CHAPTER 1

MATHEMATICAL MODELS OF
CONTROL SYSTEM

1.1 CONTROL SYSTEM

Control system theory evolved as an engineering discipline and due to universality of the
principles involved, it is extended to various fields like economy, sociology, biology, medicine, etc. Control
theory has played a vital role in the advance of engineering and science. The automatic control has
become an integral part of modern manufacturing and industrial processes. For example, numerical control
of machine tools in manufacturing industries, controlling pressure, temperature, humidity, viscosity and
flow in process industry.

When a number of elements or components are connected in a sequence to perform a specific
function, the group thus formed is called a system. In a system when the output quantity is controlled by
varying the input quantity, the system is called control system. The output quantity is called controlled
variable or response and input quantity is called command signal or excitation.

OPEN LOOP SYSTEM

Any physical system which does not automatically correct the variation in its output, is called an
open loop system, or control system in which the output quantity has no effect upon the input quantity
are called open-loop control system. This means that the output is not fedback to the input for correction.

Input Open loop Output
r(t) ' system (Plant) cl(t)

Fig 1.1 : Open loop system.

In open loop system the output can be varied by varying the input. But due to external disturbances
the system output may change. When the output changes due to disturbances, it is not followed by changes
in input to correct the output. In open loop systems the changes in output are corrected by changing the
input manually.

CLOSED LOOP SYSTEM

Control systems in which the output has an effect upon the input quantity in order to maintain the
desired output value are called closed loop systems.
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Fig 1.2 : Closed loop system.
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The open loop system can be modified as closed loop system by providing a feedback. The
provision of feedback automatically corrects the changes in output due to disturbances. Hence the closed
loop system is also called automatic control system. The general block diagram of an automatic control
system is shown in fig 1.2. It consists of an error detector, a controller, plant (open loop system) and
feedback path elements.

The reference signal (or input signal) corresponds to desired output. The feedback path elements
samples the output and converts it to a signal of same type as that of reference signal. The feedback signal
is proportional to output signal and it is fed to the error detector. The error signal generated by the error
detector is the difference between reference signal and feedback signal. The controller modifies and
amplifies the error signal to produce better control action. The modified error signal is fed to the plant to
correct its output.

Advantages of open loop systems
1. The open loop systems are simple and economical.
2. The open loop systems are easier to construct.

3. Generally the open loop systems are stable.

Disadvantages of open loop systems
1. The open loop systems are inaccurate and unreliable.
2. The changes in the output due to external disturbances are not corrected automatically.

Advantages of closed loop systems
1. The closed loop systems are accurate.
2. The closed loop systems are accurate even in the presence of non-linearities.
3. The sensitivity of the systems may be made small to make the system more stable.
4. The closed loop systems are less affected by noise.

Disadvantages of closed loop systems

1. The closed loop systems are complex and costly.

2. The feedback in closed loop system may lead to oscillatory response.
3. The feedback reduces the overall gain of the system.
4

. Stability is a major problem in closed loop system and more care is needed to design a stable
closed loop system.

1.2 EXAMPLES OF CONTROL SYSTEMS
EXAMPLE 1 : TEMPERATURE CONTROL SYSTEM

OPEN LOOP SYSTEM

The electric furnace shown in fig 1.3. is an open loop system. The output in the system is the desired temperature.
The temperature of the system is raised by heat generated by the heating element. The output temperature depends
on the time during which the supply to heater remains ON.

The ON and OFF of the supply is governed by the time setting of the relay. The temperature is measured by a
sensor, which gives an analog voltage corresponding to the temperature of the furnace. The analog signal is converted
to digital signal by an Analog - to - Digital converter (A/D converter).
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Fig 1.3 : Open loop temperature control system.

The digital signal is given to the digital display device to display the temperature. In this system if there is any
change in output temperature then the time setting of the relay is not altered automatically.

CLOSED LOOP SYSTEM

The electric furnace shown in fig 1.4 is a closed loop system. The output of the system is the desired temperature
and it depends on the time during which the supply to heater remains ON.

Sensor Digital control
Electric % A/D circuit
Furnacel] Converter > “g?rréaﬁe Controller (or) .
— Computer/Micro
¥
\ _ processor
Heating element
Relay .
Control Amplifier DA g Reference input
Circuit Converter (Desired temperature)
l AC l
Supply Fig 1.4 : Closed loop temperature control system.

The switching ON and OFF of the relay is controlled by a controller which is a digital system or computer. The
desired temperature is input to the system through keyboard or as a signal corresponding to desired temperature via
ports. The actual temperature is sensed by sensor and converted to digital signal by the A/D converter. The computer
reads the actual temperature and compares with desired temperature. If it finds any difference then it sends signal to
switch ON or OFF the relay through D/A converter and amplifier. Thus the system automatically corrects any changes
in output. Hence it is a closed loop system.

EXAMPLE 2 : TRAFFIC CONTROL SYSTEM
OPEN LOOP SYSTEM

Traffic control by means of traffic signals operated on a time basis constitutes an open-loop control system.
The sequence of control signals are based on a time slot given for each signal. The time slots are decided based on
a traffic study. The system will not measure the density of the traffic before giving the signals. Since the time slot does
not changes according to traffic density, the system is open loop system.

CLOSED LOOP SYSTEM

Traffic control system can be made as a closed loop system if the time slots of the signals are decided based on
the density of traffic. In closed loop traffic control system, the density of the traffic is measured on all the sides and the
information is fed to a computer. The timings of the control signals are decided by the computer based on the density
of traffic . Since the closed loop system dynamically changes the timings, the flow of vehicles will be better than open
loop system.
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EXAMPLE 3 : NUMERICAL CONTROL SYSTEM
OPEN LOOP SYSTEM

Numerical control is a method of controlling the motion of machine components using numbers. Here, the
position of work head tool is controlled by the binary information contained in a disk.
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Fig 1.5 : Open loop numerical control system.

A magnetic disk is prepared in binary form representing the desired part P (P is the metal part to be machined).
The tool will operate on the desired part P. To start the system, the disk is fed through the reader to the D/A converter.
The D/A converter converts the FM(frequency modulated) output of the reader to a analog signal. It is amplified and
fed to servometer which positions the cutter on the desired part P. The position of the cutter head is controlled by the
angular motion of the servometer. This is an open loop system since no feedback path exists between the output and
input. The system positions the tool for a given input command. Any deviation in the desired position is not checked
and corrected automatically.

CLOSED LOOP SYSTEM

A magnetic disk is prepared in binary form representing the desired part P (P is the metal part to be
machined). To start the system, the disk is loaded in the reader. The controller compares the frequency modulated
input pulse signal with the feedback pulse signal. The controller is a computer or microprocessor system. The
controller carries out mathematical operations on the difference in the pulse signals and generates an error signal.
The D/A converter converts the controller output pulse (error signal) into an analog signal . The amplified analog signal
rotates the servomotor to position the tool on the job. The position of the cutterhead is controlled according to
the input of the servomotor.

The transducer attached to the cutterhead converts the motion into an electrical signal. The analog
electrical signal is converted to the digital pulse signal by the A/D converter. Then this signal is compared with the input
pulse signal. If there is any difference between these two, the controller sends a signal to the servomotor to reduce it.
Thus the system automatically corrects any deviation in the desired output tool position. An advantage of numerical
control is that complex parts can be produced with uniform tolerances at the maximum milling speed.
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Fig 1.6 : Closed loop numerical control system.
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EXAMPLE 4 : POSITION CONTROL SYSTEM USING SERVOMOTOR

The position control system shown in fig 1.7 is a closed loop system. The system consists of a servomotor
powered by a generator. The load whose position has to be controlled is connected to motor shaft through gear wheels.
Potentiometers are used to convert the mechanical motion to electrical signals. The desired load position (6,) is set on
the input potentiometer and the actual load position (0¢) is fed to feedback potentiometer. The difference between the
two angular positions generates an error signal, which is amplified and fed to generator field circuit. The induced emf

of the generator drives the motor. The rotation of the motor stops when the error signal is zero, i.e. when the desired
load position is reached.

This type of control systems are called servomechanisms .The servo or servomechanisms are feedback control
systems in which the output is mechanical position (or time derivatives of position e.g. velocity and acceleration).

Errorsig}al Amplifier }

Generator field

] Gears

>
||||
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Input L Feedback
potentiometer = potentiometer L

Fig 1.7 : A position control system (servomechanism,).

1.3 MATHEMATICAL MODELS OF CONTROL SYSTEMS

A control system is a collection of physical objects (components) connected together to serve an
objective. The input output relations of various physical components of a system are governed by differential
equations. The mathematical model of a control system constitutes a set of differential equations. The

response or output of the system can be studied by solving the differential equations for various input
conditions.

The mathematical model of a system is linear if it obeys the principle of superposition and homogenity.
This principle implies that if a system model has responses y () and y, (t) to any inputs x, (t) and x, (t)
respectively, then the system response to the linear combination of these inputs a x, (t) + a, x, (t) is given
by linear combination of the individual outputs a, y (t) + a, y,(t), where a, and a, are constants.

The principle of superposition can be explained diagrammatically as shown in fig. 1.8.
ar(t)

System

System ar,(t) +ayn,(t) 0
3
l. ) If c,(t) = a,c,(t) + a,c,(t)
r t G C t r’7 t 3 ™1 2%2
80 . L) 0 a,r,(t) then system G is linear
System

Fig 1.8 : Principle of linearity and superposition.
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A mathematical model will be linear if the differential equations describing the system has
constant coefficients (or the coefficients may be functions of independent variables). If the coefficients
of the differential equation describing the system are constants then the model is linear time invariant.
If the coefficients of differential equations governing the system are functions of time then the model is
linear time varying.

The differential equations of a linear time invariant system can be reshaped into different form for
the convenience of analysis. One such model for single input and single output system analysis is transfer
function of the system. The transfer function of a system is defined as the ratio of Laplace transform of
output to the Laplace transform of input with zero initial conditions.

Laplace Transform of output
Laplace Transform of input | zero initial condition

Transfer function =

The transfer function can be obtained by taking Laplace transform of the differential equations
governing the system with zero initial conditions and rearranging the resulting algebraic equations to get
the ratio of output to input.

1.4 MECHANICAL TRANSLATIONAL SYSTEMS

The model of mechanical translational systems can be obtained by using three basic elements mass,
spring and dash-pot. These three elements represents three essential phenomena which occur in various
ways in mechanical systems.

The weight of the mechanical system is represented by the element mass and it is assumed to be
concentrated at the center of the body. The elastic deformation of the body can be represented by a spring.
The friction existing in rotating mechanical system can be represented by the dash-pot. The dash-pot is a
piston moving inside a cylinder filled with viscous fluid.

When a force is applied to a translational mechanical system, it is opposed by opposing forces due to
mass, friction and elasticity of the system. The force acting on a mechanical body are governed by Newton’s
second law of motion. For translational systems it states that the sum of forces acting on a body is zero. (or
Newton’s second law states that the sum of applied forces is equal to the sum of opposing forces on a body).

LIST OF SYMBOLS USED IN MECHANICAL TRANSLATIONAL SYSTEM

x = Displacement, m

dx _

dt

_dv _d’x
dt  di?

= Applied force, N (Newtons)

= Opposing force offered by mass of the body, N

v = Velocity, m/sec

= Acceleration, m/sec?

= Opposing force offered by the elasticity of the body (spring), N
= Opposing force offered by the friction of the body (dash - pot), N
= Mass, kg

= Stiffness of spring, N/m

W R 2SS

= Viscous friction co-efficient, N-sec/m

Note : Lower case letters are functions of time |




Chapter 1 - Mathematical Models of Control Systems 1.7

FORCE BALANCE EQUATIONS OF IDEALIZED ELEMENTS

Consider an ideal mass element shown in fig 1.9 which has negligible friction and elasticity. Let a
force be applied on it. The mass will offer an opposing force which is proportional to acceleration of the body.

Let, f = Applied force |—>x
f = Opposing force due to mass f > M E
2 2
Here, f o d—;( or f = Md—)z( Reference
dt dt Fig 1.9 : Ideal mass element.
2
By Newton’s second law, [f=f =M d—t)z( ..... (1.2)
Consider an ideal frictional element dashpot shown in fig 1.10 |—>X
which has negligible mass and elasticity. Let a force be applied on it. The _I
hhas n . cta . he . 7
dash-pot will offer an opposing force which is proportional to velocity u 7
of the body.
. B Reference
Let, f = Applied force Fig 1.10 : Ideal dashpot with
f, = Opposing force due to friction one end fixed to reference.
d d
Here, fbad—{: or fb:Bd—’t‘
By Newton’s second law, |f=f, =B %—{f ..... (1.3)
When the dashpot has displacement at both ends as shown in |—> X |—> X,
fig 1.11, the opposing force is proportional to difference between _I
velocity at both ends. f— IJ
d d
f, « a(x1 -x,) or f=B a(x1 -X,) B Reference
Fig 1.11 : Ideal dashpot with
|f=f=B %(Xl =) (1.4) displacement at both ends.

Consider an ideal elastic element spring shown in fig 1.12, which has negligible mass and friction.
Let a force be applied on it. The spring will offer an opposing force which is proportional to displacement
of the body. > x
Let, f = Applied force
. . f—> TEO
f. = Opposing force due to elasticity K

2

Reference

Here f ccx or f=Kx Fig 1.12 : Ideal spring with one end

By Newton’s second law, | f=f =Kx | .. (1.5) fixed to reference.

When the spring has displacement at both ends as shown in |—>x1 |—>x2
fig 1.13 the opposing force is proportional to difference between
displacement at both ends. f—> TOO*
K
fooc(x=x,) or  f=Kx-x,) Fig 1.13 : Ideal spring with

=t =xka-x)| .. (1.6) displacement at both ends.
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Control Systems

Guidelines to determine the Transfer Function of Mechanical Translational System

1.

In mechanical translational system, the differential equations governing the system are
obtained by writing force balance equations at nodes in the system. The nodes are meeting
point of elements. Generally the nodes are mass elements in the system. In some cases the
nodes may be without mass element.

The linear displacement of the masses (nodes) are assumed as x, , X, , X, etc., and assign a
displacement to each mass(node).The first derivative of the displacement is velocity and the
second derivative of the displacement is acceleration.

Draw the free body diagrams of the system. The free body diagram is obtained by drawing
each mass separately and then marking all the forces acting on that mass (node). Always
the opposing force acts in a direction opposite to applied force. The mass has to move in the
direction of the applied force. Hence the displacement, velocity and acceleration of the mass
will be in the direction of the applied force. If there is no applied force then the displacement,
velocity and acceleration of the mass will be in a direction opposite to that of opposing force.

For each free body diagram, write one differential equation by equating the sum of applied
forces to the sum of opposing forces.

Take Laplace transform of differential equations to convert them to algebraic equations.
Then rearrange the s-domain equations to eliminate the unwanted variables and obtain the
ratio between output variable and input variable. This ratio is the transfer function of the
system.

Note : Laplace transform of x(t) = L{x(t)} = X(s)

Laplace transform of d);,f) = L{ %x (1) } =5 X(s) (with zero initial conditions)

2 2
Laplace transform of % = L{ %x (1) } =57 X(s) (with zero initial conditions)

EXAMPLE 1.1

Write the differential equations governing the mechanical system shown in fig 1. and determine the transfer

function.

SOLUTION

Fx, > x

B
K, —
TS ™ — M
o2 ()
K
—> —>
B, B,

Fig 1.

In the given system, applied force ‘f(t)’ is the input and displacement ‘X’ is the output.

Let, Laplace transform of f(t) = L{f(t)} = F(s)

Laplace transform of x = L£{x} = X(s)

Laplace transform of x, = £{x,} = X,(s)
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X(s)
F(s)

The system has two nodes and they are mass M, and M,. The differential equations governing the system are
given by force balance equations at these nodes.

Hence the required transfer function is

Let the displacement of mass M, be x,. The free body diagram of mass M, is shown in fig 2. The opposing forces
acting on mass M, are marked as f_,, f, , f,, f,, and f..

m1? 'b1? b’
d?x dx |—> X;
fq= M1T21 ; f,=B, d7t1 ;=KX
<_fm1
fb:B%(xrx) .t =K(x,—X) «—f,,
M, «—f,
By Newton’s second law,

—f

fo+f,+f+f,+f =0 ¢

d?x, dx, d Fig 2 : Free body diagram

Mg de? *Bigp B0 +Kx+KiG=x) =0 of mass M, (node 1).

