to heat flow, m2

K	 =	 Conduction or Convection coefficient, Kcal/sec-ºC
Kr	 =	 Radiation coefficient, Kcal/sec-ºC
H	 =	 K/A=Convection coefficient, Kcal/m2-sec-ºC
K	 =	 Thermal conductivity , Kcal/m-sec-ºC
∆X	 =	 Thickness of conductor, m 
R	 =	 Thermal resistance, ºC-sec/Kcal
C	 =	 Thermal capacitance, Kcal/ºC

H1

G3
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3 4 5 6
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�H2

Fig 8 : loop-1 H1
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HEAT FLOW RATE

Thermal systems are those that involve the transfer of heat from one substance to another. There 
are three different ways of heat flow from one substance to another. They are conduction, convection and 
radiation.

For conduction,
	 Heat flow rate, 

X
q K KA3

3
θ= = 				              .....(1.36)

For convection,
	 Heat flow rate,  q = K ∆θ = HA ∆θ			             .....(1.37)

For radiation,
		  Heat flow rate, q K 1

4
2
4

r θ θ= −^ h

                     If  21 22θ θ   then q Kf
4θ= r                                                                                       .....(1.38)

                     Where 44
4
14θ θ θ= −1 2

r ^ h
Note : 4θr  is called effective temperature difference of the emitter and receiver.

BASIC ELEMENTS OF THERMAL SYSTEM

The model of thermal systems are obtained by using thermal resistance and capacitance which are 
the basic elements of the thermal system.

The thermal resistance and capacitance are distributed in nature. But for simplicity in analysis 
lumped parameter models are used. In lumped parameter model it is assumed that the substances that 
are characterized by resistance to heat flow have negligible heat capacitance and the substances that are 
characterized by heat capacitance have negligible resistance to heat flow.

The thermal resistance, R for heat transfer between two substances is defined as the ratio of change 
in temperature and change in heat flow rate.

, , /
,tan secThermal resis ce R Change in heat flow rate Kcal

Change in Temperature Co=

For conduction or convection,                                   For radiation,                          
	 Heat flow rate, q = K ∆θ                                              Heat flow rate, q Kr

4θ= r

On differentiating we get,                                           On differentiating we get
	                dq = K d(∆θ)                                                        4dq K d3r θ θ=

                  dq
d

K
1`

3θ =^ h                                                                dq
d

K 4
1
r

` θ
θ

=
3

		
But thermal resistance , R dq

d 3θ= ^ h                                But thermal resistance, R dq
dθ=

,tanThermal resis ce R K for conduction1` =       ,tanThermal resis ce R
K4
1

3
r

`
θ

=     
                                                                                            (for radiation)
                                = K HA for convection1 1=                          

Thermal capacitance, C is defined as the ratio of change in heat stored and change in temperature

  ,
,
,tanThermal capaci ce C

Change in temparature C
Change in heat stored Kcal

o
=                                                  .....(1.39)                                                 

Let 	 M	 = Mass of substance considered, Kg
	 cp	 = Specific heat of substance, Kcal/Kg -ºC
Now, Thermal capacitance, C = Mcp				              .....(1.40)
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EXAMPLE OF THERMAL SYSTEM

Consider a simple thermal system shown in fig 1.28. Let us assume that the tank is insulated to 
eliminate heat loss to the surrounding air, there is no heat storage in the insulation and liquid in the tank is 
kept at uniform temperature by perfect mixing with the help of a stirrer. Thus, a single temperature is used 
to describe the temperature of the liquid in the tank and of the outflowing liquid. The transfer function of 
this system can be derived as shown below.

Let	 iθ 	 =	 Steady state temperature of inflowing liquid, oC
	 0θ 	 =	 Steady state temperature of outflowing liquid, oC
	 G	 =	 Steady state liquid flow rate, Kg/sec
	 M	 =	 Mass of liquid in tank, Kg 
	 c	 =	 Specific heat of liquid, Kcal/Kg °C
	 R	 =	 Thermal resistance, °C - sec/Kcal
	 C	 =	 Thermal capacitance, Kcal/°C
	 Q	 =	 Steady state heat input rate, Kcal/sec

Let us assume that the temperature of inflowing liquid is 
kept constant. Let the heat input rate to the system supplied by 
the heater is suddenly changed from Q to Q q0+  . Due to this, 
the heat output flow rate will gradually change from Q to Q qi+
The temperature of the outflowing liquid will also be changed 
from 0θ  to 0θ θ+

For this system the equation for q0, C and R are obtained as follows,

, , ,
Change in output
heat flow rate

q Liquid flow
rare G

Specific heat of
liquid c

change in
temperature0

# #
θ

=1

		    		               = Gcθ					               .....(1.41)
Thermal capacitance, C = Mass, M   x   Specific heat of liquid, c   =  Mc	             	 .....(1.42)

 	 , ,
,tanThermal resis ce R Change in heat rate q

Change in temperature
q0 0

θ θ= = 	 .....(1.43)

On substituting for q0 from equation (1.41) in equation (1.43) we get,
			   R Gc Gc

1
θ
θ= = 		            .....(1.44)

In this system, rate of change of temperature is directly proportional to change in heat input rate.

dt
d q q

i 0
` θ α −   ;  the constant of proportionality is capacitance C of the system.

C dt
d q q

i 0
` θ = − 			                                                                  .....(1.45)

Equation (1.45) is the differential equation governing the system. Since equation (1.45) is of first 
order equation, the system is first order system.

From equation (1.43),    R q
0

θ= 	     q R0
` θ=    	                                                          .....(1.46)

Mixer

Heater Hot liquid

Cold liquid

�0

�i

Fig 1.28 : Thermal system.
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On substituting for q0 from equation (1.46) in equation (1.45) we get,

       C dt
d q

i

θ =       ⇒    C dt
d

R
Rq

iθ θ
=

−
     ⇒     RC dt

d Rq
i

θ θ= −    

RC dt
d Rq

i
` θ θ+ =                                                                                                ....(1.47)

Let, L L L; ;s dt
d s s q Q s

i
θ θ θ θ= = =^ ^ ^h h h" $ ", . ,

On taking Laplace transform of equation (1.47) we get,

        RC s s s R Q siθ θ+ =^ ^ ^h h h

            s sRC R Q s1 iθ + =^ ^h h6 @

        Q s
s

i

θ
^
^

h
h   is the required transfer function of the system

   Q
s

sRC
R

RC s RC

R
s RC

C
1 1 1

1

i

`
θ =

+
=

+
=

+

^

`
h

j
                                                                     .... (1.48)                                                       

1.14  HYDRAULIC SYSTEM
The Hydraulic system of interest to control engineers may be classified into,

1.  Liquid Level system  and 
2.  Hydraulic devices

The liquid level system consists of storage tanks and connecting  pipes. The variables to be controlled 
are liquid height in tanks and flow rate in pipes. The driving force is the  relative difference of the liquid 
heights in the tanks.

The Hydraulic devices are devices using incompressible oil as their working medium. These devices 
are used for controlling the forces and motions. The driving force is the high pressure oil supplied by the 
Hydraulic pumps.

Liquids are slightly compressible at high pressures. In hydraulic system, the compressibility effects 
may be neglected and conservation of volume is used as the basic physical law. The variables of hydraulic 
system are volumetric flow rate, q and pressure, P. The volumetric flow rate, q is through variable and it 
is analogous to current. The pressure, P is across variable and it is analogous to voltage.

Three basic elements of hydraulic systems are the Resistance, Capacitance and Inertance. The 
liquid flowing out of a tank can meet the resistance in several ways. Liquid while flowing through a pipe 
meet with resistance due to the friction between pipe walls and liquid. Presence of valves, bends, coupling 
of pipe of different diameter also offer resistance to liquid flow. 

The capacitance is an energy storage element and it represents storage in gravity field. The inertance 
represents fluid inertia and is derived from the inertia forces required to accelerate the fluid in a pipe. It is 
also an energy storage element. But the energy storage due to inertance element is negligible compared 
to that of capacitance element.

Consider the flow through a short pipe connecting two tanks. The Resistance, R for liquid flow in 
such a pipe or restriction, is defined as the change in the level difference, necessary to cause a unit change 
in the flow rate. 

, /
,
sec

R
Change in flow rate m
Change in level differenc m

3
=



1. 93Chapter 1 - Mathematical Models of Control Systems

               The Capacitance, C of a tank is defined to be the change in quantity of stored liquid, 
necessary to cause a unit change in the potential (head).

 ,
,C Change in head m

Chnge in liquid stored m3

=

	
EXAMPLE OF LIQUID LEVEL SYSTEM

A simple liquid level system is shown in figure 1.29 with steady state flow rate, Q  and steady state 
head, H.

Let, 	  Q	 =	 Steady-state flow rate ( before any change has occured ), m3/sec
	  qi	 =	 Small deviation of inflow rate from its steady-state value, m3/sec
	  q0	 =	 Small deviation of outflow rate from its steady-state value, m3/sec
	  H 	 =	 Steady state head (before any change has occured), m
	  h	 =	 Small deviation of head from its steady-state value, m
Let the system be considered linear. The differential equation governing the system is obtained by 

equating, the change in flow rate to the amount stored in the tank. In a small time interval dt, let the change 
in flow rate be (qi−q0), and the change in height be dh.

Now, Change in storage = Change in flow rate

∴C dh = (qi−q0) dh	           					               .....(1.49)

The resistance, R Change in outflow rate
Change in head

q
h
0

= =

q R
h

0
` =                                                                                                                      .....(1.50)                           

On substituting for q0 from equation (1.50) in equation (1.49) we get,

C dh q R
h dt

i
= −` j    ⇒   C dh R

q R h
dti=

−c m      ⇒ RC dt
dh q R h

i
= −

RC dt
dh h q R

i
+ =                                                                                                             .....(1.51)

The equation (1.51) is the differential equation governing the system. The term RC is the time 
constant of the system. On taking Laplace’s transform of equation (1.51), we get,

        Note: L L L{ } ; ;h H s dt
dh sH s q Q si i= = =^ ^ ^h h h$ ". ,

Control valve

Load valve

Resistance, R

Capacitance,C

Fig 1.29:Liquid level system
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RC sH s H s Q s Ri+ =^ ^ ^h h h

  
s RC H s Q s R1 i+ =^ ^ ^h h h

Q s
H s

sRC
R

RC s RC
R

s RC
C

1 1 1
1

i

` =
+

=
+

=
+^

^
^ ^h

h
h h                                               .....(1.52)

The equation (1.52) is the required transfer function of the system.

HYDRAULIC DEVICES

The hydraulic devices are used in hydraulic feedback systems and in combined electro-mechanical-
hydraulic systems. In hydraulic devices, power is transmitted through the action of fluid flow under pressure 
and the fluid is incompressible. The fluid used are petroleum based oils or non-inflammable synthetic oils.

The hydraulic devices used in control systems are generally classified as hydraulic motors and 
hydraulic linear actuators.

The output of hydraulic motor is rotary motion and that of linear actuator is translational. The 
hydraulic motor is physically smaller in size than an electric motor for the same power output. Also, the 
hydraulic components are more rugged than the corresponding electrical components. The applications of 
hydraulic devices are power steering and brakes in automobiles, the steering mechanism of large ships, 
the control of large machine tools, etc.

ADVANTAGES OF HYDRAULIC DEVICES

(i)	 Hydraulic fluid acts as a lubricant and coolant.
(ii)	 Comparatively small sized hydraulic actuators can develop large forces or torques.
(iii)	 Hydraulic actuators can be operated under continuous, intermittent, reversing and stalled 

conditions without damage.
(iv)	 Hydraulic actuators have a higher speed of response. They offer fast starts, stops and speed 

reversals.
(v)	 With availability of both linear and rotary actuators, the design has become more flexible.
(vi)	 Because of low leakages in hydraulic actuators, when loads are applied the drop in speed 

will be small.
(vii)	 For the same power output, hydraulic motor is much smaller in physical size than an electric 

motor.
(viii)	 Hydraulic components are rapidly acting and more rugged compared to the corresponding 

electrical component.
DISADVANTAGES OF  HYDRAULIC DEVICES

(i)	 Hydraulic power is not readily available compared to electric power.
(ii)	 They have the inherent problems of leaks and of sealing them against foreign particles.
(iii)	 Operating noise.
(iv)	 Costs more when compared to electrical system.
(v)	 Tendency to become sluggish at low temperature because of increasing viscosity of  fluid.
(vi)	 Fire and explosion hazards exist.
(vii)	 Hydraulic lines are not flexible as electric cables.
(viii)	 Because of the non-linear and other complex characteristics involved, it is difficult to design 

sophisticated hydraulic systems.
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EXAMPLE OF HYDRAULIC DEVICE

The most frequently used hydraulic device in control system is hydraulic motor-pump set. It consists 
of a variable stroke hydraulic pump and a fixed stroke hydraulic motor as shown in fig 1.30. The device 
accepts a linear displacement (stroke length) as input and delivers a large output torque.