On taking Laplace transform of above equation with zero initial conditions we get,
M,s2X,(s) + B,sX,(s) + BS[X,(s) — X(s)] + K X (s) + K[X,(s) — X(s)] =0
X,(s) [M,s2+ (B, + B)s + (K, + K)] - X(s) [Bs + K] =

X,(s) [M,s2+ (B, + B)s + (K, + K)] = X(s) [Bs + K]

- X1(S)=X( ) Bs +K
Ms +By+B)s+(Kyry 1)
The free body diagram of mass M, is shown in fig 3. The opposing forces acting on M, are marked asf ,, f,, f,
andf, .
£, 4% ; f,-B, & ’
m2 = 127 42 ' 27dt
—(t)
fmzzB?j—)t((x—xp ;£ =K(x-x)) «f,
M, «—f,
By Newton’s second law,
4_ fb
fo+f,+f +f =f(t) «—f,
d2x dx d,. o Fig 3 : Free body diagram
Mo g2 a2 B2 g +B gy ) rKx=x) =1 of mass M, (node 2).
On taking Laplace transform of above equation with zero initial conditions we get,
M_s?X(s) + B,sX(s) + Bs[X(s) — X,(s)] + K[X(s) — X,(s)] = F(s)
X(s)[M,s? + (B,+B)s + K] -X,(s)[Bs+K]=F(s) . 2)

Substituting for X,(s) from equation (1) in equation (2) we get,

(Bs +K)?

X(S)[M252+(BZ+B)S+K]_X(S) M S2+(B +B)S+(K +K)
1 1 1

=F(s)
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[M,s +(B +B)s +K][M,s +(B1+B)s+(K1+K)]—(Bs+K)2

X() Ms +(By+B)s + (K;+ K)

=F(s)

X(s) _ M,s2+ (B;+ B)s + (K, +K)
" F(s)  [M,82+(B;+B)s + (K;+ K)] [M,s? + (B, +B)s + K] - (Bs +K)?

RESULT

The differential equations governing the system are,

dx1

M % g dx

+B; at dt( -X) +Kx; +K(x;—x)=0

2. M ‘(’j;‘+82 ‘3&‘ %(x—x1)+K(x—x1):f(t)

The transfer function of the system is,

X(s) M,s2+ (B +B)s + (K, +K)
F(s)  [M,s2+(B,+B)s + (K;+K)][Mys%+ (B, +B)s + K] — (Bs + K)?

EXAMPLE 1.2

Yy(s)
F(s)

Determine the transfer function of the system shown in fig 1.

SOLUTION

Let, Laplace transform of f(t) = L{f(t)} = F(s)

Laplace transform of y, = L{y,} =Y ,(s)

Laplace transform of y, = L{y,} =Y,(s)

The system has two nodes and they are mass M, and M,,. The differential Fig 1.
equations governing the system are the force balance equations at these nodes.

The free body diagram of mass M, is shown in fig 2.

The opposing forces are marked as f_,, f,, f,, and f,,

2 ——f(t)
&, dy,
fm1:M1F ; fb:BW v ha=Kys s =Koy, -y T,
M, «—
By Newton’s second law, f_, +f, +f_ +f,=f(t) f,
2 4_fk1
d%y, dy1
- My F+B at +Ky, + K (y,—y,) =f(t) ....(1) —f,
On taking Laplace transform of equation (1) with zero initial condition we get, Fig 2.
M,s?Y (s) + BsY,(s) + K,Y,(s) + K,[Y,(s) = Y,(s)] = F(s)
Y,(8)M;s? +Bs + (K+K )] - Y, (s)K,=F(s) . 2)
The free body diagram of mass M, is shown in fig 3. The opposing forces acting on M, are f_, and f .
d2
=My~ 22 1 fo=Kyly,-y)

By Newton’s second law, f ,+f,=0
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2

y
MZTZZ+K2(y2—y1):O F—>v.
On taking Laplace transform of above equation we get, M «—f.,
2
M,s?Y,(s) + K,[Y,(s) = Y (s)] =0 «—f,
Y,(s) [M,s2+K,]-Y,(s) K,=0 Fig 3.
M,s? + K
~ Yy(s) = Yﬂs)# ..... (3)
Substituting for Y,(s) from equation (3) in equation (2) we get,
M,s2+K
Y,(s) % [M;s?+Bs + (K;+ K,)] - Y,(s) K, =F (s)
M,s? + K,) [M,s% + Bs + (K, + K.,)] - K2
vy (9| Mz DM, o Bl 2]:F(s)
Ky
) Y, (s) _ K,
F(s) | IM;s?+Bs+(K+K)I(Mps®+K,) - K2
RESULT
The differential equations governing the system are,
d?y, _dy
1 1 -
1. M1F+BW+KIY1 +K2(y1—y2) =f(t)
d?y
2. Mthzz +K,y(y,~y)=0
The transfer function of the system is,
Yo(s) K,
- 2 2 2
F(s)  [M,s%+Bs+(K,+K)I[M,s*+ K] - K2
EXAMPLE 1.3
. o Xy(s) X, (s) -
Determine the transfer function, F(s) and F(s) for the system shown in fig 1.
f(t)
L |—>x1 |—>x2
K 512
) ]
O M, j M, — 00—
K
— — :
BWi |32
Fig 1. |—> X
SOLUTION (1)
Let Lapl transfi ff(t) = L{f(t)} = F(s) P
et, aplace transform o = = F(s .
P ¢ M, «—f, Fig 2.
Laplace transform of x, = L{x,} = X,(s) ¢ .,
Laplace transform of x, = L£{x,} = X,(s) —f,
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The system has two nodes and they are mass M, and M,. The differential equations governing the system are
the force balance equations at these nodes. The free body diagram of mass M, is shown in fig 2. The opposing forces

are marked asf_,, f . f ,andf_.

d?x dx d
fm1:M1T21 ; fb1:B1d_t1 ; fb12:B1za(X1_X2) s fa=Kx

By Newton’s second law, f_, +f  +f_,+f, =f(t)

? 'mi1

d2 dx, d(x;—Xp)

M=z +Brgr +Br g » +K=f()

On taking Laplace transform of above equation with zero initial conditions we get,

M,s2X,(s) + B,sX,(s) + B,,s[X,(s) — X,(s)] + K, X,(s) = F(s)

X,(s)M,;s*+ (B, +B,,)s + K] -BsX,(s)=F(s) .. (1)
The free body diagram of mass M, is shown in fig 3. The opposing forces are marked as f_,, f.,, f,,, and f,.
d?x dx,
fmzzMsz2 v f=Br—= dt |—>Xz
fb12:B12%(X2_X1) P fe=Koxy frz
«—f,
By Newton’s second law, f_, +f, +f ,+f,=0 M,
<_ftnz
2 _ «—f
M, 9% g o g A=%D g L @) @

2 g2 tBw B a

On taking Laplace transform of equation (2) with zero initial conditions we get, Fig 3.
M,s2X,(s) + B,sX,(8) + B,,s[X,(s) — X,(s)] + K,X,(s) =0
X,(s)M,s? + (B, +B,,)s + K] - B,,sX (s) =0
X,(s)[M,s? + (B, + B,,)s + K] = B,,sX,(s)
X,(8) = —— BisX(s) . 3)
[Mys°+(B,+B;,)s+Kj]

Substituting for X,(s) from equation (3) in equation (1) we get,

(B123)2X1(S)

3 =F(s)
M,s“+ (B, + By,)s + K,

X(s) [Mys®+ (B, +B,))s + K] -

X(8)[IMy8%+ (By+ B, )5 + K] [M,8% + (B, + B, )s + Kj] - (By,5)? |

3 =F(s)
M,s“+(B,+B;,)s+K,

Xy(s) _ M,s?+(B,+B,,)s +K,
- F(8)  [M;s?+ (B, +By,)s+K|][Mys®+(B,+B,)s+Kj| - (By,8)?

From equation (3) we get,

[M,82+ (B, + B, ) s + Kyl X,(s)
B,,s

X,(s) =

Substituting for X,(s) from equation (4) in equation (1) we get,

Xy(8) IMys%+ (B, +B,)s + K,
B,,S

[M;s?+ (B,+B,,)s + K] —By,5X,(s) =F (s)



Chapter 1 - Mathematical Models of Control Systems 1.13

[M,s?+(B,+B,.)s + K] [M,s%+ (B,+B,.)s + K] - (B;,5)*
XZ(S) 2 2 12 2- B112S 1 12 1] 12 _ F(S)

Xy(8) _ B,,s
F(S)  [M,s°+(B,+B,)s+K,][M;s’+(B,+B,,)s +K] - (By,s)

RESULT

The differential equations governing the system are,

d?x, dx, d(x;-x,)

1. M1F+B1W+B12T+K1X1 = f(t)
d?x dx d(x,—x.)

2 2 2 1

2. Mz_dtz +Bz—cIt +B127dt

The transfer functions of the system are,

+Kx, = 0

X(s) M,s?+(B,+B,,)s+K,

- F(8)  [Mys?+(By+B,)s+K]IMys®+ (B, + B )5 +K,] - (By,8)°
X,(s) B B,,s
F(S)  [Mys®+(B,+B,,)s+K,][Ms®+(B,+B,,)s +K]-(By,8)°

EXAMPLE 1.4

Write the equations of motion in s-domain for the system shown in fig 1. Determine the transfer function of the
system.

| M 1)
J 7777777"\81

g =
|
!

Fig 1.
SOLUTION
Let, Laplace transform of x(t) = L{x(t)} = X(s)
Laplace transform of f(t) = L{f(t)} = F(s)
Let x, be the displacement at the meeting point of spring and dashpot. Laplace transform of x is X,(s).

The system has two nodes and they are mass M and the meeting point of spring and dashpot. The differential
equations governing the system are the force balance equations at these nodes. The equations of motion in the s-domain
are obtained by taking Laplace transform of the differential equations.

The free body diagram of mass M is shown in fig 2. The opposing forces are marked as f_, f, and f,.

m’ "b1l
fm:MCfT;( D =B 3 =B, S x-x) —>x
By Newton’s second law the force balance equation is, —f(t)
f o+, + 1, =11 M «—f,
d?’x 5 dx d b
M¥+B1E+Bza(xfx1):f(t) «—f,
On taking Laplace transform of the above equation we get, Fig 2.

Ms?X(s) + B,sX(s) + B,s[X(s) — X,(s)] = F(s)

[Ms? + (B, + B,)s] X(s) — B, sX,(s) = F(s)
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The free body diagram at the meeting point of spring and dashpot is shown in fig 3. The opposing forces are

marked as f, and f, .. > X,
—

fb2=82%(x1—x) ; f=Kx,

f,
M=0
By Newton’s second law, sz +f =0 «—f,

BZ%(xfx) +Kx;=0 Fig 3.

On taking Laplace transform of the above equation we get,
B,s[X,(s) — X(s)] + K X,(s) =0
(B,s + K) X,(s) - B, sX(s) =0

" X(8) = BZBS% X)L )

Substituting for X,(s) from equation (2) in equation (1) we get,

[Ms?+ (B, +B,)s ] X(s)~B,s B;% X () =F (5)
X(s) IMS"+ (Br+B)s](Bs +K) - B;9)7 .
B,s+K -
X(s) _ B,s+K

CF(s) T [Ms?+ (B, +B,)s ](B,s +K) - (B,s)?

RESULT

The differential equations governing the system are,

d’x , g dx d _
1. MF‘FB«]H‘FBza(X—X‘])—f(t)

d _
2. Bzﬁ(x1—x)+K X,=0
The equations of motion in s-domain are,
1. [Ms?+ (B, + B,)s] X(s) — B, sX,(s) = F(s)
2. (B,s +K) X (s)-B,sX(s) =0

The transfer function of the system is,
X(s) _ B,s+K
F(s) [Ms?+(B,+B,)s](B,s+K)-(B,s)?

1.5 MECHANICAL ROTATIONAL SYSTEMS

The model of rotational mechanical systems can be obtained by using three elements, moment
of inertia [J] of mass, dash-pot with rotational frictional coefficient [B] and torsional spring with
stiffness [K].

The weight of the rotational mechanical system is represented by the moment of inertia of the
mass. The moment of inertia of the system or body is considered to be concentrated at the centre of gravity
of the body. The elastic deformation of the body can be represented by a spring (torsional spring). The
friction existing in rotational mechanical system can be represented by the dash-pot. The dash-pot is a
piston rotating inside a cylinder filled with viscous fluid.
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When a torque is applied to a rotational mechanical system, it is opposed by opposing torques due to
moment of inertia, friction and elasticity of the system. The torques acting on a rotational mechanical body
are governed by Newton’s second law of motion for rotational systems. It states that the sum of torques acting
on a body is zero (or Newton’s law states that the sum of applied torques is equal to the sum of opposing
torques on a body).

LIST OF SYMBOLS USED IN MECHANICAL ROTATIONAL SYSTEM

0 = Angular displacement, rad
% = Angular velocity, rad/sec
2
% = Angular acceleration, rad/sec’
T = Applied torque, N-m
J = Moment of inertia, Kg-m?*rad
B = Rotational frictional coefficient, N-m/(rad/sec)
K = Stiffness of the spring, N-m/rad

TORQUE BALANCE EQUATIONS OF IDEALISED ELEMENTS

Consider an ideal mass element shown in fig 1.14 which has negligible friction and elasticity. The
opposing torque due to moment of inertia is proportional to the angular acceleration.

Let, T= Applied torque.

T, = Opposing torque due to moment of inertia of the body.

) ) @: J Qj
Here Tjade or T:Jﬂ

dt’ Poae T C
By Newton’s second law, Fig 1.14 : Ideal rotational mass element.
2
T="T= J% ..... (1.7)

Consider an ideal frictional element dash pot shown in fig 1.15 which has negligible moment of
inertia and elasticity. Let a torque be applied on it. The dash pot will offer an opposing torque which is
proportional to the angular velocity of the body.

N

Let, T = Applied torque. NN
T, = Opposing torque due to friction. VA J B 12
do do T
T, « a or T,=B dt Fig 1.15 : Ideal rotational dash-pot with
t
one end fixed to reference.
By Newton’s second law, T=T,=B % ..... (1.8)

When the dash pot has angular displacement at both ends as shown in fig 1.16, the opposing torque
is proportional to the difference between angular velocity at both ends. _I
|

AP P
T, 0, JB 0,

Fig 1.16 : Ideal dash-pot with
angular displacement at both ends.

d d
T, $:(6,-0) or T,=B-£.(6,-6,)

3 T:Tb:B%(el—ez) ..... (1.9)
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Consider an ideal elastic element, torsional spring as shown in fig 1.17, which has negligible moment
of inertia and friction. Let a torque be applied on it. The torsional spring will offer an opposing torque
which is proportional to angular displacement of the body.

Let,

T = Applied torque. ) ) L1 lé

. . Ko 7
T, = Opposing torque due to elasticity. T ©
Fig 1.17 : Ideal spring with one

T oc® or T =KO0
" k end fixed to reference.

By Newton’s second law, | T=T, =K | - (1.10)

When the spring has angular displacement at both ends as shown in fig 1.18 the opposing torque is

proportional

to difference between angular displacement at both ends. NN \

. AW
T, o (6,-6,) or T,=K(® —0,) T* 9, :
T=T-K0,-60)] (1.11) Fig 1.18 : Ideal spring with angular

displacement at both ends.

Guidelines to determine the Transfer Function of Mechanical Rotational System

1.

In mechanical rotational system, the differential equations governing the system are obtained
by writing torque balance equations at nodes in the system. The nodes are meeting point of
elements. Generally the nodes are mass elements with moment of inertia in the system. In
some cases the nodes may be without mass element.

The angular displacement of the moment of inertia of the masses (nodes) are assumed as 0,
0,, 0,, etc., and assign a displacement to each mass (node). The first derivative of angular
displacement is angular velocity and the second derivative of the angular displacement is
angular acceleration.

Draw the free body diagrams of the system. The free body diagram is obtained by drawing
each moment of inertia of mass separately and then marking all the torques acting on that
body. Always the opposing torques acts in a direction opposite to applied torque.

The mass has to rotate in the direction of the applied torque. Hence the angular displacement,
velocity and acceleration of the mass will be in the direction of the applied torque. If there
is no applied torque then the angular displacement, velocity and acceleration of the mass is
in a direction opposite to that of opposing torque.

For each free body diagram write one differential equation by equating the sum of applied
torques to the sum of opposing torques.

Take Laplace transform of differential equation to convert them to algebraic equations. Then
rearrange the s-domain equations to eliminate the unwanted variables and obtain the relation
between output variable and input variable. This ratio is the transfer function of the system.