The hydraulic motor is controlled by the amount of oil delivered by the pump. By mechanically 
changing the pump stroke, the oil delivered by the pump is controlled. Like in a DC generator and motor, 
there is no essential difference between hydraulic pump and motor. In a pump the input is mechanical 
power and output is hydraulic power and in a motor, it is viceversa.

Let,	 qp	 =	 Rate at which the oil flows from the pump
	 qm	 =	 Oil flow rate through the motor
	 qi	 =	 Leakage flow rate
	 qc	 =	 Compressibility flow rate
	 x	 =	 Input stroke length
	 θ	 =	 Output angular displacement of motor
	 P	 =	 Pressure drop across motor

The rate at which the oil flow from the pump is proportional to stroke angle, i.e., qp α x.

	 ∴Oil flow rate from the pump, qp = Kp x 			                         .....(1.53)

where Kp = Ratio of rate of oil flow to unit stroke angle.

The rate of oil flow through the motor is proportional to motor speed, i.e., q dt
d

m
α θ  .			 

	            ∴ Oil flow rate through motor, q K dt
d

m m
θ= 	 .....(1.54)

where Km = Motor displacement constant.
All the oil from the pump does not flow through the motor in the proper channels. Due to back 

pressure in the motor, a portion of the ideal flow from the pump leaks back past the pistons of motor and 
pump. The back pressure is the pressure that is built up by the hydraulic flow to overcome the resistance 
to free movement offered by load on motor shaft.

It is usually assumed that the leakage flow is proportional to motor pressure, i.e.  qi  α  P

          ∴ Leakage flow rate, qi = Ki P		            			                   .....(1.55)

                                          where Ki = constant.

The back pressure built up by the motor not only causes leakage flow in the motor and pump but 
also causes the oil in the lines to compress. Volume  compressibility flow is essentially proportional to 

Pump

Prime mover

Motor

stroke control

Load

q

p

low pressure line

high pressure line

x

�

Fig 1.30 : .Hydraulic motor-pump set
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pressure and therefore the rate of flow is proportional to the rate of change of pressure, i.e. q dt
dp

c
α

 ∴Compressibility flow rate, q K dt
dp

c c
= 		    	                                            .....(1.56)

where Kc = Coefficient of compressibility.

The rate at which the oil flows from the pump is given by sum of oil flow rate through the motor, 
leakage flow rate and compressibility flow rate.

∴qp = qm + qi + qc						                .....(1.57)

On substituting from equations (1.53) to (1.56) in equation (1.57) we get,

	 K x K dt
d K p K dt

dp
p m i c

θ= + + 			             .....(1.58)

The torque Tm developed by the motor is proportional to pressure drop and balances  load torque.

∴Hydraulic motor torque, Tm  = Kt P				              .....(1.59)

   where Kt is motor torque constant.

If the load is assumed to consist of moment of inertia J and viscous friction with coefficient B, then,

Load torque,  T J
dt
d B dt

d
2

2

l

θ θ= +  			                         .....(1.60)

Hydraulic power input = qm P				                          .....(1.61)

On substituting for qm, from equation (1.54) in equation (1.61) we get,

Hydraulic power input = K dt
d p

m

θ 				              .....(1.62)

Mechanical power output = T dt
d

m
θ 				              .....(1.63)

On substituting for Tm from equation (1.59) in equation (1.63) we get,

Mechanical power output = 	 K p dt
d

t

θ 			            .....(1.64)

If hydraulic motor losses are neglected or included as a part of load, then the hydraulic motor input 
is equal to mechanical power output of hydraulic motor.

	 K dt
d p K p dt

d
m t` θ θ= 				              .....(1.65)

From equation (1.65), it is clear that, Km = Kt .

Hence, equation (1.59) can be written as

Tm = Kt P = Km P

Since the motor torque equals load torque,  Tm = Tl
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                    K P J
dt
d B dt

d
2

2

m` θ θ= +

P K
J
dt
d

K
B

dt
d

2

2

m m

` θ θ= +                                                                                         .....(1.66)

On differentiating the above equation with respect to t, we get,

	 dt
dp

K
J
dt
d

K
B

dt
d

3

3

2

2

m m

θ θ= + 			             .....(1.67)

On substituting for P and dP/dt from equations (1.66) and (1.67) in equation (1.58) we get,

   Note : L L L; ;x X s s
dt
d s s

n

n
nθ θ θ θ= = =^ ^ ^h h h" " ', , 1

            K x K dt
d K K

J
dt
d

K
B

dt
d K K

J
dt
d

K
B

dt
d

2

2

3

3

2

2

p m
m m

c
m m

1

θ θ θ θ θ= + + + +; ;E E

             K x K
K J s s K

K J
K
K B

dt
d K K

K B
dt
d3

2

2

m
p

m

c

m

i

m

c
m

iθ θ θ= + + + +^ c ch m m

On taking Laplace transform with zero initial conditions, we get,

            K X s K
K J s s K

K J
K
K B s s K K

K B s s3 2
p

m

c

m

i

m

c
m

m

iθ θ θ= + + + +^ ^ c ^ c ^h h m h m h

            X s
s

s K
K J s K

K J K B s K
K K B

K
2

2
m i

m

c

m

i c

m

p
`
θ =

+
+

+ +^
^

c
h
h

m; E
                                              ..... (1.68)

	          
In hydraulic systems, normally Kc << Km, therefore, Put Kc = 0, in equation (1.68).