Note :

Laplace transform of 0 = L{0} = 0(s)

do
Laplace transform of a - L{%}: s O(s) (with zero initial conditions)

Laplace transform of d’0 = L{Z_Zf}= s 0(s) (with zero initial conditions)
dr 4
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EXAMPLE 1.5

Write the differential equations governing the mechanical rotational system shown in fig 1. Obtain the transfer
function of the system.

oo e =l
T K ) B

(Applied Torque) (Output)
Fig 1.

SOLUTION
In the given system, applied torque T is the input and angular displacement 6 is the output.
Let, Laplace transform of T = L{T}=T(s)
Laplace transform of 6 = L{6} = 6(s)

Laplace transform of 6, = £{6,} =0,(s)

Hence the required transfer function is 5(s)

T(s)

The system has two nodes and they are masses with moment of inertia J, and J,. The differential equations
governing the system are given by torque balance equations at these nodes.

Let the angular displacement of mass with moment of inertia J, be 6,. The free body diagram of J, is shown in
fig 2. The opposing torques acting on J, are marked as T,andT,.

do, . T, T
Ti=di gz T=KO-0) 5 T
: J
1
By Newton’s second law, TJ.1 +T, =T xe
1
2
Jjq ﬂ +K(0,-0)=T Fig 2 : Free body diagram of mass with
moment of inertia J,.
2
J1%+K6¢KO:T ..... 1)

On taking Laplace transform of equation (1) with zero initial conditions we get,
J,8%0,(s) + K0, (s) — KO(s) = T(s)

(J,s2+K)o,(s)-Ko(s)=T(s) . )

The free body diagram of mass with moment of inertia J, is shown in fig 3. The opposing torques acting on J,
aremarkedas T, T and T,.

T12 Tb Tk
d?0 . do .
To=d 92§ T=BE 5 T=KO-9) S B
By Newton’s second law, T, + T + T, = 0 0
420 de Fig 3 : Free body diagram of mass with
E sz— +B 5 +K(0-6)=0 moment of inertia J.,.

d?0 , g do K@, =
J2d2+Bdt+Ke Ko,=0

On taking Laplace transform of above equation with zero initial conditions we get,

J,s%0(s) + B s 6(s) + K 0(s) — K0,(s) =0
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(J,8*+Bs + K) 8(s) —K6,(s) =0

2
o=t e @)

Substituting for 6,(s) from equation (3) in equation (2) we get,

)(J252+KBS+K) 0(5)

(J;82+K —-Ko(s)=T(s)

(J;82+K)(J,8%+Bs +K ) - K?
K 0

0(s)

_ K
T T() (Us?+K) (82 +Bs+K)-K?2

RESULT
The differential equations governing the system are,

d?e,

1. J;—5 +K6,—Ko =T
1742 1

d*0 . gd0 , ko _Ko. -
2. J, e +Bdt+K6 Ke,=0
The transfer function of the system is,

() _ K

T(s) (J;8%+K)(J,8%+Bs +K) - K2

EXAMPLE 1.6

Write the differential equations governing the mechanical rotational system shown in fig 1. and determine
the transfer function 6(s)/T(s).

SOLUTION K B
In the given system, the torque T is the gj‘; J, 600 J, ?:'\] )
input and the angular displacement 6 is the output. 0’ _]ﬁ 0

Let, Laplace transform of T = L{T} =T(s)
Laplace transform of 6 = £{6} = 6(s)

Laplace transform of 6, = £{6,} = 6.(s)

Hence the required transfer function is —.?_((Z))

The system has two nodes and they are masses with moment of inertia J, and J,. The differential equations
governing the system are given by torque balance equations at these nodes.

Let the angular displacement of mass with moment of inertia J, be 6,. The free body diagram of J, is shown in

fig 2. The opposing torques acting on J, are marked as T, Tyand T, T, T T,
jt
Tj1:‘J1?21 ; Tb12:B12§(91—9) ;o T=K(6,-6) T o
1

Fig 2 : Free body diagram of mass with

By Newton’s second law, T, +T +T =T - !
’ ek moment of inertia J,.
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d? 0,
dt?
On taking Laplace transform of above equation with zero initial conditions we get,

J,8%0,(s) + s B,, [0,(s) — 6(s)] + KB, (s) — Kb(S) = T(s)

S+ By S (0,-0) + K (8- 0) =T

0,s)[J,s2+sB,+K]-0(s)[sB,+KI=T(s) e Q)

The free body diagram of mass with moment of inertia J, is shown in fig 3. The opposing torques are marked
asT, T, T,andT,.

j2' 'b122
d%0 . d T, T T, T

_J ) T.,=B,,—=-(0-0 2tz Ty Ty

dt2 b12 12 dt( 1) 5 \ y\ v\v\v\

L-BE 5 T=K(©-9) e‘// )

Fig 3 : Free body diagram of mass with

By Newton’s second law, T,2 +T,,+T,+T,=0 : s
moment of inertia J..

d%e d do Co)-
82 2 +By, 5 (0-0)+B A +K(0-0)=0

2
J fﬂg B12%+‘é—?(812+8)+K6—K61:0

On taking Laplace transform of above equation with zero initial conditions we get,
J,s%0(s) — B,, s0,(s) + s6(s) [B,, + B] + Kb(s) — Kb,(s) =0
0(s) [s3J, +s(B,, + B) + K] - 6,(s) [sB,, + K] =

[32J2+S(B12+B)+K]e(s) ..... @)

O(s)= [sB,,+ K]

Substituting for 6,(s) from equation (2) in equation (1) we get,

[J,5%+5(By,+B) +K]6(s)

[Jis?+5B,+K] ~(sBy,+K)B(s)=T(s)

(sBy,+K)

21 8B, +K)[J,52+5(B,,+B)+K] - (sB,, +K)?
(Jy52+ 5By + >IZS(S+BS;£+1}2<)+ VK= B+ K7 g6y = 1(s)
0(s) (sBy,+K)

(S)  (Jy82 + 5By, + K) [J,82+5(By, + B) + K] - (SBy, + K)?

RESULT
The differential equations governing the system are,
d?e d
1. J dt1+B12dt(e 0) +K(0,-0)=T
2
2. sz % g, 9% +99p 1B)+K(®O-0)=0

a2 2dt - dt
The transfer function of the system is,

0(s) (5B, +K)

(8)  (J;s2+5B,+K)[J,82+5(B,,+B) +K| - (sB,+K)?
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1.6 ELECTRICAL SYSTEMS

The models of electrical systems can be obtained by using resistor, capacitor and inductor. The current-
voltage relation of resistor, inductor and capacitor are given in table-1. For modelling electrical systems,
the electrical network or equivalent circuit is formed by using R, L and C and voltage or current source.

The differential equations governing the electrical systems can be formed by writing Kirchoff ’s
current law equations by choosing various nodes in the network or Kirchoff ’s voltage law equations by
choosing various closed paths in the network. The transfer function can be obtained by taking Laplace
transform of the differential equations and rearranging them as a ratio of output to input.

Table-1.1 : Current-Voltage Relation of R, L. and C

Element Voltage across the element Current through the element
i(t) R
A= v(t) = Ri(t) i0="0
V() R
i L
O, v =L-Li i(t):lfv(t) dt
+000 t L
v(t)
O V(=& f (1) dt iM=C dflft)
v
EXAMPLE 1.7 R 1 R 2

Obtain the transfer function of the electrical network shown in fig 1.

SOLUTION

Inthe given network, input is e(t) and output s v,(t).

+
f(t) C1T CZT Vz(t)

Fig 1.

Let, Laplace transform of e(t) = L{e(t)} = E(s)
Note : Source transformation

Laplace transform of v,(t) = L{v,()} = V,(s)
R

i L Va(s) NMN—
The transfer function of the network is E(s) | = =
Transform the voltage source in series with resistance R, into v o Gt R
equivalent current source as shown in figure 2. The network has two
nodes. Let the node voltages be v, and v,. The Laplace transform of

node voltages v, and v, are V,(s) and V (s) respectively. The differential

R
equations governing the network are given by the Kirchoff’s current law
equations at these nodes.
| R —
At node-1, by Kirchoff’s current law (refer fig 3) 3—IR
Viie i VitV e
R, "G @t "R, "R,

d
On taking Laplace transform of above equation with zero initial conditions we get,

. V,
v, v, V. R,
;?(13)+C1SV1(S)+ ;;ZS)— f:{(s):%f) 1 Wvl

17 Vols) _E(s)
Rz R2 R1 Fig 2. Ref

Do
)
\Z
X
o
|
1
£
]
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d

e dv vV, -V v,

- 1 21 —2

R Tl‘% m 3 Tl T
Fig 3. Fig 4.

At node-2, by Kirchoff’s current law (refer fig 4)
Vo-Vi o dVp

R, @ 2 dt
On taking Laplace transform of above equation with zero initial conditions we get,

=0

Vo(s) _ Vi(s)

R, R,

+C,8V,(s)=0

VI;(:) _ VZR(ZS) +C,y8\(s) = [Riz +sC, ]Vz(s)

- Vy(8) =[1+5C,R,] Vy(s)

Substituting for V,(s) from equation (2) in equation (1) we get,

11 Va(s) _E(s)
R |

’
(1+sR C)V(s)[—+sC+
2~2) 72 R1 1 RZ R1

(1+5R,C,)(R,+R,+sC,R,R,) ~ R,
RR,

V,(s) R
E

Ys)= 5

2
(s) [(1+sR,Cy(Ry+R,+sCRR,) R

RESULT

The (node basis) differential equations governing the electrical network are,
vy dv,
— _— + =
R, dt R, R,
V,—Vy dv,
—-<—1+C,—==0
R, 2 dt
The transfer function of the electrical network is,
V,(s) R,

E(S)  [(1+5R,C)(R,+R,+SC,R{R,) ~R]

Vi—Vo _ e

1. +C,

2.

1.7 TRANSFER FUNCTION OF ARMATURE CONTROLLED DC MOTOR

The speed of DC motor is directly proportional to armature voltage and inversely proportional to flux
in field winding. In armature controlled DC motor the desired speed is obtained by varying the armature
voltage. This speed control system is an electro-mechanical control system. The electrical system consists

of'the armature and the field circuit but for analysis purpose, only the armature circuit is considered because
the field is excited by a constant voltage. The mechanical system consists of the rotating part of the motor
and load connected to the shaft of the motor. The armature controlled DC motor speed control system is

shown in fig 1.19.
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(Output)

Fig 1.19 : Armature controlled DC motor.
Let, R_= Armature resistance, Q2
L = Armature inductance, H

i, = Armature current, A

v, = Armature voltage, V

e, = Backemf, V

K, = Torque constant, N-m/A

T = Torque developed by motor, N-m

0 = Angular displacement of shaft, rad

o = Angular velocity, rad/sec

J = Moment of inertia of motor and load, Kg-m?/rad

B = Frictional coefficient of motor and load, N-m/(rad/sec)

K,= Back emf constant, V/(rad/sec)
The equivalent circuit of armature is shown in fig 1.20. . R, L,
By Kirchoff’s Voltage law, we can write, + > AV +ﬁ§?_

iR +L, dt =v, .. (1.12) v. Lo ebi__—

Torque of DC motor is proportional to the product of _

flux and current. Since flux is constant in this system, the torque  Fjg 1.20 : Equivalent circuit of armature.
is proportional to i_alone.

Toci,
" T T=XKi .. 1.13
e 1K), 1D Ny
The mechanical system of the motor is shown in fig 1.21. X X BJ IZ
The differential equation governing the mechanical T Fig 1.21.
system of motor is given by,
d’0 do
K tBesT (1.14)
The back emf of DC machine is proportional to speed (angular velocity) of shaft.
e . . do a0 L 1.1
e, « ® and ®=g 5 e or Back emf, e, = Kbdt (1.15)

The Laplace transform of various time domain signals involved in this system are shown below.
Liv} =V (s) ; Lie} =E(s) ; L{T} =T(s) ; L{i} =Ta(s) ; L{O} =0(s)

The differential equations governing the armature controlled DC motor speed control system are,

di v . 1d0 R do . do
iR +Ladt+eb—v C T=Ki, ; Jd2+Bdt =T : e,=K,
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Taking Laplace transform of the above equations with zero initial conditions we get,

ISR +LsI(s)+E()=V(s (1.16)
Ts)=KIs) e (1.17)
Is0(s) +BsO(s)=T(s) (1.18)
E()=Ks0(s) e (1.19)

On equating equations (1.17) and (1.18) we get,
K1 (s) = (Js* + Bs) 0(s)
2
I(s)= s IJ(rBS) O (1.20)
t
Equation (1.16) can be written as,

(R +sL)L()+E()=V(s) (1.21)

Substituting for E, (s) and I (s) from equation (1.19) and (1.20) respectively in equation (1.21),

2
(R, +sL,) (JSK;BS) 0(s) + K, 30(s) = V,(s)
t
(R, +sL,)(Js*+Bs) + K, Ks
K

0(s)=V,(s)

t

0(s)
(s)

The required transfer function is

Vél
0(s) _ K,

.. - ..(1.22)
V.(8) (R, +sL)(Js’+Bs)+K,Ks

K

t

R, Js*+R,Bs+L Js’+L Bs’+ K K s

Kt
s[JL,s*+(JR,+BL,)s+ (BR, +K,K) |

- K,/IL, 3
- 7, /IR +BL BR+KK\ (1.23)
(e ()|

JL JL

a a

The transfer function of armature controlled dc motor can be expressed in another standard form as
shown below. From equation (1.22) we get,

0(s) _ K, _ K,
- . = :
Vi®)  R,+sL)Us*+Bs) + K Ks g (SLa )\ 1+Ji>+KbKS
“\ R, Bs '
- K,/R,B
- KKT1 (1.24)
s (1+sTa)(1+sTm)+@]
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L,
where, ? =T, = Electrical time constant
% =T = Mechanical time constant

1.8 TRANSFER FUNCTION OF FIELD CONTROLLED DC MOTOR

The speed of a DC motor is directly proportional to armature voltage and inversely proportional to
flux. In field controlled DC motor the armature voltage is kept constant and the speed is varied by varying
the flux of the machine. Since flux is directly proportional to field current, the flux is varied by varying field
current. The speed control system is an electromechanical control system. The electrical system consists
of armature and field circuit but for analysis purpose, only field circuit is considered because the armature
is excited by a constant voltage. The mechanical system consists of the rotating part of the motor and the
load connected to the shaft of the motor. The field controlled DC motor speed control system is shown in
fig 1.22.

(Output)
Fig 1.22 : Field controlled DC motor.

Let, R, = Field resistance, Q
L, = Field inductance, H
Field current, A

1

v, = Field voltage, V + —>—+|

T = Torque developed by motor, N-m iR, SR

K, = Torque constant, N-m/A v -

f

J = Moment of inertia of rotor and load, Kg-m?*/rad L dif+ L

B = Frictional coefficient of rotor and load, N-m/(rad/sec) l fdt % '
The equivalent circuit of field is shown in fig 1.23. Fijg 1.23 : Equivalent
By Kirchoff’s voltage law, we can write circuit of field.

di
R,i;+L; dtt =v, (1.25)

The torque of DC motor is proportional to product of flux and

armature current. Since armature current is constant in this system, NN J |_| IZ
the torque is proportional to flux alone, but flux is proportional to field AV B _ Eéa
06 T
current.
Fig 1.24.

Teci, ..Torque, T=K i - (1.26)

The mechanical system of the motor is shown in fig 1.24. The differential equation governing the
mechanical system of the motor is given by,

g0, pdo_o L (1.27)
a2 o dt
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The Laplace transform of various time domain signals involved in this system are shown below.

L{i} =1(s) s L{Ty=T(6s) :  Livg=Vs) ;  L{6y=0(s)

The differential equations governing the field controlled DC motor are,
Rfif+Lf%=vf . T=K,i, ; ‘:T?JFB%:T

On taking Laplace transform of the above equations with zero initial condition we get,
RI(s) +Lsl(s)=V(s) L (1.28)
Ts)=KJI¢) (1.29)
Js?6(s) +BsO(s)=T(s) (1.30)

Equating equations (1.29) and (1.30) we get,
K I (s) = Js*0(s) + B s0(s)

Lo=sEBeg (1.31)

tf

The equation (1.28) can be written as,
R, +sL)I(s)=V(es) e (1.32)
On substituting for [(s) from equation (1.31) in equation (1.32) we get,

(Js+B)
th

(Ry+sLy)s 0(s) = V;(s)

0(s) _ K
Vi(s)  s(R;+sL)(B+sl)

K K

st<1+&)B(1+%) s(1+sT)(I +sT,)

= Mechanical time constant

1.9 ELECTRICAL ANALOGOUS OF MECHANICAL TRANSLATIONAL SYSTEMS

Systems remain analogous as long as the differential equations governing the systems or transfer
functions are in identical form. The electric analogue of any other kind of system is of greater importance
since it is easier to construct electrical models and analyse them.

The three basic elements mass, dash-pot and spring that are used in modelling mechanical translational
systems are analogous to resistance, inductance and capacitance of electrical systems.
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The input force in mechanical system is analogous to either voltage source or current source in
electrical systems. The output velocity (first derivative of displacement) in mechanical system is analogous
to either current or voltage in an element in electrical system.

Since the electrical systems has two types of inputs either voltage or current source, there are two
types of analogies : force-voltage analogy and force-current analogy.

FORCE-VOLTAGE ANALOGY

The force balance equations of mechanical elements and their analogous electrical elements in
force-voltage analogy are shown in table-1.2. The table-1.3 shows the list of analogous quantities in
force-voltage analogy.

The following points serve as guidelines to obtain electrical analogous of mechanical systems based
on force-voltage analogy.

1. In electrical systems the elements in series will have same current, likewise in mechanical
systems, the elements having same velocity are said to be in series.

2. The elements having same velocity in mechanical system should have the same analogous current
in electrical analogous system.

3. Each node (meeting point of elements) in the mechanical system corresponds to a closed loop
in electrical system. A mass is considered as a node.

4. The number of meshes in electrical analogous is same as that of the number of nodes (masses)
in mechanical system. Hence the number of mesh currents and system equations will be same
as that of the number of velocities of nodes (masses) in mechanical system.

Table- 1.2 : Analogous Elements in Force-Voltage Analogy

Mechanical system Electrical system
Input : Force Input : Voltage source
Output : Velocity Output : Current through the element

i
et ’
dt y * e=vandv=Ri
f—> B1I_| E (e) RV e=Ri
f:B%:BV
dt
>
Ha:ﬁ:ﬂ e:vandv:L—1
dt?  dt
f—» [ £ . di
M .e=L—
2 ] dt
VY ¢
dt dt
l—px:jvdt
1.
ezvandV:—jldt
|—>V + C
f > K —V
{4yo ’ _e=Lfiat
f=Kx=K][vadt C
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Table -1.3 : Analogous Quantities in Force-Voltage Analogy

Item Mechanical system Electrical system
(mesh basis system)
Independent variable Force, f Voltage, e, v
(input)
Dependent variable Velocity, v Current, i
(output) Displacement, x Charge, q

Dissipative element

Frictional coefficient
of dashpot, B

Resistance, R

Storage element

Mass, M

Inductance, L

Stiffness of spring, K

Inverse of capacitance, 1/C

Physical law Newton’s second law Kirchoff’s voltage law
>f=0 2v=0
Changing the level of Lever Transformer
independent variable £ e, N,
£, I, e, N,

Table-1.4 : Analogous Elements in Force-Current Analogy

Mechanical system

Electrical system

Input : Force
Output : Velocity

Input : Current source

Output : Voltage across the element

X

—_QT

i
_dx >
dt + !
f—> 7 i® RSy i==v
B! 2 ~ R
f:g:Bv
dt
|—>x i
|_’a_d2x dv v .
T dt dv
f—» |—| 4 i® Cv i=C
M ¢ -
d’x dv
f=M— =
dt dt
l—bx:Jvdt )
1
|—>v .
f—p K £
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Table-1.5 : Analogous Quantities in Force-Current Analogy

Item

Mechanical system

Electrical system
(node basis system)

Independent variable Force, f Current, 1
(input)
Dependent variable Velocity, v Voltage, v
(output) Displacement, x Flux, ¢
Dissipative element Frictional coefficient Conductance G=1/R
of dashpot, B
Storage element Mass, M Capacitance, C
Stiffness of spring, K Inverse of inductance, 1/L
Physical law Newton’s second law Kirchoff’s current law
>f=0 >i=0
Changing the level of Lever Transformer
independent variable f _ L ¢ _ Ny
f, I, e, N,

The mechanical driving sources (force) and passive elements connected to the node (mass)
in mechanical system should be represented by analogous elements in a closed loop in
analogous electrical system.

The element connected between two (nodes) masses in mechanical system is represented as
a common element between two meshes in electrical analogous system.

FORCE-CURRENT ANALOGY

The force balance equations of mechanical elements and their analogous electrical elements in
force-current analogy are shown in table-1.4. The table-1.5 shows the list of analogous quantities in force-
current analogy.

The following points serve as guidelines to obtain electrical analogous of mechanical systems based
on force-current analogy.

1.

In electrical systems elements in parallel will have same voltage, likewise in mechanical
systems, the elements having same force are said to be in parallel.

The elements having same velocity in mechanical system should have the same analogous
voltage in electrical analogous system.

Each node (meeting point of elements) in the mechanical system corresponds to a node in
electrical system. A mass is considered as a node.

The number of nodes in electrical analogous is same as that of the number of nodes (masses)
in mechanical system. Hence the number of node voltages and system equations will be same
as that of the number of velocities of (nodes) masses in mechanical system.

The mechanical driving sources (forces) and passive elements connected to the node (mass)
in mechanical system should be represented by analogous elements connected to a node in
electrical system.

The element connected between two nodes (masses) in mechanical system is represented as
a common element between two nodes in electrical analogous system.
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EXAMPLE 1.8 I::X‘ I::Xz
v, v,

Write the differential equations governing the ) K,
mechanical system shown in fig 1. Draw the force-voltage and f(t) — 00— OO
force-current electrical analogous circuits and verify by writing » M —1Bw M, 1B,
mesh and node equations. — — ] oo
SOLUTION 181 Fig 1.

The given mechanical system has two nodes (masses). The differential equations
governing the mechanical system are given by force balance equations at these nodes. Let the
displacements of masses M, and M, be x, and x, respectively. The corresponding velocities be
v,andv,.

1 2

The free body diagram of M, is shown in fig 2. The opposing forces are marked as

X
fm1’ fb1’ fb12 and fk1' !
VW

d?x dx «—f(1)
fm1:M1721 ; fb1:B1d7t1
dt «—f,
fr12=B12 %(Xfxz) v fa=Ki—xg) M, —
‘_fb12
By Newton’s second law, f_, +f +f ,+f, =f(t) ¢
¢ k1
o d2x div vk v v e (1)
. M1F+B1F+B12H(X1—X2)+K1(X1—X2):f(t) Fig 2.

The free body diagram of M, is shown in fig 3.The opposing forces are marked as f_,, f..,, f, ., f, and f, .

d?x dx d
fmZIMZTz2 ; szszcth s fh2=Bia gy (xa =) I::x2
V2
fa=Kixa—=x) ; fio=Kx, a—
By Newton’ dlaw, f ,+f,+f,+f ,+f, =0 h
y Newton’s second law, f_, +f_ +f,+f ,+f, =
, 2 b2 k2 b12 k1 MZ fb12
d“x dx d
Msz22+Bzd_t2+K2X2+B1z gt X + Kk =x) =0 . ) —
—f,
On replacing the displacements by velocity in the differential equations (1) and (2) of
the mechanical system we get, Fig 3.
e, dPx_dv . dx_ _
<|.e., g2 " dt  dt =v and x—fvdt>
dv
Myl +Bvi+ BV +K, [(v-vpat=f) e @)
dv
My g2 +BaVy + Ky [Valt+Bpvp= v 4K, [(vp-vpdt=0 L )

FORCE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has two nodes (masses). Hence the force-voltage analogous electrical circuit
will have two meshes.

The force applied to mass, M, is represented by a voltage source in first mesh. The elements M,, B,, K, and B,,
are connected to first node. Hence they are represented by analogous element in mesh-1 forming a closed path. The
elements K., B,,, M,, K,, and B, are connected to second node. Hence they are represented by analogous element in
mesh-2 forming a closed path.

The elements K, and B,, are common between node-1 and 2 and so they are represented by analogous element
as common elements between two meshes. The force-voltage electrical analogous circuit is shown in fig 4.
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The electrical analogous elements for the elements of mechanical system are given below.

f(t) > e(t) M, — L, B,~ R, K, = 1/C,
v, =, M, L, B,— R, K, — 1/C,
V2 - i2 B12 - R12
L1 R1 Lz
o0 v THO
R, R.

0 L
" T°

Fig 4 : Force-voltage electrical analogous circuit.

L, R, L,
L 000 AN 300

diy Rii 4 + L diy +
Tat . i ? dt Rj, > R
+ R12(|1_|2 ) R12 R1z R12('2 - |1) 22 2

et (~) . - _ h

1 * c o1 f(' id 1 +
—((iy—i,)dt C —J(iz—iy)dt —fi,dt == C
Jowe T T el T

Fig 5 : Mesh-1 of analogous circuit. Fig 6 : Mesh-2 of analogous circuit.

The mesh basis equations using Kirchoff’s voltage law for the circuit shown in fig 4 are given below (Refer fig 5 and 6).

i ' . o
L1d—t‘+R1l1+R12(|1—12)+Ci1f(l1—lg) di=e(t)

di, . . o .
de—t2+R2|2+Ci2 .2dt+R12(|2—|1)+Ci1f(|2—|1)dt:0 ----- (6)

It is observed that the mesh basis equations (5) and (6) are similar to the differential equations (3) and (4)
governing the mechanical system.

FORCE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has two nodes (masses). Hence the force-current analogous electrical circuit
will have two nodes.

The force applied to mass M, is represented as a current source connected to node-1 in analogous electrical
circuit. The elements M,, B,, K, and B, , are connected to first node. Hence they are represented by analogous elements
connected to node-1 in analogous electrical circuit. The elements K, B, M,, K,, and B, are connected to second node.
Hence they are represented by analogous elements as elements connected to node-2 in analogous electrical circuit.

The elements K, and B,, are common between node-1and 2 and so they are represented by analogous elements
as common element between two nodes in analogous circuit. The force-current electrical analogous circuit is shown
in fig 7.

The electrical analogous elements for the elements of mechanical system are given below.

f(t) —i(t) M, - C, B, > 1/R, K, = 1L,
v, >V, M, - C, B, 1R, K, - 1L,

v, >V, B,— 1R,
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W .

I_@EFJI

R CT SR §
T

in® c, =

L,

Fig 7 : Force-voltage electrical analogous circuit.

L(V -V ) R v R (V2 7V1 )
2

R, L R 2 24— T2 1 jVZdt

vV, \Z 2

l dv, l 1 I_%%F_zz v, L, dv, l 1, l

— _ 2 2

®io | TN 1 L
[ LT
L—j(V1—V2)dt L1‘[(V2 V1)dt C,— § R, g L,
—C R 1
1 1
Fig 8 : Node-1 of analogous circuit. Fig 9 : Node-2 of analogous circuit.

The node basis equations using Kirchoff ’s current law for the circuit shown in fig 7 are given below (Refer
fig 8 and 9).

Avy 1 o o [ e (7)
C‘idt +R—1v1+ R12 —-V,) +—f Vv, -V, )dt=i(t)

dv, 1 1 1 1 (8)
Co—2+o Vot [ Vpdt+5—(Vy—V)+ [ (vp—v)dt=0

2 dt R2 2 sz 2 R12 2 1 |_1f 2 1

It is observed that the node basis equations (7) and (8) are similar to the differential equations (3) and (4)
governing the mechanical system.

EXAMPLE 1.9 a0
—_— K, 1 =1 B,
Write the differential equations governing the mechanical system shown in $
fig 1. Draw the force -voltage and force-current electrical analogous circuits and verify | M, | wa
by writing mesh and node equations. (1)
K, & :
SOLUTION i Tx
- 2
The given mechanical system has three nodes masses. The differential T B
equations governing the mechanical system are given by force balance equations K & :
at these nodes. Let the displacements of masses M,, M, and M, be x,, x, and x, Txa
respectively. The corresponding velocities be v,, v, and v,. : Fig I
The free body diagram of M, is shown in fig 2. The opposing forces are marked
asf ., f.f,andf,.
— X, —>x, X,
—>V, —
—>f,(t) £) —>V,
l—f . «—f., D a—
4_fm M 4_fb3
W e—r, C et W
+—f, —f, fe

Fig 2. Fig 3. Fig 4.
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M,d?x dx
fn1= 1c|t21 ; fb1:B1d—t1 D fe=Koli=x)) 5 fa=Kex

By Newton’s second law, f_, +f,  +f, +f,=1(1)

M1

d?x dx
1 t1 +Ky(x—x) +Kxy =44~ (1)

B1d

Free body diagram of M, is shown in fig 3. The opposing forces are marked as f_,, f.., f,, f,..

d?x d
fmZZMZTz2 ; fbszBsa(Xz_xs) P fo=Kalxo—xy) 5 fia=Ks(x—xg)

By Newton’s second law,

d?x
MZdT; +B, %(x2 —Xg) +Ky(Xy=X) + KXo —x) =) (2)
The free body diagram of M, is shown in fig 4. The opposing forces are marked as f_,, f,, and f, ..
d’x; d .

faa=Ms e fo3= Baa(xs_xz) i fa=Ka(Xg—x))

By Newton’s second law,
d?x
My =" 3 +Bygp A= %) +Ky(Xg—Xx)=0 @)

On replacing the displacements by velocity in the differential equations (1), (2) and (3) governing the mechanical
system we get,

2
(i.e.,d—xzd—v - dX_y gng x:fvdt)

dz  dt dt
M‘ijt +Byvy+ K, fv1dt+K f —vy)dt=f) e (4)
dv
Mzd—t2+B3(v2—v3)+K2f(v2—v1) dt+K3f(v2—v3) =60 (5)
M By v) Ky [(vymvdt=0 ()

FORCE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has three nodes (masses). Hence the force-voltage analogous electrical circuit
will have three meshes. The force applied to mass, M, is represented by a voltage source in first mesh and the force
applied to mass, M, is represented by a voltage source in second mesh.

The elements M, B,, K, and K, are connected to first node. Hence they are represented by analogous element
in mesh-1 forming a closed path. The elements M,, B, K, and K, are connected to second node. Hence they are
represented by analogous element in mesh-2 forming a closed path. The elements M,, K, and B, are connected to third
node. Hence they are represented by analogous element in mesh-3 forming a closed path.

The element K, is common between node-1 and 2 and so it is represented by analogous element as common
element between mesh 1 and 2. The elements K, and B, are common between node-2 and 3 and so they are represented
by analogous elements as common elements between mesh-2 and 3. The force-voltage electrical analogous circuit is

shown in fig 5.
The electrical analogous elements for the elements of mechanical system are given below.
() — e, (1) v, =i, M, - L, B,—R, K, — 1/C,
f,(t) = e,(t) v, =i, M, —>L, B,—R, K, > 1/C,
v, >, M, —>L, K, > 1/C,
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L|
RJ
iy =c () iy 8u
e (t)
C’J
T
Fig 5 : Force-voltage electrical analogous circuit.
eft) L,
o

+

SR -
: dt Ry(i,— i) R, RS Ry(i;—i,) L, dl3

+
1. . C J —i,)dt
m af(lz - |1)dt_T 3 "'+ R
Fig 7 : Mesh-2 of analogous circuit. Fig 8 : Mesh-3 of analogous circuit.
The mesh basis equations using Kirchoff’s voltage law for the circuit shown in fig 5 are given below (Referfig 6, 7, 8).
diy O 1 o (h v (7)
1dt+R1I1 Cfldt+c f ip)dt=e,(t)
L, ‘Z'f Ry (i, | f —iy)dt+ f (,-ipdt=ey) e ®)
di, 9)
Lo gt +Ralia=ig + - f s-idt=0 e

It is observed that the mesh equations (7), (8) and (9) are similar to the differential equations (4), (5) and (6)
governing the mechanical system.

FORCE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has three nodes (masses). Hence the force-current analogous electrical circuit
will have three nodes.

The force applied to mass M, is represented as a current source connected to node-1 in analogous electrical
circuit. The force applied to mass M, is represented as a current source connected to node-2 in analogous electrical circuit.

The elements M,, B,, K, and K, are connected to first node. Hence they are represented by analogous elements
as elements connected to node-1 in analogous electrical circuit. The elements M,, B,, K, and K, are connected to second
node. Hence they are represented by analogous elements as elements connected to node-2 in analogous electrical
circuit. The elements M,, B, and K, are connected to third node. Hence they are represented by analogous elements
as elements connected to node-3 in analogous electrical circuit.