             X s
s

s K
K J s K

K K B
K

s
K K B
K J s

K
K K B
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s s
K

1 12

2

2

m

i

m

m i

p

m i

i

m

m i

p

`
θ

τ
=

+
+

=

+
+

+

=
+^

^
^h

h
h

= =G G	 .....(1.69)

                  where,   K

K
K K B
K

2

m

m i

p=
+

  and  
K K B
K J
2

m i

iτ =
+

The equation (1.69) is the required transfer function of the system.

1.15	 PNEUMATIC SYSTEM

Pneumatic system uses compressible fluid as working medium usually air. In pneumatic systems, 
compressibility effects of gas cannot be neglected and hence dynamic equations are obtained using 
conservation of mass.

 In pneumatic systems, change in fluid inertia energy and the fluid’s internal thermal energy are 
assumed negligible. In pneumatic system, which employs compressible fluid as working fluid, the mass 
and volume flow rates are not readily interchangeable and the analysis of gas flow is more complicated.
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The pneumatic devices involve the flow of gas or air, through connected pipe lines and pressure 
vessels. Hence the variables of pneumatic system are mass flow rate, qm and pressure, P. The mass flow 
rate is through variable and it is analogous to current. The pressure is across variable and it is analogous 
to voltage.

The two basic elements of pneumatic system are the resistance and capacitance. The restrictions in 
the pipes and valves offers resistance to gas flow.

The gas flow resistance, R is defined as the rate of change in gas pressure difference for a change 
in gas flow rate.

	 ,
,
secR Change in gas flow rate Kg

Change in gas pressure difference N m2

=

The pnuematic capacitance is defined for a pressure vessel and depends on the type of expansion 
process involved.  The capacitance of a pressure vessel may be defined as the ratio of change in gas stored 
for a change in gas pressure.

	
,
,C

Change in gas pressure N m
Change in gas stored Kg

2
=

Pneumatic devices are employed in guided missiles,air craft systems, automation of production 
machinery and in many other fields as automatic controllers.

The advantages of pneumatic  system are, 

1.  The air or gas used is non-inflammable and so it offers safety from fire hazards.
2.  The air or gas has negligible viscosity, compared to the high viscosity of hydraulic fluids.
3.  No return  pipelines are required since air can be let out, at the end of device work cycle.

The disadvantage in pneumatic system is that the response is slower than that of hydraulic systems, 
because of the compressibility of the working fluid.
EXAMPLE OF A PNEUMATIC SYSTEM

A simple pneumatic system is shown in fig 1.31 and it consist of a pneumatic bellows in line with 
the restriction. The pneumatic bellows consists of a hollow chamber with thin pneumatic walls. The side 
walls of bellows are corrugated and the input and output surface are flat. An increase in pressure within 
the bellows results in an increase in separation between the input and output surfaces.

Bellows

C

Restriction
with resistance, R

Area
A

Fig 1.31: Pneumatic system
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Let,	 P
i
	 =	 Steady-state value of input air pressure

	 pi	 =	 Increase in the pressure of air-source
	 P	 =	 Steady-state value of pressure inside the bellows
	  p	 =	 Increase in pressure inside the bellow
	 Qm 	 =	 Steady-state value of air flow rate
	 qm	 =	 Increase in air flow rate
 	  A	 =	 Area of each flat surface of the bellows
	  R	 =	 Resistance of the restriction
	  C	 =	 Capacitance of the bellows
	  x	 =	 Displacement of the movable surface of the bellows

Let the pressure of air source be increased from its steady state value by an amount pi. This results 
in an increase in air flow by qm and increase in the pressure inside the bellows by p. Due to increase in 
pressure, there will be a displacement of the movable surface of the  bellows, by an amount x. Here, the 
terms pi, qm, p and x are all functions of time, t and so can be expressed as pi(t), qm(t), p(t) and x(t).

The force exerted on the movable surface of the bellows is proportional to increase in pressure 
inside the bellows, i.e,   fb  α  p(t).

∴Force exerted on the movable surface of the bellow,  fb=A p(t)                      .....(1.70)

The force opposing the movement of the flat surface of bellow walls is proportional to displacement  
i.e, f0   α  x(t).

∴ Force opposing the motion, f0 = K x(t)				              .....(1.71)
where K = Constant representing stiffness of bellows.

At steady state  the above two forces are balanced,

∴    fb= f0    

A p(t) = K x(t)				              .....(1.72)

The resistance, R Change in air flow rate
Difference between change in pressure

q t
p t p t

m

i= =
−
^

^ ^
h

h h

    q t R
p t p t

m

i` =
−

^
^ ^

h
h h

	 .....(1.73)

The capacitance, C Rate of change of pressure
Change in air flow rate

dp t dt
q tm= = ^

^
h
h

   q t C dt
dp t

m
` =^ ^h h 	 .....(1.74)

On equating the two equations of qm(t) we get,

  C dt
dp t

R
p t p t
i=

−^ ^ ^h h h

   RC dt
dp t p t p t

i
` + =^ ^ ^h h h                                                                                 .....(1.75)

From the equation (1.72), we get,  p t A
K x t=^ ^h h			            .....(1.76)

On differentiating equation (1.76) with respect to t, we get,

	 dt
dp t

A
K

dt
dx t=^ ^h h 					              .....(1.77)
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On substituting for p(t) and dp(t)/dt from equations (1.76)  and (1.77) in equation (1.75) we get,

	 RC A
K

dt
dx t

A
K x t p t

i
+ =^ ^ ^h h h; E 			           .....(1.78)

On taking Laplace transform with zero initial conditions, we get,

                 RC A
K s X s A

K X s p s
i

+ =^ ^ ^h h h8 B

                  A
K RC s X s p s1

i
+ =^ ^ ^h h h

                p s
X s

RC s
A K

s
A K

1 1
i

`
τ=

+
=

+^
^
h
h                                                                     .....(1.79)

where, τ = RC = Time constant of the system.

The equation (1.79) is the required transfer function of the system.