The element K, is common between node-1 and 2 and so it is represented by analogous element as common
element between node-1 and 2 in analogous circuit. The elements B, and K, are common between node-2 and 3 and so
they are represented by analogous elements as common elements between node-2 and 3. The force-current electrical
analogous circuit is shown in fig 9.

The electrical analogous elements for the elements of mechanical system are given below.

f,(t) =i, (1) v, >V, M, - C, B, » 1/R, K, > 1L,

f,(1) = i,(1) v, >V, M,—C, B, > 1/R, K, —> 1L,
V, >V, M,—C, K, - 1L,
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The node basis equations using Kirchoff’s current law for the circuit shown in fig 9. are given below. (Refer fig
10, 11,12).

R,
V1 L2 VZ V3
I oot L

L,

it (‘D c.=— R, L, % i(0) CAD —c, c,——

Fig 9 : Force-current electrical analogous circuit.

j(v -V, .
dv, 066
lC1 dt R_1 —JV dt
is(t) C1T R, %
Fig 10 : Node-1 of analogous circuit.
1
—(v,-v,) R
R3 2 3 3 V3 R3
v, L, v, \ .—/\1 AN ——M
.—
000 L — —(v -
« dV2 l 6636 oV, 3 (Vs VZ) Va
—J(v,-v,)dt 2 gt — lC dv,
2 1  dt
J.(V27V V, e L
i) —=c, ’ 1m
R A
3
Fig 11 : Node-2 of analogous circuit. Fig 12 : Node-3 of analogous circuit

C1%+—1v +—fvdt+ 1f(v1 Jdt=i) e (10)
dv, .

C2T+—3V -v,) fv2 v,)dt+ Zf(v2—v1)dt7 o (11)
dv,

C,—= at +—3 f"s_V ydt=0 (12)

It is observed that node basis equations (10), (11) and (12) are similar to the differential equations (4), (5) and
(6) governing the mechanical system.
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EXAMPLE 1.10 K
Write the differential equations governing the mechanical system shown in n
fig 1.Draw force-voltage and force-current electrical analogous circuits and verify B, B B,
" . —» 23 +“«— K
by writing mesh and node equations. PN
SOLUTION
- M1 _‘]—/
The given mechanical system has three nodes (masses). The differential O O O B,
equations governing the mechanical system are given by force balance equations 77777
at these nodes. Let the displacements of masses M,, M, and M, be x,, x, and x, Fio 1
respectively. The corresponding velocities be v,,v, and v,. 8 L
The free body diagram of M, is shown in fig 2. The opposing forces are marked as f, , f,,, f,, f.;, and f__
X
d?x dx !
fr=M, dt21 ;of= d—1 DR =KXy v,
g d —f,
szsza()ﬂ Xp) 5 f3=Bj d_(x -X5) «— f,,
M, D—
By Newton’s second law, f_, +f +f +f,+f.=0 | f,
M5 B g d B,d 0 1 fs
1?+ Tt L KX+ 201t(x1—x2)+ 3E(X1_X3)= ..... (1) Fig 2.
The free body diagram of M, is shown in fig 3. The opposing forces are marked asf_,, f.,, f,,, and f,..
d2X d X,
_ 2 . _ :
fm=M,~ 2" b =By g x) v,
d «—f.,
foos = sta(xg —X3) 5 faz=(x,-%)) " « f,,
2
By Newton’s second law, f_, +f, +f . +f,,=0 — fs
d*x, d d «—f
—0 e 2 K
My~ 2* 248, gy (%= X) + Bog i (Xo = %X9) + Ky (xp - Xg) =0 ) e 2
The free body diagram of M, is shown in fig 4. The opposing forces are marked asf _,, f.,, f,,,, and f ..
X
d?x, _ ’
fm3=M3W ; fs= 3dt(x -X,) vV,
g —f ;
fb23 = B23a(x3 - X2) ; fk23 = K23 (X3—X2) . < f,
3
By Newton’s second law, f_, +f, +f,, +f,, =0 — s
d2X d d «—f
s 3 23
My—2* %+ By gy (X3 %) + Bog gy (X3 = %9) + Ky (x5 =X = 0 @) Fig 4

On replacing the displacements by velocity in the differential equations (1), (2) and (3) governing the mechanical

system we get,

o d? _dv odx _ _

<|.e, G2 dt dt—v and x_fvdt>

MdV B K dt+B B 0
1dt+ v+ fv t+B,(v,—Vv,) +B;(vi—v;) =

dv
Mzd—t2 +B, (v, = V) + B3V, = V) + Ko [ (vy—Vy)dt=0

dv,
M, —= at 3 +B 3 (V3= V) +Bys(vy v2)+K23f(v3—v2)dt:0



1.36 Control Systems

FORCE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has three nodes (masses). Hence the force-voltage analogous electrical circuit
will have three meshes. Since there is no applied force in mechanical system there will not be any voltage source in
analogous electrical circuit.

The elements M,, K,, B,, B, and B, are connected to first node. Hence they are represented by analogous
elements in mesh-1 forming a closed path. The elements M,, K,,, B,, and B, are connected to second node. Hence
they are represented by analogous elements in mesh-2 forming a closed path. The elements M,, K., , B,, and B, are
connected to third node. Hence they are represented by analogous elements in mesh-3 forming a closed path.

The elements K,, and B,, are common between node-2 and 3 and so they are represented by analogous element
as common elements between mesh-2 and 3. The element B, is common between node-1and 2 and so it is represented
by analogous element as common element between mesh-1 and 2. The element B, is common between node-1 and

3 and so it is represented by analogous element between mesh-1 and 3. The force-voltage electrical analogous circuit
is shown in fig 5.

The electrical analogous elements for the elements of mechanical system are given below.

v, =i, M, > L, K, = 1/C, B, >R,
v, =i, M, - L, K,; > 1/C,, B, >R,
V, =, M,—L, B, > R, B,, > Ry,
L
T~ r, (v
Ly A=
NN I NN . di R(i4—is)
L1 % R3 Czs st I-1 —1
4 | dt
- +
R, m R, m % L, R, > Ri, Rz(i1—i2)§ R,
(Y bV
C, - 1.
C — i dt
—l— 1—|_+ C1 .[1

Fig 6 : Mesh-1 of analogous circuit.

L,

C m R, +m_

ol di

+ 11— + - La —

oo dt 1 .. .
. Raa(iz—is) o ——J(ip-i)dt i
——|(ip—i3)dt o s 7R3(|1—|3)+ m C, . Ras(iz E)
I
R§R(i—i) dléL R, Cy R
mz 2\l 2 gt 2
h + B i i

Fig 7 : Mesh-2 of analogous circuit. Fig 8 : Mesh-3 of analogous circuit..

The mesh basis equations using Kirchoff’s voltage law for the circuit shown in fig 5 are given below. (Refer fig 6,7
and 8).
di L1 [ L oo
L1d_t1 +Ryiy+ a[|1dt+ R (i,—i,) +Rs(i,—i)=0

di . L L
de—tz +R,(i,—ip + Ciz;f(|27 i) dt+Ry3(i,—i,) =0
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L3E+R "'1“0 f Si)dt+Ryli-i)=0 )

It is observed that the mesh basis equations (7), (8) and (9) are similar to the differential equations (4), (5) and (6)
governing the mechanical system.

FORCE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has three nodes (masses). Hence the force-current analogous electrical circuit
will have three nodes. Since there is no applied force in mechanical system there will not be any current source in
analogous electrical circuit.

The elements M,, K,, B,, B, and B, are connected to first node. Hence they are represented by analogous
elements as elements connected to node-1 in analogous electrical circuit. The elements M,, K., B,, and B, are connected
to second node. Hence they are represented by analogous elements as elements Connected to node- 2 in analogous
electrical circuit. The elements M,, K, , B,, and B, are connected to third node. Hence they are represented by analogous
elements as elements connected to node-3 in analogous electrical circuit.

The elements K,, and B, are common between node-2 and 3 and so they are represented by analogous element
as common elements between node-2 and 3 in electrical analogous circuit. The element B, is common between node-1
and 2 and so itis represented by analogous element as common element between node-1 and 2 in electrical analogous
circuit. The element B, is common between node-1 and 3 and so it is represented by analogous element as common
element between node-1 and 3 in electrical analogous circuit. The force-current electrical analogous circuit is shown
in fig 9.

The electrical analogous elements for the elements of mechanical system are given below.

vV, =V, M, —» C, K, = 1L, B, - 1/R,
v, =V, M, - C, K,, = 1/L,, B, - 1R,
vV, >V, M, - C, B, - 1/R, B,, > 1/R,,
—(v,=v,)
1 5, R
AL A
RS L23 ®
T V. 1
Vi V2 ,_ R R_(V1_V2)

1
c L
C,._— %u R,

Fig 10 : Node-1 of analogous circuit.

1 1
L—j(v2—v3 )dt R_(V3_V1)
1 23 —> v 3 4—
-, ) —— W
v 2 <+—V, 23 _-[(Vs_vz )dt
R, dv B o
) dt2 R, v, Vv, O—QSEF—
1 23
& ) R ov) g
— (v, -V) 3 <«
R 2 3 Vs@——ANN— -
23 C,—
R23 dv
Fig 11 : Node-2 of analogous circuit. le 3
Fig 12 : Node-3 of analogous circuit. dt



1.38 Control Systems

The node basis equations using Kirchoff’s current law for the circuit shown in fig 9 are given below. (Refer fig 10, 11
and 12).

A 1,0 unen 10

C1 dt —1 fvdt+ v—v)+R (vi=v3)=0 (10)

dv, 1 1 1 _ 11

C2W+?Z(Vz_v1)+fmf(vz_v3)dt+R723(V2_V3)_0 ----- (11)
dvs 1 1 _

Cogi R, Vs~ W) f(v —vydt+ = (v3—v2)_0 ----- (12)

It is observed that the node basis equations (10), (1 1) and (12) are similar to the differential equations (4), (5)
and (6) governing the mechanical system.

EXAMPLE 1.11

Write the differential equations governing the mechanical system shown in fig 1. K%

B
Draw the force-voltage and force-current electrical analogous circuits and verify by writing ’ lf(t) ’
mesh and node equations. X M
2
SOLUTION EK
The given mechanical system has two nodes (masses). The differential equations XI&
governing the mechanical system are given by force balance equations at these nodes. Let '
the displacement of masses M, and M, be x, and x, respectively. The corresponding velocities Fio 1
be v,and v,. ig 1.
The free body diagram of M, is shown in fig 2. The opposing forces are marked as f_, f, and f,,. — X,
d?x d(x,—X,) v,
fn1= M1_dt21 b f=By :jt 20 fa=Kil-x) —f,
By Newton’s second law, f_, +f +f =0 M, |le—f,
2 - «—f
M1—d )2(1 + 817(j (X1=%y) +K(x-x)=0 (M v
dt dt Fig 2

The free body diagram of M, is shown in fig 3. The opposing forces are marked as f_,, f,,f ., f,andf,.

d2X2 : dx, d — f(t
fm2:M2F ’ szzBZW ; fb1:B1a(X2_X1) )((2)
—P V2

f,=Kx, v T = Ki(x—x,) £

; —f,

By Newton’s second law, f_,+f,+f,+f +f, =f(t) M, f:
2y «—f,

M2d Bzd—+K %o+ B, 00— x) K (x,—x) = f(t) ) «f,

@ o Fig 3

On replacing the displacements by velocity in the differential equations (1) and (2) governing the mechanical
system we get,
e, d2x _dv dx_ -
(l.e., g2 dt o dt =v and x_fvdt)

dv
M1d—t1+B1(v1—v2)+K1f(v1—v2)dt=0 ----- ®)

dv
MZth+B2V2+K2_/V2dt+B1(V2_V1)+K1f(V2—V1)dt:f(t) ..... (4)




Chapter 1 - Mathematical Models of Control Systems 1.39

FORCE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has two nodes (masses). Hence the force voltage analogous electrical circuit will
have two meshes. The force applied to mass, M, is represented by a voltage source in second mesh.

The elements M,, K, and B, are connected to first node. Hence they are represented by analogous element
in mesh 1 forming a closed path. The elements M,, K,, B,, B, and K, are connected to second node. Hence they are
represented by analogous element in mesh 2 forming a closed path.

The elements B, and K, are common between node 1 and 2 and so they are represented as common elements
between mesh 1 and 2. The force-voltage electrical analogous circuit is shown in fig 4.

The electrical analogous elements for the elements of mechanical system are given below.

fit) >e(t) v, = i M, - L, K, - 1/C, B, - R,
v, = i, M, - L, K, - 1/C, B, - R,
The mesh basis equations using Kirchoff’s voltage law for the circuit shown in fig 4. are given below,
(refer fig 5 and 6). e(t)
L,
EH—00

LE o

C,—= —-—C,

Fig 4 : Force-voltage electrical analogous circuit.

. Y e —
|
o, ROAIZSR RS R (i) La RLSR
L1{é |‘1_1 i a ) + -
dat (i iy . .
- N iy | iy .
s ==C 1., . 1
C1I(" i,) _—I' 1 C1T+ C—1j(|2—|1)dt Ji_dt —‘—

Fig 5 : Mesh-1 of analogous circuit.

di
L, dlt1 f Cipd=0 e (5)

LZC(Ijt +R2|2+C fl dt+—f| —idt+R (i,~i)=e® .. (6)

It is observed that the mesh basis equations (5) and (6) are similar to the differential equations (3) and (4)
governing the mechanical system.

FORCE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has two nodes (masses). Hence the force-current analogous electrical circuit will
have two nodes. The force applied to mass M, is represented as a current source connected to node-2 in analogous
electrical circuit.

The elements M,, K, and B, are connected to first node. Hence they are represented by analogous elements
as elements connected to node-1 in analogous electrical circuit. The elements M,, K,, B,, B, and K, are connected
to second node. Hence they are represented by analogous elements as elements connected to node-1 in analogous
electrical circuit.
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The elements K, and B, is common to node-1 and 2 and so they are represented by analogous element as
common elements between two nodes in analogous circuit. The force-current electrical analogous circuit is shown in fig 7.

The electrical analogous elements for the elements of mechanical system are given below.
fit) =>it) v, —>v, M, - C, B, » 1/R, K, = 1L,
v, >V, M, - C, B,— 1R, K,— 1L,
The node basis equations using Kirchoff’s current law for the circuit shown in fig.7, are given below, (Refer
fig 8 and 9).

Ci gt d"‘ Ri v+t f —vp)dt=0 7
dv, 1 1 1 1 i

Co—2 4+ Vot [ Vodt+=—(Vo—Vv)+— [ (v,—v)y=i(t) 8
27dt TR, 2 szz R1(2 7 |_1f(2 ) =i(t) (8)

It is observed that the node basis equations (7) and (8) are similar to the differential equations (3) and (4)
governing the mechanical system.

e
-

GD i(t) =C, R, g L,

Fig 7 : Force-current electrical analogous circuit.

1 1
R_1(V1_V2) — v, v <« R—1(v27v1)dt ] "o
Vv, R1 R1 V2 L ’
b
L, L, l l =V, l
101? —— eV, Vie—us—— . l ? dt
;] — 1 « 0
< T L—J(V1—V2 )dt |__1J.(V2_V1 )t T
1
Fig 8 : Node-1 of analogous circuit. Fig 9 : Node-2 of analogous circuit.

1.10 ELECTRICAL ANALOGOUS OF MECHANICAL ROTATIONAL SYSTEMS

The three basic elements moment of inertia, rotational dashpot and torsional spring that are used
in modelling mechanical rotational systems are analogous to resistance, inductance and capacitance of
electrical systems. The input torque in mechanical system is analogous to either voltage source or current
source in electrical systems. The output angular velocity (first derivative of angular displacement) in
mechanical rotational system is analogous to either current or voltage in an element in electrical system.
Since the electrical systems has two types of inputs either voltage source or current source, there are two
types of analogies: torque-voltage analogy and torque-current analogy.

TORQUE-VOLTAGE ANALOGY

The torque balance equations of mechanical rotational elements and their analogous electrical
elements in torque-voltage analogy are shown in table-1.6. The table-1.7 shows the list of analogous
quantities in torque-voltage analogy.
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TABLE-1.6 : Analogous Element of Torque-Voltage Analogy

Mechanical rotational system Electrical system
Input : Torque Input : Voltage source
Output : Angular velocity Output : Current through the element
Py ——
Nl
T & ﬂ ox & E N + e=v ; v=Ri
do 0= © RSV e=Ri
T=B—-=Bo t _ '

poy 0 do 4% _do © Ly | di
a2 a dt®  dt - - dt
i
N R N g
T S mo)‘/ < E CS + C:V;V:%Jid'[
e C—=V
T=Ko=KJod O-JOd _ _ .'.e:%_[idt

The following points serve as guidelines to obtain electrical analogous of mechanical rotational systems
based on torque-voltage analogy.