TABLE - 1.10 :  Difference Between Hydraulic and Pneumatic System

	 Pneumatic	 Hydraulic
1.	 Working fluid is compressible.	 1.	 Working fluid is incompressible.
2.	 Working fluid lack lubricating property.	 2.	 Working fluid acts as lubricant.
3.	 Operating pressure is lower.	 3.	 Higher operating pressure.
4.	 Output power is less.	 4.	 More output power.
5.	 Accuracy of actuator is poor. 	 5.	 More accuracy can be achieved.
6.   External leakage is permissible but	 6.	 Internal leakage is permissible and  
	 internal leakage must be avoided.		  external leakage must be avoided.
7.	 No return pipes are required.	 7.	 Return pipes are required.
8.	 Insensitive to temperature changes.	 8.	 Sensitive to changes in temperature.
9.	 Fire and explosion proof.	 9.	 Not a fire and explosion proof.

1.16	 SHORT - ANSWER QUESTIONS
Q1.1	 What is system?
	 When a number of elements or components are connected in a sequence to perform a specific function, 

the group thus formed is called a system.

Q1.2	 What is control system?
	 A system consists of a number of components connected together to perform  a specific function. In a 

system when the output quantity is controlled by varying the input quantity, then the system is called 
control system. The output quantity is called controlled variable or response and input quantity is called 
command signal or excitation.

Q1.3	 What are the two major type of control systems?
	 The two major type of control systems are open loop and closed loop systems.

Q1.4	 Define open loop system.
	 The control system in which the output quantity has no effect upon the input quantity are called open 

loop control system. This means that the output is not fedback to the input for correction.
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Q1.5	 Define closed loop system.
	 The control systems in which the output has an effect upon the input quantity in order to maintain the 

desired output value are called closed loop control systems.

Q1.6	 What is feedback? What type of feedback is employed in control system?
	 The feedback is a control action in which the output is sampled and a proportional signal is given to 

input for automatic correction of any changes in desired output.

	 Negative feedback is employed in control system.

Q1.7	 What are the components of feedback control system?
	 The components of feedback control system are plant, feedback path elements, error detector and 

controller.

Q1.8	 Why negative feedback  is invariably preferred in a closed loop system?
	 The negative feedback results in better stability in steady state and rejects any disturbance signals. It 

also has low sensitivity to parameter variations. Hence negative feedback is preferred in closed loop 
systems.

Q1.9	 What are the characteristics of negative feedback?
	 The characteristics of negative feedback are as follows :

		  (i)	 accuracy in tracking steady state value.

		  (ii)	 rejection of disturbance signals.

		  (iii)	 low sensitivity to parameter variations.

		  (iv)	 reduction in gain at the expense of better stability.

Q1.10.	 What is the effect of positive feedback on stability?
	 The positive feedback increases the error signal and drives the output to instability. But sometimes 

the positive feedback is used in minor loops in control systems to amplify certain internal signals or 
parameters.

Q1.11.	 Distinguish between open loop and closed loop system.

	 Open loop	 Closed loop

  	 1. Inaccurate & unreliable.	 1.  Accurate & reliable.

	 2. Simple and economical.	 2. Complex and costly.

	 3. Changes in output due to external  	 3.	Changes in output due to  external disturbances
	     disturbances are not corrected automatically.		  are corrected automatically.

	 4. They are generally stable.	 4. Great efforts are needed to design a stable system.

Q1.12	 What is servomechanism?
	 The servomechanism is a feedback control system in which the output is mechanical position (or time 

derivatives of position e.g. velocity and acceleration).

Q1.13	 State the principle of homogenity (or) State the principle of superposition.
	 The principle of superposition and homogenity states that if the system has responses c

1
(t)

 
and c

2
(t) 

for the inputs r
1
(t) and r

2
(t) respectively then the system response to the linear combination of these 
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Q1.14	 Define linear system.
	 A system is said to be linear, if it obeys the principle of superposition and homogenity, which states 

that the response of a system to a weighed sum of signals is equal to the corresponding weighed sum 
of the responses of the system to each of the individual input signals. The concept of linear system is 
diagrammatically shown below.

Q1.15	 What is time invariant system?
	 A system is said to be time invariant if its input-output characteristics do not change with time. A linear 

time invariant system can be represented by constant coefficient differential equations. (In linear time 
varying systems the coefficients of the differential equation governing the system are function of time).

Q1.16	 Define transfer function.
	 The transfer function of a system is defined as the ratio of Laplace transform of output to Laplace 

transform of input with zero initial conditions. (It is also defined as the Laplace transform of the impulse 
response of system with zero initial conditions).

Q1.17       State whether transfer function technique is applicable to non-linear system and whether the transfer 
function is independent of the input of a system.

                   (i) The transfer function technique is not applicable to non-linear system
                   (ii) The transfer function of a system is independent of input and depends only on system parameters            
	     but the output of a system depends on input.

Q1.18	 What are the basic elements used for modelling mechanical translational system?
	 The model of mechanical translational system can be obtained by using three basic elements mass, 

spring and dashpot.

Q1.19	 Write the force balance equation of ideal mass element.

	 Let a force f be applied to an ideal mass M. The mass will offer an opposing force, f
m
 which is proportional 

to acceleration.

Q1.20	 Write the force balance equation of ideal dashpot.

	 Let a force f be applied to an ideal dashpot, with viscous frictional coefficient B. The dashpot will offer 
an opposing force, f

b
 which is proportional to velocity.

Q1.21	 Write the force balance equation of ideal spring.
	 Let a force f be applied to an ideal spring with spring constant K. The spring will offer an opposing 

force, f
k
 which is proportional to displacement.
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Fig Q1.14 : Principle of linearity and superposition.
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Q1.22	 What are the basic elements used for modelling mechanical rotational system?
	 The model of mechanical rotational system can be obtained using three basic elements mass 

with moment of inertia, J, dash-pot with rotational frictional coefficient, B and torsional spring with 
stiffness, K.

Q1.23	 Write the torque balance equation of an ideal rotational mass element.
	 Let a torque T be applied to an ideal mass with moment of inertia, 

J. The mass will offer an opposing torque T
j
 which is proportional to 

angular acceleration.

Q1.24	 Write the torque balance equation of an ideal rotational dash-pot.
	 Let a torque T be applied to a rotational dash-pot with frictional coefficient B. The dashpot will offer an 

opposing torque which is proportional to angular velocity.