1.

In electrical systems the elements in series will have same current, likewise in mechanical
systems, the elements having same angular velocity are said to be in series.

The elements having same angular velocity in mechanical system should have analogous
same current in electrical analogous system.

Each node (meeting point of elements) in the mechanical system corresponds to a closed loop in
electrical system. The moment of inertia of mass is considered as a node.

The number of meshes in electrical analogous is same as that of the number of nodes (moment
of inertia of mass ) in mechanical system. Hence the number of mesh currents and system
equations will be same as that of the number of angular velocities of nodes (moment of inertia
of mass) in mechanical system.

The mechanical driving sources (Torque) and passive elements connected to the node (moment
of inertia of mass) in mechanical system should be represented by analogous element in a
closed loop in analogous electrical system.

The element connected between two nodes (moment of inertia) in mechanical system is
represented as a common element between two meshes in electrical analogous system.
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Table-1.7 : Analogous Quantities in Torque-Voltage Analogy

Item Mechanical rotational system Electrical system
(mesh basis system)

Independent variable Torque, T Voltage, e, v
(input)

Dependent variable Angular Velocity, ® Current, i
(output) Angular displacement, 0 Charge, q

Dissipative element Rotational coefficient Resistance, R

of dashpot, B

Storage element Moment of inertia, J Inductance, L
Stiffness of spring, K Inverse of capacitance, 1/C
Physical law Newton’s second law Kirchoff’s voltage law
>XT=0 Sv=0
Changing the level of Gear Transformer
independent variable T n e, N
T, n, e N,

TORQUE-CURRENT ANALOGY

The torque balance equations of mechanical elements and their analogous electrical elements in
torque-current analogy are shown in table-1.8. The table-1.9 shows the list of analogous quantities in
torque-current analogy.

The following points serve as guidelines to obtain electrical analogous of mechanical rotational
systems based on Torque-current analogy.

1.

In electrical systems the elements in parallel will have same voltage, likewise in mechanical
systems, the elements having same torque are said to be in parallel.

The elements having same angular velocity in mechanical system should have analogous
same voltage in electrical analogous system.

Each node (meeting point of elements) in the mechanical system corresponds to a node in
electrical system. The moment of inertia of mass is considered as a node.

The number of nodes in electrical analogous is same as that of the number of nodes (moment
of inertia of mass ) in mechanical system. Hence the number of node voltages and system
equations will be same as that of the number of angular velocities of nodes (moment of inertia
of mass) in mechanical system.

The mechanical driving sources (Torque) and passive elements connected to the node in
mechanical system should be represented by analogous element connected to a node in
analogous electrical system.

The element connected between two nodes (moment of inertia of mass) in mechanical system
is represented as a common element between two nodes in electrical analogous system.
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TABLE-1.8 : Analogous Elements in Torque-Current Analogy

Mechanical rotational system Electrical system

Input : Current source

Input : Torque
Output : Voltage across the element

Output : Angular velocity

Iy :
E 0 de 1QD Rz v 1=iv
=L Bo “ar -
dt
N NN F i
T & 00 "
0=fodt i® Lgv implva

)

T & gy
2 2

T:Jd_?:Jd_o) OC=d9:dm B

dt dt dt t

Table-1.9 : Analogous Quantities in Torque-Current Analogy

Mechanical rotational system Electrical system

Item
(node basis system)
Independent variable Torque, T Current, i
(input)
Dependent variable Angular Velocity, ® Voltage, v
Flux, ¢

(output) Angular displacement, 6

Rotational frictional Conductance, G = 1/R

Dissipative element
coefficient of dashpot, B

Moment of inertia, J Capacitance, C

Storage element
Stiffness of spring, K Inverse of inductance, 1/L

Newton’s second law Kirchoff ’s current law

Physical law
>T=0 >i=0
Changing the level of Gear Transformer
i N
2

independent variable T n L
T, n, LN
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EXAMPLE 1.12

Write the differential equations governing the mechanical rotational

system shown in fig 1. Draw the torque-voltage and torque-current electrical T) E ’25675‘ D—
analogous circuits and verify by writing mesh and node equations.

SOLUTION

The given mechanical rotational system has two nodes (moment of
inertia of masses). The differential equations governing the mechanical rotational system are given by torque balance
equations at these nodes.

—>
//1 ) i //1/ ///// i
B Fig 1 .

Let the angular displacements of J, and J, be 8, and 0, respectively. The corresponding angular velocities be
o,and o,.

The free body diagram of J, is shown in fig 2. The opposing torques are marked as TJ.1, T,,andT,,.

d%e, de,
Tj1=‘J1F ) Tb1=B1E i Tk =Ki(0,-0) \ \ \ \ \
J
: _ AVl VAV
By Newton’s second law, T +T +T,=T T 0, T, T, T,
d?0 do ;
g B tK(O-0)=T L 1) Fig 2.
The free body diagram of J, is shown in fig 3. The opposing torques are marked as T, T,,, T,,and T,
d%e, | de,
Tp=do— 5" d2 ’ bzzBZW

YT
T =K;50, ;o Tq=Ki(6,-9) 9/ 2 A/ A/ A/ A/

TiZ sz Tk2 Tk1

By Newton’s second law, T,+T,+T,+T, =0 Fig 3.
d%e doe
b — Byt t K0, K (0-0) )

On replacing the angular displacements by angular velocity in the differential equations (1) and (2) governing
the mechanical rotational system we get,

2
(i.e., d70 _do . do_  apqg e:fmdt)

diz  dt dt
do
LBtk [(o-o)at=T e (3)
do
L g2 +Byoy 4K, [wpdt K, [(0p-@pdt=0 )

TORQUE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has two nodes (J, and J,). Hence the torque-voltage analogous electrical circuit
will have two meshes. The torque applied to J, is represented by a voltage source in first mesh. The elements J,, B,
and K are connected to first node. Hence they are represented by analogous element in mesh-1 forming a closed path.
The elements J,, B,, K, and K, are connected to second node. Hence they are represented by analogous elements in
mesh-2 forming a closed path.

The element K| is common between node-1 and 2 and so it is represented by analogous element as common
element between two meshes. The torque-voltage electrical analogous circuit is shown in fig 4.

The electrical analogous elements for the elements of mechanical rotational system are given below.
T —e) J, = L, B, - R, K, - 1/C,
o, =i, J, > L, B, - R, K, — 1/C,

0, —>1,
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R, L,

R
m ::01@ fz
—|—z

Fig 4 : Torque-voltage electrical analogous circuit.

R, L,
AN yol [ |
- 7 R di, +
L8 o 2@ Ri, Sg
1 dt + n 2

" Cij(h—iz)dt::C1 m m C, == Cij(iz—h)dt -

.
e(t) D - - mc% fi dt_T C,

Fig 5 : Mesh-1 of analogous circuit. Fig 6 : Mesh-2 of analogous circuit..

The mesh basis equations using Kirchoff ’s voltage law for the circuit shown in fig 4 are given below
(Refer fig 5 and 6).

L1%+R1i1+ci1f(i1—i2)=e(t) ----- ®)

LZ%+R2i2+Ci2fi2dt+ci2f(i2—i1)dt:0 ----- (6)

It is observed that the mesh basis equations (5) and (6) are similar to the differential equations (3) and (4)
governing the mechanical system.
TORQUE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has two nodes (J, and J,). Hence the torque-current analogous electrical circuit
will have two nodes. The torque applied to J, is represented as a current source connected to node-1 in analogous
electrical circuit.

The elements J,, B, and K, are connected to first node. Hence they are represented by analogous elements as
elements connected to node-1 in analogous electrical circuit. The elements J,, B,, K, and K, are connected to second
node. Hence they are represented by analogous elements as elements connected to node-2 in analogous electrical circuit.

The element K, is common between node-1 and 2. So it is represented by analogous element as common
element between node-1 and 2. The torque-current electrical analogous circuit is shown in fig 7.

V, I—1 v,

00"

C= R, C..— R, Lz%

Fig 7 : Torque-current electrical analogous circuit.
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1
Llj(v1—v2)dt L—I(Vz—V1)dt
v, t1 —> v, v, ! «— v,
T
L L
dv 1 1 1 dv, 1
C i § —V l l— l _J.VZ dt
l T dt l R, 2 dt L,
i(t)
C= R, C,= R, L,
Fig 8 : Node-1 of analogous circuit. Fig 9 : Node-2 of analogous circuit.
The electrical analogous elements for the elements of mechanical rotational system are given below.
T > it) B, - 1/R, 0, >V, J,—>C, K, = 1L,
B, »> 1/R, 0, >V, J,—>C, K, — 1L,

The node basis equations using Kirchoff’s current law for the circuit shown in fig 7 are given below (Refer fig
8and9).

c:1ddt f(v —vydt=iy e @)
C1d(;/tz+—v2+—fv dt+—fv -v)dt=iy ®)

It is observed that the mesh basis equations (5) and (6) are similar to the differential equations (3) and (4)
governing the mechanical system.

EXAMPLE 1.13 K,

Write the differential equations governing the ﬁ_ J 000 J, ] B, 5L K,
mechanical rotational system shown in fig 1. Draw the H— i ’
torque-voltage and torque-current electrical analogous T B,
circuits and verify by writing mesh and node equations. Fig 1.

SOLUTION

The given mechanical rotational system has three nodes (moment of inertia of masses). The differential equations
governing the mechanical rotational system are given by torque balance equations at these nodes.

Let the angular displacements of J,, J,and J, be 6,, 0,and 0, respectively. The corresponding angular velocities
be v,, ,and o,.

The free body diagram of J, is shown in fig 2. The opposing torques are marked as Tﬂ, T,,andT,..

d261 . d(6,-6,)
T \J1 d y Tb1:B1T
T =K;(6,-6,) J, \ \ \

%

A
. Y

By Newton’s second law, T, + T, +T,, = 0, T, T, T,

J ddtgl B1d(ezj;62) +K(0,-0) =T Fig2. 1)
The free body diagram of J, is shown in fig 3. The opposing torques are marked as T Ty Tp@nd T,

sz = Jz% Do The= Bzid (eé; %)



Chapter 1 - Mathematical Models of Control Systems 1.47

) d(6,-9,)
T=Kq(6,-6) Tb1:B1$ ) J, ) ) ) )
By Newton’s second law, T, + T+ T, + T, = 0 6, To T T Ta
Fig 3.
d%e d(6,—-6,) d(e,-6,)
J, dt; By A B A h K (6-0)=0 e @)
The free body diagram of J, is shown in fig 4. The opposing torques are marked as Tjs, Tand T,
d%e, d(6,-6,) .
T13=J3? ’ Tb2=BZT ’ TKS:KSGS \ \ \ \
J
By Newton’s second law, T, +T,, + T,, = 0 X X XN
d29 d(e J 0 ) 93 TJ3 sz Tk3
J3 dt23 +BZ :(3:"2 2 +K363:O Flg 4 e (3)

On replacing the angular displacements by angular velocity in the differential equations (1) and (2) governing
the mechanical rotational system we get,

2
<i.e.,d—6:d—m ; ﬁzw and Ozfo)dt)

a2 dt Codt
J1%+B1(m1—m2)+K1f(m1—m2) =T e (4)
Jz%+B1((x)2—(n1)+Bz(w2—w3)+K1/(m2—m1) dt=0 (5)
J3%+Bz(w37w2)+K3fm3dt:0 ----- (6)

TORQUE-VOLTAGE ANALOGOUS CIRCUIT

The given mechanical system has three nodes (J,, J, and J,). Hence the torque-voltage analogous electrical
circuit will have three meshes. The torque applied to J, is represented by a voltage source in first mesh.

The elements J,, K, and B, are connected to first node. Hence they are represented by analogous element in
mesh-1forming a closed path. The elements J,, B,, B, and K, are connected to second node. Hence they are represented
by analogous element in mesh-2 forming a closed path. The element J,, B, and K, are connected to third node. Hence
they are represented by analogous element in mesh-3 forming a closed path.

The elements K, and B, are common between the nodes-1 and 2 and so they are represented by analogous
element as common between mesh-1 and 2. The element B, is common between the nodes-2 and 3 and so it is
represented by analogous element as common element between the mesh-2 and 3. The torque-voltage electrical
analogous circuit is shown in fig 5.

The electrical analogous elements for the elements of mechanical rotational system are given below.

Toel) o, - J, = L, B, - R, K, - 1/C,
®, = i, J, = L, B, - R, K, » 1/C,
0, = iy J, = L, di1
T dt
L L L, ([

L, +

| Cij(h—iz)dt —

R, C, e(t)C_ m1 N (Y
csicsichl o

Fig 5 : Torque-voltage electrical
analogous circuit. Fig 6 : Mesh-1 of analogous circuit.
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d|2
2 dt L
/m 3
_ + L - +m_
4 1 di
Ci— (i, - L —
! c, J(ip i) dt + 3 T

(i [ R2<i2—i3)§ R, R, gm_i) L,

R1§R1(i2—i1) - i sl .
A m m Q mc j dt

Fig 7 : Mesh-2 of analogous circuit. Fig 8 : Mesh-3 of analogous circuit.

The mesh basis equations using Kirchoff’s voltage law for the circuit shown in fig 5 are given below (Refer fig 6, 7
and 8).

L, le f(u Jdt=e® e 7)
L, ‘l’t Ry (i~ + Ryli— i) + & f (p,-ipdt=0 (8)
L3((j_j|t R, (i;— 2)+C fl dt=0 e ©)

It is observed that the mesh basis equations (7), (8) and (9) are similar to the differential equations (4), (5) and
(6) governing the mechanical system.

TORQUE-CURRENT ANALOGOUS CIRCUIT

The given mechanical system has three nodes (J,, J, and J,). Hence the torque-current analogous electrical circuit
will have three nodes. The torque applied to J, is represented as a current source connected to node-1 in analogous

electrical circuit.

The elements K,, J, and B, are connected to first node. Hence they are represented by analogous elements as
elements connected to node-1 in analogous electrical circuit. The elements J,, B,, B, and K, are connected to second
node. Hence they are represented by analogous elements as elements connected to node-2 in analogous electrical
circuit. The elements J,, B,, and K, are connected to third node. Hence they are represented by analogous elements

as elements connected to node-3 in analogous electrical circuit.

The elements K, and B, are common between node-1 and 2 and so they are represented by analogous element
as common elements between node-1and 2. The element B, is common between node-2 and 3 and so itis represented
as common element between node-2 and 3 in analogous circuit. The torque-current electrical analogous circuit is shown
in fig 9. 1
— (vy=Vy) R,

R,
v, Rz \A R1
v1
L, ° ij(v1—v2)dt
dv, L
. lqa T a—"
C, C, % L, i(t) L,

Fig 9 : Torque-current electrical
analogous circuit.

Fig 10 : Node-1 of analogous circuit.



Chapter 1 - Mathematical Models of Control Systems 1.49

1
R1 1 ?2 (V3 VQ)
i e—\W\— —(v.-v) «— v
1 ' v R—» V: e——AAN—¢
—(v,-vV) ANN——oV, R
R L R :
- : 1
«— l C,| ¢ v — [v,dt
dv 3 dt L2
1 “T %a L
_.|'(v —v, )t I t ? ’
LI
Fig 11 : Node-2 of analogous circuit. Fig 12 : Node-3 of analogous circuit.
The electrical analogous elements for the elements of mechanical rotational system are given below.
T—i(t) 0, >V, J, » C, B, » 1R, K, - 1L,
W, >V, J, > C, B, - 1R, K, - 1L,
W, —> V, J, > C,

The node basis equations using Kirchoff’s current law for the circuit shown in fig 9 are given below (Refer fig 10, 11
and 12).

dvi 1 1 i

C1F+R—1(v1fv2)+L—1f(v1fv2)dt—l(t) ----- (10)
dv, 1 1 1 _

szt“ﬁ(Vz*VQ+R*2(V2*V3)+|_*1f("2*v1)dt—0 """ an
dvy 1 1 _

C3W+R72(V37V2)+L73fv3dt_o ----- (12)

It is observed that the node basis equations (10), (11) and (12) are similar to the differential equations (4), (5)
and (6) governing the mechanical system.