Q1.25	 Write the torque balance equation of ideal rotational spring.
	 Let a torque T be applied to an ideal rotational spring with spring constant K. The spring will offer an 

opposing torque T
k
 which is proportional to angular displacement.

Q1.26	 Name the two types of electrical analogous for mechanical system.
	 The two types of analogies for the mechanical system are force-voltage and force-current analogy.

Q1.27	 Write the analogous electrical elements in force-voltage analogy for the elements of mechanical 
translational system.

	 Force, f	 →	 Voltage, e	 Frictional coefficient , B	 →	 Resistance, R

	 Velocity, v	 →	 Current, i	 Stiffness, K	 →	 Inverse of capacitance, 1/C

	 Displacement, x	 →	 Charge, q	 Newton’s second law, Σf = 0	→	 Kirchoff ’s voltage law, Σv = 0

	 Mass, M	 →	 Inductance, L

Q1.28	 Write the analogous electrical elements in force-current analogy for the elements of mechanical 
translational system.

	 Force, f	 →	 Current, i	 Frictional coefficient, B		  →	 Conductance, G =1/ R

	 Velocity, v	 →	 Voltage, v	 Stiffness, K		  →	 Inverse of Inductance, 1/L

	 Displacement, x	 →	 Flux, φ	 Newton’s second law, Σf = 0	 →	 Kirchoff ’s current law, Σi = 0

	 Mass, M	 →	 Capacitance, C	
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T �
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Q1.29	 Write the analogous electrical elements in torque-voltage analogy for the elements of mechanical 
rotational system.

	 Torque, T	        →Voltage, e  Stiffness of spring, K	  → Inverse of capacitance, 1/C

	 Angular velocity, ω	        →Current, i	 Frictional coefficient, B	  → Resistance, R

	 Moment of inertia, J	   →Inductance, L  Newton’s second law, ΣT = 0 → Kirchoff ’s voltage law, Σv = 0.

	 Angular displacement, θ → Charge, q	 		

Q1.30	 Write the analogous electrical elements in torque-current analogy for the elements of mechanical 
rotational system.

	 Torque, T	 →	 Current, i	  Frictional coefficient , B	 → Conductance, G = 1/R

	 Angular velocity, ω	 →	 Voltage, v	  Stiffness of spring, K	 → Inverse of inductance, 1/L

	 Angular displacement, θ	 →	 Flux, φ 	 Newton’s second law, ΣT = 0 → Kirchoff ’s current law, Σi = 0

	 Moment of inertia, J	 →	 Capacitance, C

Q1.31	 What is block diagram? What are the basic components of block diagram?
	 A block diagram of a system is a pictorial representation of the functions performed by each component 

of the system and shows the flow of signals. The basic elements of block diagram are block, branch 
point and summing point.

Q1.32	 What is the basis for framing the rules of block diagram reduction technique?
	 The rules for block diagram reduction technique are framed such that any modification made on the 

diagram does not alter the input output relation.

Q1.33	 Write the rule for eliminating negative feedback loop.

									         Proof 
			   C = (R - CH) G
			   C = RG - CHG
			   C + CHG = RG
			   C(1 + HG) = RG

		   	 R
C

1 GH
G= +

Q1.34	 Write the rule for moving the summing point ahead of a block.

Q1.35	 What is a signal flow graph?
	 A signal flow graph is a diagram that represents a set of simultaneous linear algebraic equations. By 

taking Laplace transform, the time domain differential equations governing a control system can be 
transferred to a set of algebraic equations in s-domain. The signal flow graph of the system can be 
constructed using these equations.

Q1.36	 What is transmittance?
	 The transmittance is the gain acquired by the signal when it travels from one node to another node in 

signal flow graph.

Q1.37	 What is sink and source?
	 Source is the input node in the signal flow graph and it has only outgoing branches. Sink is a output 

node in the signal flow graph and it has only incoming branches.
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Q1.38	 Define non-touching loop.

	 The loops are said to be non-touching if they do not have common nodes.

Q1.39	 What are the basic properties of signal flow graph?

	 The basic properties of signal flow graph are,

	 (i)	 Signal flow graph is applicable to linear systems.

	 (ii)	 It consists of nodes and branches. A node is a point representing a variable or signal. A branch 

indicates functional dependence of one signal on the other.

	 (iii)	 A node adds the signals of all incoming branches and transmits this sum to all outgoing branches.

	 (iv)	 Signals travel along branches only in the marked direction and when it travels it gets  multiplied 

by the gain or transmittance of the branch.

	 (v)	 The algebraic equations must be in the form of cause and effect relationship.

Q1.40	 Write the Mason’s gain formula.

	 Mason’s gain formula states that the overall gain of the system [transfer function] as follows,

	 , POverall gain T 1

K
K KT
T= /

T  = T(s) = Transfer function of the system

K  = Number of forward paths in the signal flow graph

P
K
 =  Forward path gain of Kth forward path

sum of individual

loop gains
1 sum of gain products of all possible

combinations of two non touching loops

sum of gain products of all possible

combinations of three non touching loops

T = − +
−

−
......− +

> >

>

H H

H

D
K
 = D for that part of the graph which is not touching Kth forward path

Q1.41     For the given signal flow graph, identify the number of forward path and number of individual loop.

	

	

	

	 Number of forward paths = 2

	 Number of individual loops = 4
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Q1.42   What are the  basic elements of thermal system? 

             The basic elements of thermal system are thermal resistance and thermal capacitance.

Q1.43   Define thermal resistance. 

           The thermal resistance for heat transfer between two substances is defined as the ratio of change in  
              temparature and change in heat flow rate.

                      Thermal resistance,  ,
,

secR Change in heat flow rate Kcal
Change in temparature C= c

  

Q1.44   Define thermal capacitance.

             Thermal capacitance is defined as the ratio of change in heat stored and change in temparature.

                       Thermal capacitance, ,
,C Change in temperature C

Change in heat stored Kcal=
c

Q1.45     Mention the electrical analogous of simple thermal system. 

               The electrical analogous of simple first order thermal system is R-C parallel circuit.

Q1.46     What are the basic elements of hydraulic system?

                The basic elements of hydraulic system are resistance, capacitance and inductance.

Q1.47     Define hydraulic resistance.

               The resistance for liquid flow is defined as the change in the level difference neccessary to cause the 	

               unit  change of flow rate.

                              
,

,
sec

R
Change in flow rate m
Change in level difference m

3
=

Q1.48    Define hydraulic capacitance.

                    The capacitance C of tank is defined to be change in quantity of stroredliquid neccessary to cause the unit  

              change in head (height).

                               ,
,C Change in head m

Change in liquid stored m3

=

Q1.49     What is inertance?

              The inertance represents fluid inertia derived from the inertial forces required to accelerate a fluid in a  

             pipe. It is an energy storing elements. The energy storage due to inertance is negligible compared to   

               capacitance elements. 

Q1.50     What are the basic elements of pneumatic systems?

               The basic elements of pneumatic systems are pneumatic resistance and pneumatic capacitance.

Q1.51    Define pneumatic resistance.

               The gas flow resistance, R is defined as,

                               
,

,
sec

R
Change in gas flow rate m

Change in gas pressure difference N m
3

2

=    
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Q1.52     Define pneumatic capacitance.

                  The capacitance of the pressure vessel is defined as,

                                 
,
,C

Change in gas pressure N m
Change in gas stored m

2

3

=

                                                          

1.17	 EXERCISES

E1.1	 For the mechanical system shown in fig E1.1derive the 

transfer function. Also draw the force-voltage and force-current 

analogous circuits.

E1.2 	 For the mechanical system shown in fig E1.2 draw the 

force-voltage and force-current analogous circuits. 

E1.3	 Write the differential equations governing the mechanical system shown in fig E1.3(a) & (b). Also draw 

the force-voltage and force-current analogous circuit.

E1.4	 Consider the mechanical translational system shown in fig E1.4, Draw(a) force-voltage and (b) force-

current analogous circuits.

v1
v2

K1 K2

B2
B1

M1

f (t)
1

f (t)
2

M2

B

K

Fig E1.3(a)
M2

K3
K2

K1

v1

v2

v3

Fig E1.3(b)

M1

f(t)

B

v1

v2

B1

f(t) K

Fig E1.4

M2

M1

B3

v3

B2

B
M3

v1
v2

K2f(t)

B2B1 Fig E1.2

M2
M1

K1

B

K

M x, v

Fig E1.1

T(t)

K1

Fig E1.5

B3B1
B2

J2J1 J3

�1 �� ��
K2
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E1.5	 Write the differential equations governing the rotational mechanical system shown in fig E1.5. 
Also draw the torque-voltage and torque-current analogous circuits.

E1.6	 In an electrical circuit the elements resistance, 
capacitance and inductance are connected in parallel 
across the voltage source E as shown in fig E1.6, Draw(a) 
Translation mechnical analogous system (b) Rotational 
mechanical analogous system.

E1.7	 Consider the block diagram shown in fig E.1.7(a), (b) (c) & (d). Using the block diagram reduction 
technique, find C/R.

E1.8      Convert the block diagram shown in  fig E1.8 to signal flow graph and find the transfer function of the  
system.

Fig E1.7(c)

CR
+-+ +-+

––
G2

G3

H2

G1
+-+

+

H1

+-+
–

Fig E1.7(d)

CR
+-+ +-+

––
G2 G3

H2

G1

H1

+-+

–

Fig E1.7(b)

CR
+-+ +-+

––
G2 G3

H2

G1
+-+

+
G4

+-+
+

H1

G5

R C

i1

L

Fig E1.6

i2i3

+

–
E

i3 – i2 i2 – i1

~

CR
+-+

++-+
–

G1 G2

G3

+-+
+

H1

H2

Fig E1.7(a)
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E1.9	 Consider the system shown in fig E1.9(a), (b), (c) & (d). obtain the transfer function using Mason’s 
gain formula.

R C1

1 1 1

111

–1

–1

–1

–1

G1
G2

G3

G4

G5 G6
G7

Fig E1.9(c)

G1
G2 G3 G4

G5

G6

G7

Fig E1.9(d)

x1 x2

x3

x4

x5

x6

x7
x8

G8

G9

G10

G11

G12

G13

Fig E1.8
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+-+

–
G2

G3G1
+-+

+

H1

+-+
–

–

H2 1/G3

H3 1/G3

G4

a
b

c d e
f

R C(S)

1 1

Fig E1.9(b)

x1
x2 x3 x4 x5 x6

A12 A23

A13

A21

A34

A43

A45

A46

A56

A65

R(S) C(S)

1 1 G1 G2

–H2

G3

1

–H1

–1 Fig E1.9(a)



1. 110 	 Control Systems 

E1.10	 Consider the signal flow graph shown in fig E.1.10 obtain

E1.11	 Find the transfer functions of the networks shown in fig E1.11(a), (b), (c) & (d).

E1.12	 Find the transfer function of the circuit   shown in fig E1.12.

E1.13      A process plant consists of two tanks of capacitances C
1 
and C

2 
respectively. If the flow rate into the 

top tank is Q
1
, find the transfer function relating this flow with liquid level in the bottom tank. Each tank 

has a resistance R in its outlet pipe. Assume tanks to be non-interacting.

R1

C L2

Fig E1.12
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+
–

e(t)i

i (t)1 i (t)2
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Fig E1.10
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ANSWER FOR EXERCISE PROBLEMS

E1.1	 The transfer function is 
( )
( )

( )F s
X s

Ms Bs K
1

2=
+ +

E1.2	

E1.3(a)	
dt
dv

B v B(v ) ( ) ( )M v K v dt K v v dt f t1
1

1 1 1 2 1 1 1 2 1+ + − + + − =# #
	

dt
dv

B v B(v ) ( ) f ( )M v K v dt K v v dt t2
2

2 2 2 1 2 2 2 1 2+ + − + + − =# #

E1.3(b)	
dt
dv

. ( ) ( ) ( )M K v dt K v v dt K v v dt f t1
1

1 1 2 1 3 3 1 2+ + − + − =# # #
	 ( ) ( ) 0 ; M

dt
dv

( ) ( ) 0K v v dt B v v B v v K v v dt3 2 1 2 3 2
3

3 2 2 3 1− + − = + − + − =##

Force-current analogous circuit Force voltage-analogous circuit
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+_ L2