1.11 BLOCK DIAGRAMS

A control system may consist of a number of components. In control engineering to show the
functions performed by each component, we commonly use a diagram called the block diagram. A block
diagram of a system is a pictorial representation of the functions performed by each component and of the
flow of signals. Such a diagram depicts the interrelationships that exist among the various components.

The elements of a block diagram are block, branch point and summing point.
BLOCK

In a block diagram all system variables are linked to each other through functional blocks. The
functional block or simply block is a symbol for the mathematical operation on the input signal to the block
that produces the output. The transfer functions of the components are usually entered in the corresponding
blocks, which are connected by arrows to indicate the direction of the flow of signals. Figure 1.25 shows
the block diagram of functional block.

The arrowhead pointing towards the block indicates the input, Input, A | Transfer | Output, B
and the arrowhead leading away from the block represents the output. function B=AG(s)
Such arrows are referred to as signals. The output signal from the block 66)
isgiven by the product of input signal and transfer function in the block. Fig 1.25 : Functional block.
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SUMMING POINT A A-B
Summing points are used to add two or more signals in the system.

Referring to figure 1.26, a circle with a cross is the symbol that indicates B

a summing operation. Fig 1.26 : Summing point.

The plus or minus sign at each arrowhead indicates whether the
signal is to be added or subtracted. It is important that the quantities being added or subtracted have the
same dimensions and the same units.

BRANCH POINT

Branch point

4 B
At e

A branch point is a point from which the signal from a block goes

concurrently to other blocks or summing points. A
CONSTRUCTING BLOCK DIAGRAM FOR CONTROL SYSTEMS Fig 1.27 : Branch point.

A control system can be represented diagramatically by block diagram. The differential equations
governing the system are used to construct the block diagram. By taking Laplace transform the
differential equations are converted to algebraic equations. The equations will have variables and
constants. From the working knowledge of the system the input and output variables are identified and
the block diagram for each equation can be drawn. Each equation gives one section of block diagram.
The output of one section will be input for another section. The various sections are interconnected
to obtain the overall block diagram of the system.

EXAMPLE 1.14

Construct the block diagram of armature controlled dc motor.
SOLUTION

The differential equations governing the armature controlled dc motor are (refer section 1.7),

. di
VaZIaRa+Lad_ta+eb ..... (1)
T=Ki, 2)
_jdo
T=J at t Bo 3)
=Ko (4)
_do
O=Hr e (5)
On taking Laplace transform of equation (1) we get,
V() =L(R, +L sl(s)+Es) (6)
In equation (6), V,(s) and E,(s) are inputs and | (s) is the output. Hence the V.(s)-Ey(s)
equation (6) is rearranged and the block diagram for this equation is shown in fig 1. V.(s) 1
R, +sL l(s)
V,(s)-E[(s)=1(s) [R,+sL] a a
] E(s)
- Ia(s):m[va(s)—Eb(s)] Fig 1.
On taking Laplace transform of equation (2) we get, I,(s) T(s)

T(s)=Klo(s) L (7)
Fig 2.
In equation (7), 1 (s) is the input and T(s) is the output. The block diagram for this equation is shown in fig 2.
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On taking Laplace transform of equation (3) we get,

T(s)=Jdsw(s)+Bws)y L (8)
In equation (8), T(s) is the input and w(s) is the output. Hence the equation (8) is rearranged and the block
diagram for this equation is shown in fig (3). T(s) 1 (s)
T(s) = (Js + B) o(s) Js+B
. __1 Fig 3.
- co(s)stJrBT(s) g

On taking Laplace transform of equation (4) we get,

E()=Kos) ©  °G Ei(s)
In equation (9), w(s) is the input and E,(s) is the output. The block diagram for Fig 4

this equation is shown in fig 4.

On taking Laplace transform of equation (5) we get,

o(s)=s6(s) (10)
In equation (10), w(s) is the input and 6(s) is the output. Hence equation (10) is rearranged and the block diagram
for this equation is shown in fig 5. w(s) 0(s)
1 .
e(S) = E 0)(5) Flg 5.

The overall block diagram of armature controlled dc motor is obtained by connecting the various sections shown in
fig 1to fig 5. The overall block diagram is shown in fig 6.

V.(s)-Ex(s)
Vi(s) 1 l(s) _T(S)—1 1 @) 0(s)

R, +sL, K58 s

E.(s)

o(s)

LY

Fig 6 : Block diagram of armature controlled dc motor.

EXAMPLE 1.15

Construct the block diagram of field controlled dc motor.

SOLUTION
The differential equations governing the field controlled dc motor are (refer section 1.8),
vf:Rfif+Lf% ----- M
T=Kgi, (2)
T-gdfie 3

On taking Laplace transform of equation (1) we get,

V(s)=Rl(s)+Lsl(s) (4)
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In equation (4), V,(s) is the input and I (s) is the output. Hence the equation (4) is rearranged and the block
diagram for this equation is shown in fig 1.

VAS) — L) (R4 oL V(s) 1 I(s)
f(s)f f(S)[ f+S f] > Rf+SLf >
-1 .
N®) =g st Y Fig 1.
On taking Laplace transform of equation (2) we get,
TE) =K, () L (5) I(s) R, ()
In equation (5), |,(s) is the input and T(s) is the output. The block diagram for Fio 2
this equation is shown in fig 2. 8 <
On taking Laplace transform of equation (3) we get,
T(s)=Js?0(s)+Bso(S) L (6)
In equation (6), T(s) is input and 0(s) is the output. Hence equation (6) is rearranged
and the block diagram for this equation is shown in fig 3. T(s) 1 0(s)
T(s)=(Js’+Bs)6(s) Js? +Bs
0(s)=—5—T(s) Fig 3.

" Js?+Bs

The overall block diagram of field controlled dc motor is obtained by connecting the various section shown in
fig 1 to fig 3. The overall block diagram is shown in fig 4.

1 I(s) T(s) 1

- 1 | o
R +sL; Js? +Bs ©

V(s) —»

Fig 4 : Block diagram of field controlled dc motor.

BLOCK DIAGRAM REDUCTION

The block diagram can be reduced to find the overall transfer function of the system. The following rules can
be used for block diagram reduction . The rules are framed such that any modification made on the diagram does not
alter the input-output relation.

RULES OF BLOCK DIAGRAM ALGEBRA

Rule-1: Combining the blocks in cascade

AG Al
A oG e = A Eer 5
Rule-2 : Combining Parallel blocks (or combining feed forward paths)
A GG, AG+G))

AG
A_' ﬂ»
-
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Rule-4 : Moving the branch point before the block

AG

Al A% —2 G
=

A_G> AG

B

A AG+B

AG

Rule-7 : Interchanging summing point

Rule-8 : Splitting summing points

B
A A+B-C N
C

Rule-9 : Combining summing points

A A+B-C

Rule-10 : Elimination of (negative) feedback loop
(R-CH) __ (R-CH)G

C = R G C
1+ GH

Proof :
C=R-CH)G = C= RG-CHG = C+CHG=RG

- cC__G
C(1+HG)=RG = §-1-%4

Rule-11 : Elimination of (positive) feedback loop

R C
& — R a1
= — —— >
1-GH
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EXAMPLE 1.16

Reduce the block diagram shown in fig 1 and find C/R.

C
G—X)

Fig 1.

SOLUTION

Step 1: Move the branch point after the block.

Step 4: Combining blocks in cascade

1+GH G

(G V@ G\ G \(GiGy+Gs)_ GG,+Gy
T+GH )| 727G, |7\ T+GH G, 1+GH

0]
w
VO

v
9]

N
_+_

|0

RESULT

. C_ GG+ Gy
The overall transfer function of the system, R~ 1+GH
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EXAMPLE 1.17

Using block diagram reduction technique find closed loop transfer function of the system whose block diagram
is shown in fig 1.

SOLUTION Fig I.

Step 1: Moving the branch point before the block
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Step 5: Eliminating the feedback path and combining blocks in cascade

R C
<) < »X) G, »G,G,+G, >
G1
H,G, ) 1+ GHG,
He
Step 6: Eliminating the feedback path
R G1(G,G3 +Gy) ,C
1+(G,GpH,) -
&
G(G2G3+Gy) GG,G;+G,Gy
1+G,G,H, N 1+G,GH, N G,G,G;+G,G,
1+G1(G2G3+G4) Hy 1+G,G,H+G,G3H,+G,H, 1+G,G,H+G,G;3H,+G,H,
1+G.GiHy G, 1+G,G,H;,
Step 7: Eliminating the feedback path
R G1GyG3 + GGy C
1+ GiG,Hy + G,G3H, + G4H, "
G,G,G;+G,G,

C 1+ GGy H+G,G3H, + GyH, G,G,G;+G,G,
R~ 14 G,G,G;+G,G, ~ 1+G,G,H,+G,G3H,+ G,H,+G,G,G;+G,G,

1+G,G,H+G,G;H,+G,H,

RESULT

The overall transfer function is given by,

C_ G,G,G;+G,G,

R~ 1+G,G,H+G,G;H,+G,G,G;+G,G,

EXAMPLE 1.18

Determine the overall transfer function % for the system shown in fig 1.

Fig 1.
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SOLUTION

Step 1: Moving the branch point before the block

G

Step 4 : Combining the blocks in cascade and eliminating feedback path

G C(s)
G 3 » G
1+G,HG, Gl—»
G«
Step 5 : Combining the blocks in cascade
G,Gsy
1+ G4HG;
14 G2Cs B
/ 1+ G,H G,
R(S
(S) G,G; G, C(S)
1+ G3G4H1 + G2G3H2
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Step 6 : Eliminating the feedback path

R(S) GiG,G3 c(S)
1+ G3GyH; + G,G,H, »GJ >
[Gle

Step 7 : Combining the blocks in cascade

14 1+G3G4H1 +G2G3H2
G1G2G3
x Gy
1+ G;3G4H, + G,G3H,
/.
»
RS) | = GG,G; C(S)
14 G3G4H; + G,G3H, + GiG,G3G, . '

RESULT

The overall transfer function of the system is given by,

C(s) _ G4G,G3G,
R(s)  1+G;G,H;+G,G;H,+G,G,G;G,

EXAMPLE 1.19

For the system represented by the block diagram shown in fig 1. Evaluate the closed loop transfer function when

the input R is (i) at station-I (ii) at station-II.

Station-I l = Station-lI

. C)

SOLUTION

(i) Consider the input R is at station-I and so the input at station-Il is made zero. Let the output be C'. Since
there is no input at station-Il that summing point can be removed and resulting block diagram is shown
in fig 2.
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Step 1 : Shift the take off point of feedback H, beyond Gsand rearrange the branch points

Fig 2.

Step 2: Eliminating the feedback H, and combining blocks in cascade

—{HJe—{1/G e

vO

[H]+

Step 3: Eliminating the feedback path

G,G; C,
1+ G3H, -
W‘A;
ot |_1,‘
G,G, *
1+G3H, o 1+GyH, G,G,
G,G, Hy — G,H; ~ 1+G;H,+G,H,
IG,H, <G, TTeG,H,
Step 4: Combining the blocks in cascade
R G,G C
T GoH, + G >
3Mz + o3
je——
Step 5: Eliminating feedback path H,
R G,G,G3 C
1+ GgH, + GoHs "
o [H|«
G,G,G,4 =
1+ G H,+ G,yH, 3 G,G,G;
G,G,G; " 1+G,H,+ G,H;+ G,G,G3H,

1 H,

T+ G,H,+ G,H,
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. Cyls) G1G,Gs
" R(S) ~ T+G,H,+G,H,+ G,G,G,H,

(i) Consider the input R at station-Il, the input at station-l is made zero. Let output be C,. Since there is no
input in station-| that corresponding summing point can be removed and a negative sign can be attached
to the feedback path gain H,. The resulting block diagram is shown in fig 3.

Step 1: Combining the blocks in cascade, shifting the summing point of H, before G,and rearranging the branch

points.

Fig 3.

H, e

o
£
\
|
A

( G, )x(—G1H1—H2>:< G, >X<—G1H1G2—H2>:—G(z(G1G2H1+H2)

G, 1+G,H,)G,
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Step 5: Eliminating the feedback path

C
R —»@ »G, >
T —G(GiGoth +Hp) <
(1+ GoH3) G h
P
G, 3 G, 3 G;(1+G,Hy)
1 —(G,G,H;+H,) G ~ 1+G,H;+ G4(G,G,H+Hy) 1+G,H;+G,(GGyH +Hy)
1+G,H, 3 1+G,H,
Gy G;(1+G,H,)
R 7 1+G,H;+G4(G,G,H,+H,)

RESULT

The transfer function of the system with input at station-| is,

G G{G,Gg
R~ 1+G;H,+G,H;+ G,G,G3H,

The transfer function of the system with input at station-Il is,

C, G;(1+G,H,)

R = 1+G,H;+G;(G,G,H,+H,)

EXAMPLE 1.20

For the system represented by the block diagram shown in the fig 1, determine and .

Fig 1

SOLUTION

Case (i) To find &
Ry

In this case set R, = 0 and consider only one output C,. Hence we can remove the summing point which adds
R, and need not consider G, since G; is on the open path. The resulting block diagram is shown in fig 2.
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Step 1: Eliminating the feedback path

Fig 2.

Step 2: Combining the blocks in cascade and splitting the summing point

R Y C
A
v
[H]
G4 G5
1+ G, D
Step 3: Eliminating the feedback path
R C
: »G, q GZ 1
G4GsHH, |,
1+ G,
Step 4: Combining the blocks in cascade
R, _ G
1 GiGaGsHiH, C
1+ G,
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Step 5 : Eliminating the feedback path

R, GG,(1+G,) C

T (1+G,)-GG,GHH G—

1T 1 2

GG,(1+Gy)
R, o (1+Gy) - GiG4GsHH, G
"1, GG,(1+Gy) 2

(1+ G4) - G4G,GsHH,

Step 6: Combining the blocks in cascade

R, GiGy(1+Gy) C,
(1+G1G2)(1+G4)—G1G4G5H1H2
c, G,G,G,(1+G,)

R, (1+G,G)(1+G,)—G,G,GgH,H,

Case 2 : To find &
R,

In this case set R, = 0 and consider only one output C,. Hence we can remove the summing point which adds
R, and need not consider G,, since G, is on the open path. The resulting block diagram is shown in fig 3.

Step 1: Eliminate the feedback path.

C,
> G, G,

Fig 3.
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Step 2: Combining blocks in cascade and splitting the summing point

/M E:
o[ G | 5
= 1+ Gy :

Step 3: Eliminating the feedback path

Step 4 : Combining the blocks in cascade

R1 G1
11+ GG,
c
| G,GsH, c, b
1+ Gy G,GgH, %
» G
1+G, G—>
Step 5: Eliminating the feedback path
ke
R, G,G4GsH, _ C,
(1+Gy)(1+ GGy) o >
G1G4GsH,
R, (1+G,)(1+ G{Gy) C,
(1+ G4)(1+ G{Gy)
Step 6: Combining the blocks in cascade
R, G{G4GsH, C,
(1+ G4)(1+ G{Gy) - G1G4GsH{H,
C, G1G4G5GgH,

Ry

(1+G,)(1+G,G,) - G,G,GsH,H,
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RESULT
The transfer function of the system when the input and output are R, and C, is given by,

Ci_ G,G,G;(1+Gy)
R, (1+G,G,)(1+G,) -G,G,GzH,H,
The transfer function of the system when the input and output are R, and C, is given by,

G,G,G5GgH,

C
~(1+G,)(1+G,G) - G,G,G5H,H,

=2
Ry

EXAMPLE 1.21

Obtain the closed loop transfer function C(s)/R(s) of the system whose block diagram is shown in fig 1

R(S) C(S)
—
SOLUTION
Step 1 : Splitting the summing point and rearranging the branch points
&,‘:
R(S) A C(S)
—— ) EHHE
A
H,

»G,

Step 2 : Eliminating the feedback path

G

Step 3 : Shifting the branch point after the block.

G,
1+ G,H,
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Step 4 : Combining the blocks in cascade and eliminating feedback path

e
R(S) G,G;, A 0 C(S) 1+é; 3H
1+ G2H1 + G2G3H2 —1 Gzéslliz
T4 GH,
»G,
Step 6 : Eliminating forward path
............................. GGG,
R(S) G{G,G; c(S) 1+GH +GGH,
Gl + GoGaft - GiGafy - nc;(.i(i(éeH(g]
*GJ
C(s) _ G4G,G,4

" R(s) T+ G,H,+ G,GyH,— G,G,H, G4

RESULT
C(s) _ G,G,Gs +
R(s) 1+G,H;+G,G;H,-G,G,H,

The transfer function of the system is G,

EXAMPLE 1.22

The block diagram of a closed loop system is shown in fig 1. Using the block diagram reduction technique
determine the closed loop transfer function C(s)/R(s).