C2

C1

i2

v2
L3 R

v3

L2

C3
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1
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1
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1
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1
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1
	 M

2
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2	
B

2
 → R

2

v
2
 → i

2
	 M

3
 → L
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B
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3
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3
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1	
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1
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1
	 M
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2	
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v
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2
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E1.4

E1.5    ; 0J
dt

d
B K dt T t J

dt
d B K dt K dt2

1
1

1 1 1 1 2 2 2 2 1 2 1 2 2 3

ω
ω ω ω ω ω ω ω ω ω+ + − = + + − + − =^ ^ ^ ^h h h h# # #

           J
dt

d
B K dt 03

3
3 3 2 3 2

ω
ω ω ω+ + − =^ h#
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G G G G
a

R
C

1 2 1 1 2 1 1 3 1

1 2 1 3=
+ + + +

+

	 ( )
1 (1 G )(G G )H (1 G )(G G )G H

G G (1 G )(G G )
b

R
C

3 4 5 2 3 4 5 2 1

1 2 3 4 5=
+ + + + + +

+ +

J

T(t) �3 �2 �1B
K

M
f(t)

B K

v3 v2 v1

e(t) → f(t)	 i
1
 → v

1
	 i

3
 → v

3 
	 R → B

                   i
2
 → v

2
     L → M      1/C → K

e(t) → T(t)     i
1
 →  ω

1
       i

3
 → ω

3        
R → B

                         i
2
 → ω

2
        L  →  J      1/C → K

Analogous mechanical translational system Analogous mechanical rotational system

R3
i(t) R1

v1

C1
e(t)

L1

i1 i2

+_

R1 R2 L3

C2

R2

C1 C3

L1 v2

L2

i3

R3

C2

v3
L2

T(t) → e(t)	 J
1
 → L

1	
B

1
 → R

1
	 K

1
 → 1/C

1

ω
1
 → i

1
	 J

2
 → L

2	
B

2
 → R

2	
K

2
 → 1/C

2

ω
2
 → i

2
	 J

3
 → L

3	
B

3
 → R

3       
	 ω

3
 → i

T(t) → i(t)	 J
1
 → C

1	
B

1
 → 1/R

1
	 K

1
 → 1/L

1

ω
1
 → v

1
	 J

2
 → C

2	
B

2
 → 1/R

2	
K

2
 → 1/L

2

ω
2
 → v

2
	 J

3
 → C

3	
B

3
 → 1/R

3         
ω

3
 → v

3

Torque-voltage analogous circuit Torque-current analogous circuit

i(t)

v1 v2
v3

+_
i1

i2

i3

L2

L3

R2L1

e(t) R3

R

R1

C

C1
C2

C3

RR2

R3

L
R1

f(t) → e(t)	 M
1
 → L

1	
B

1
 → R

1

v
1
 → i

1
	 M

2
 → L

2	
B

2
 → R

2

v
2
 → i

2
	 M

3
 → L

3	
B

3
 → R

3

v
3
 → i

3	
B → R	 K → 1/C

f(t) → i(t)	 M
1
 → C

1	
B

1
 → 1/R

1

v
1
 → v

1
	 M

2
 → C

2	
B

2
 → 1/R

2

v
2
 → v

2
	 M

3
 → C

3	
B

3
 → 1/R

3

v
3
 → v

3	
B → 1/R	 K → 1/L

Force voltage-analogous circuit
Force-current analogous circuit



1. 113Chapter 1 - Mathematical Models of Control Systems

	 ( )
1 G G H G G G G G H G H

G G G G
c

R
C

1 2 1 1 2 1 3 2 2 3 2

1 2 1 3=
+ + + + +

+

	 ( )
1 G G H G G H G G G

G G G
d

R
C

2 3 2 1 2 1 1 2 3

1 2 3=
+ + +

E1.8	
1 G G H G H G G H

G G G G G G H G G H G G G H

2 3 1 2 2 1 2 3

1 2 3 2 3 4 1 2 4 2 1 2 4 3

+ + +
+ + +

E1.9	 ( )
( )
( )

1 G G H G G H G G G
G G G

a
R s
C s

1 2 1 2 3 2 1 2 3

1 2 3=
+ + +

	 ( )
1 (A A A A A A (A A A A A A A A )

A A A A ) (A A A A A A )

A A A A A A A A A A A A A A A A
b

R
C

12 21 34 43 56 65 12 21 34 43 12 21 56 65

34 43 56 65 12 21 34 43 56 65

12 23 34 45 50 13 34 45 56 12 23 34 46 13 34 46=
− + + + +

+ −

+ + +

	 ( )
1 [G G G G G G G G G G G G G G G G G G G G G G G G

G G G G (1 G G G G ) G G G G (1 G G G G )
c

R
C

1 2 6 7 6 71 2 2 3 5 6 6 7 1 2 5 6 5 6 2 3 2

1 2 3 4 5 6 6 7 4 5 6 7 1 2 2 3

3

+=
+ + + + + + + +

+ + + +

	 ( )
x
x

1 [G G G G G ] G G G G G G G G G G G

G G G G ] G G G G G G G G G G

[G G G G ][1 (G G G G G G ) G G G ]
d

1

8

2 9 10 10 11 2 3 5 6 9 3 5 6 11 7 12

6 7 8 13 2 9 10 13 10 11 13 7 12 13

1 2 3 4 7 12 6 7 8 13 7 12 13

+

=
− + + + +
+ + + +

− + + +

E1.10	
x
x

G G G G G G G G G G G G G ;
x
x

G G G G
1

8
1 4 6 9 1 4 7 9 1 3 5 8 9

1

8
2 5 8 9= + + =

E1.11	 ( )
E (s)
E (s)

1 s(R R )C
1 sR C

a
i

o

1 2

2=
+ +

+

	 ( )
E (s)
E (s)

1
1b

s LC s R C2
i

o =
+ +

	 ( )
E (s)
E (s)

(s L C s R C 1) (s L C s R C 1) 1

s R C
c

2 2
i

o

1 1 2 2

2=
+ + + + −

	 ( )
E (s)
E (s)

sR R C (R R )
sR R C R

d
i

o

1 2 1 2

1 2 2=
+ +

+



1. 114 	 Control Systems 

E1.12	
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