R(S) C(S)
— ¢ —>
Fig 1.
SOLUTION
Step 1 : Splitting the summing point.
) C(S
RO | % TSR
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Step 2 : Eliminating the feedback path.

Step 4 : Interchanging the summing points and combining the blocks in cascade

R(S) S _Gals) c©)
— GO T, e >

Step 5 : Eliminating the feedback path and feed forward path

R(S)

Gy(s)
1+ Gy(s)Ha(s)

Goy(s)
15 Gy (s)Hy (5) Gi(s)Hy(s)

Step 6 : Combining the blocks in cascade

RS) G,(5) o
— G ()1 1+ Gy(5)Hy(5) + Gy(S)Ga (S)F(5) .

. C(s) _ Gy (s)[Gy(s) +1]
" R(s)  1+Gy(s)H,(s) + Gy(s) Gy(s) Hy(s)

RESULT
The transfer function of the system is,

C(s) _ Gy(5)[Gy(s) + 1]
R(s) 1+G,(s)H,(s)+G;(s)G,(s)H,(s)




1. 68 Control Systems

EXAMPLE 1.23

Using block diagram reduction technique find the transfer function C(s)/R(s) for the system shown in fig 1.

Fig 1.
SOLUTION

Step 1 : Rearranging the branch points

C(S)
Step 2 : Combining the blocks in cascade and eliminating the feedback path.
GRY
C(S)
G, >
Step 3 : Moving the branch point after the block.
Ga c(s)

1+ G4HH,
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Step 4 : Moving the branch point and combining the blocks in cascade.

G, Cc(s)
G, - | 1+ G4HH, -
10| Te—
[Gs )
G, c(s)
1+ G4HH, -
Step 6 : Eliminating feedback path and interchanging the summing points.
R(S) DR G,GaGy c(s)
— - 1 1.C HH. :
& & 1+ G4HH,
B H,(1+ G4HH,) |
N G3G, A
'y
G,G3Gy
1+G,HH, G,G;G,
1 G,G,G,H; ~ 1+G,HH,-G,G;G,H,
1+G,H{H,

Step 7 : Combining the blocks in cascade and eliminating the feedback path

RE) G,G4G, o)
1+ G4HH, - G,G3G4H;
H,(1+ G4HH,)
r'g
G,G,G,G,
1+ G, HH, - G,G5G,H, G,G,G;G,

14 G,G,G;G, H,(1+G,HH, T +GyHH,-G,G;G,H;+ G,G,H, (1 +G,H{H,)
1+G,HH, - G,G3G,H, G,G,




1. 70 Control Systems

Step 8 : Eliminating the unity feedback path.

R(S) G,G,G3G, C(S)
’ @ " 14 G,HH, — G,G4GyaHs + G{GoHy (1+ GaHH,) g

T

G,G,G,G,
C(s) _  T+GHH,~G,G,G,Hy+ GG, H,(1+ G,HH)
"R, G,G,G,G,
1+ G,H,H,~ G,G,G,Hy+G,G,H, (1 +G,H,H,)
— G1G2G3G4
~1+G,H,H,-G,G,G,H,+ G,G,H,(1+G,H,H,) + G,G,G5G,
— G1G2G3G4
“ T+ H,H,(G,+ G,G,G,H,) + G;G,(H, + G5G,) — G,G3G,H5
RESULT

The transfer function of the system is,

C(s) _ G1G,G;3Gy
R(s) ~ 1+HH,(G,+G,G,G,H,) +G,G,(H,+G;G,) - G,G;G,H,

1.12 Signal flow graph

The signal flow graph is used to represent the control system graphically and it was developed by
S.J. Mason.

A signal flow graph is a diagram that represents a set of simultaneous linear algebraic equations.
By taking Laplace transform, the time domain differential equations governing a control system can
be transferred to a set of algebraic equations in s-domain. The signal flow graph of the system can be
constructed using these equations.

It should be noted that the signal flow graph approach and the block diagram approach yield the
same information. The advantage in signal flow graph method is that, using Mason’s gain formula the
overall gain of the system can be computed easily. This method is simpler than the tedious block diagram
reduction techniques.

The signal flow graph depicts the flow of signals from one point of a system to another and gives the
relationships among the signals. A signal flow graph consists of a network in which nodes are connected
by directed branches. Each node represents a system variable and each branch connected between two
nodes acts as a signal multiplier. Each branch has a gain or transmittance. When the signal pass through a
branch, it gets multiplied by the gain of the branch.

In a signal flow graph, the signal flows in only one direction. The direction of signal flow is indicated
by an arrow placed on the branch and the gain (multiplication factor) is indicated along the branch.
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EXPLANATION OF TERMS USED IN SIGNAL FLOW GRAPH

Node

Branch

Transmittance

Input node ( Source)
Output node ( Sink )
Mixed node

Path

Open path
Closed path

Forward path

Forward path gain

Individual loop

Loop gain

Non-touching Loops

A node is a point representing a variable or signal.

A branch is directed line segment joining two nodes. The arrow on the
branch indicates the direction of signal flow and the gain of a branch is the

transmittance.

The gain acquired by the signal when it travels from one node to another is

called transmittance. The transmittance can be real or complex.
It is a node that has only outgoing branches.

It is a node that has only incoming branches.

It is a node that has both incoming and outgoing branches.

A path is a traversal of connected branches in the direction of the branch

arrows. The path should not cross a node more than once.
A open path starts at a node and ends at another node.
Closed path starts and ends at same node.

It is a path from an input node to an output node that does not cross any node

more than once.
It is the product of the branch transmittances (gains) of a forward path.

It is a closed path starting from a node and after passing through a certain

part of a graph arrives at same node without crossing any node more than once.
It is the product of the branch transmittances (gains) of a loop.

If the loops does not have a common node then they are said to be non- touching

loops.

PROPERTIES OF SIGNAL FLOW GRAPH

The basic properties of signal flow graph are the following :

(i)  The algebraic equations which are used to construct signal flow graph must be in the form

of cause and effect relationship.

(i1)  Signal flow graph is applicable to linear systems only.

(iii) A node in the signal flow graph represents the variable or signal.

(iv) A node adds the signals of all incoming branches and transmits the sum to all outgoing

branches.
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)

(vi)
(vii)

(viii)

A mixed node which has both incoming and outgoing signals can be treated as an output

node by adding an outgoing branch of unity transmittance.

A branch indicates functional dependence of one signal on the other.

The signals travel along branches only in the marked direction and when it travels it gets

multiplied by the gain or transmittance of the branch.

The signal flow graph of system is not unique. By rearranging the system equations different

types of signal flow graphs can be drawn for a given system.

SIGNAL FLOW GRAPH ALGEBRA

Signal flow graph for a system can be reduced to obtain the transfer function of the system using

the following rules. The guideline in developing the rules for signal flow graph algebra is that the signal

at a node is given by sum of all incoming signals.

Rule 1 : Incoming signal to a node through a branch is given by the product of a signal at previous
node and the gain of the branch.
Example:
a X
o > o X, . 3
X, X,= ax, X, 2
X3 = a X+ ayX,
Rule 2 : Cascaded branches can be combined to give a single branch whose transmittance is equal
to the product of individual branch transmittance.
Example:
a ab
oO—p—o—p—0 = [ > o
X X, X3 X X3
Rule 3 : Parallel branches may be represented by single branch whose transmittance is the sum of

individual branch transmittances.

Example:

atb
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Rule 4 : A mixed node can be eliminated by multiplying the transmittance of outgoing branch
(from the mixed node) to the transmittance of all incoming branches to the mixed node.

Example
X, a c = ac
X X = X4
X, b 3 4 X, be

Rule 5 : Aloop may be eliminated by writing equations at the input and output node and rearranging
the equations to find the ratio of output to input. This ratio gives the gain of resultant

branch.
ab
Example —be
[, > \*J
a b X X3
o > > X
X, Xv 3 - U‘ b
a 1-bc
. ¢ o p——O0——p—0
Proof: X X, X3
x,=ax, +ecx, ; X, =bx,

Put, x, = ax, + cx, in the equation for x,.
Sox,=b(ax, +¢cx,) = x,=abx +bcx, = x,—bcx,=abx, = x,(I-bc)=abx,

X; _ ab

]
" x, 1-be

SIGNAL FLOW GRAPH REDUCTION

The signal flow graph of a system can be reduced either by using the rules of a signal flow graph
algebra or by using Mason’s gain formula.

For signal flow graph reduction using the rules of signal flow graph, write equations at every node
and then rearrange these equations to get the ratio of output and input (transfer function).

The signal flow graph reduction by above method will be time consuming and tedious. S.J.Mason
has developed a simple procedure to determine the transfer function of the system represented as a signal
flow graph. He has developed a formula called by his name mason’s gain formula which can be directly
used to find the transfer function of the system.

MASON’S GAIN FORMULA

The Mason’s gain formula is used to determine the transfer function of the system from the signal
flow graph of the system.

Let, R(s)=Input to the system

C(s) = Output of the system
C(s)
Re)

Mason’s gain formula states the overall gain of the system [transfer function] as follows,

Now, Transfer function of the system, T(s) =

. 1
Overall gain, T = sz: pA. (1.35)
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where,

T = T(s) = Transfer function of the system
P, = Forward path gain of K" forward path
K = Number of forward paths in the signal flow graph
A = 1—(Sum of individual loop gains)
N (Sum of gain products of all possible )
combinations of two non — touching loops
_ [Sum of gain products of all possible
(combinations of three non — touching 100ps>

A, = A for that part of the graph which is not touching K" forward path

CONSTRUCTING SIGNAL FLOW GRAPH FOR CONTROL SYSTEMS

A control system can be represented diagrammatically by signal flow graph. The differential equations
governing the system are used to construct the signal flow graph.The following procedure can be used to

construct the
1.

signal flow graph of a system.

Take Laplace transform of the differential equations governing the system in order to
convert them to algebraic equations in s-domain.

The constants and variables of the s-domain equations are identified.

From the working knowledge of the system, the variables are identified as input, output and
intermediate variables.

For each variable a node is assigned in signal flow graph and constants are assigned as the
gain or transmittance of the branches connecting the nodes.

For each equation a signal flow graph is drawn and then they are interconnected to give
overall signal flow graph of the system.

PROCEDURE FOR CONVERTING BLOCK DIAGRAM TO SIGNAL FLOW GRAPH

The signal flow graph and block diagram of a system provides the same information but there is

no standard p

rocedure for reducing the block diagram to find the transfer function of the system. Also the

block diagram reduction technique will be tedious and it is difficult to choose the rule to be applied for
simplification. Hence it will be easier if the block diagram 1is converted to signal flow graph and Mason’s
gain formula is applied to find the transfer function. The following procedure can be used to convert block
diagram to signal flow graph.

1.

Assume nodes at input, output, at every summing point, at every branch point and in between
cascaded blocks.

Draw the nodes separately as small circles and number the circles in the order 1, 2, 3, 4, ..... etc.

From the block diagram find the gain between each node in the main forward path and connect
all the corresponding circles by straight line and mark the gain between the nodes.

Draw the feed forward paths between various nodes and mark the gain of feed forward path
along with sign.

Draw the feedback paths between various nodes and mark the gain of feedback paths along
with sign.
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EXAMPLE 1.24

Construct a signal flow graph for armature controlled dc motor.

SOLUTION

The differential equations governing the armature controlled dc motor are (refer section 1.7).
va:iaRa+La%+eb ;o T=Ki, ; T:J?T‘;HB@ ;=Ko ; o=do/dt

On taking Laplace transform of above equations we get,
Vo(s) =l(s)Ra*tLosla(s) +Ex(s) L M
T(s) = Kl(s) (2)
T(s) =Jdsw(s)+Bws) (3)
Ex(s)=Ky(s) (4)
o(s) =s0(s) (5)

The input and output variables of armature controlled dc motor are armature voltage Va(s) and angular
displacement 0(s) respectively. The variables l,(s), T(s), Eu(s) and o(s) are intermediate variables.

The equations (1) to (5) are rearranged & individual signal flow graph are shown in fig 1 to fig 5.

V. (s)-E,(s)=(s)[R,+s L] (w@
D
1) = g [VLO) -En(9)] Ve 1 QY RoesL, LG
at Sk, o > Y > )
-1
= I, K, T(s
T(s) = K/ (s) C(S) X (o)
Fig 2 Fig I E(s)
T(s) = o(s) [Us + B] 1
Js+B
. _ 1 [ P> o .
08 =5 B e T(s) w(s) Fig3
r’./‘/’(o(s)
Es(s) = Kb o(S) ,
E(s) K, Fig 4
©(9) =00 o(s) s 0
0(s)= L w(s) o > o Fig)

The overall signal flow graph of armature controlled dc motor is obtained by interconnecting the individual signal
flow graphs shown in fig 1 to fig 5. The overall signal flow graph is shown in fig 6.
_ !
Vis) 1 Vi) —Es) Ry+sL, I(s) K, T(s) Is+B  w(s) s 6(s)
o p > o P> P> o

»
| > L >

Ey(s) K,

Fig 6 : Signal flow graph of armature controlled dc motor.
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EXAMPLE 1.25
Find the overall transfer function of the system whose signal flow graph is shown in fig 1.
-H,
R(s) 1 G, G, G, G, G;
o P < P »> P P Q > »> )
1 2 3\_/2 5 M 8
-H, -H,
SOLUTION G,
I. Forward Path Gains
There are two forward paths. .. K=2
Let forward path gains be P, and P,.
R(s) 1 G, G, G, G, G; 1 C(s)
o > o > o »> o > o > o > 0 > o
1 2 3 4 5 6 7 8
Fig 2 : Forward path-1.
R(s) G, G, 1 C(s)
° ° > o > > o
2 3 4 5 6 7 8
G Fig 3 : Forward path-2.

Gain of forward path-1, P, = G; G, G; G, Gs
Gain of forward path-2, P, = G,GsGs

Il. Individual Loop Gain

There are three individual loops. Let individual loop gains be P_,, P, and P,

\/@@7

G, 4 G,
Fig4: Loop 1. Fig 5 : Loop-2. Figé: Loop 3.
Loop gain of individual loop-1, P, =-G,H,
Loop gain of individual loop-2, P, =-G,G,H,
Loop gain of individual loop-3, P,, =-G.H,
lll. Gain Products of Two Non-touching Loops

There are two combinations of two non-touching loops. Let the gain products of two non touching loops be P, and P

G G -H G
3 2 4 6 5 7 2 6 5 7
—; H, :—H3 3 4 5 H,
Fig 7 : First combination of 2 non-touching loops. | Fig 8 : Second combination of 2 non-touching loops.

Gain product of first combination }

P, =PP;;= (- GyHy) (- GgHy) = G,GgHH,
of two non touching loops

Gain product of second combination }

. Py =P, Py = (= G,G3Hy) (- GgHy) = G,G3GgHyHy
of two non touching loops
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IV. Calculation of A and A,

A = 1_(P11+P21+P31)+(P12+P2z)
=1-(-G,H,- G,G,H, - G,H,) + (G,GH,H, + G,G,G.H,H,)

273 2 275 1773 27375 2073

=1+ G,H,+G,GH, + GH, + G,G,H,H, + G,G,G.H,H

275 173 27375 203

A1 =1, Since there is no part of graph which is not touching with first forward path.
The part of the graph which is non touching with second forward path is shown in fig 9.

A, =1-P =1-(-GH,) = 1+GH, 3 4
V. Transfer Function, T @
-H

By Mason’s gain formula the transfer function, T is given by, Fig 9

T- % ; PA, = % (PA,+P,A,)  (Number of forward paths s 2 and so K = 2)

B G,G,G3G,Gs + G,GsGg(1+G,H)
- 1+ G,H;+G,G;H, + G3H; + G,GgH H; + G,G;GgH,H,

- G,G,G,G,Gj + G,G5Gg + G,G, G GgH,
= 1+ G,H,+G,G,H, + GgH, + G,GgH,H, + G,G,G5H,H,

_ G,G,Gs[G,Gy + Gg/Gy + GgHJ
1+ G,H,+ G,G,H, + GgH, + G,GgH;H, + G,G,G5H,H,

EXAMPLE 1.26 -H,

Find the overall gain of the system

whose signal flow graph is shown in fig 1.
g grap g R(s) 1

SOLUTION

Let us number the nodes as shown in fig 2.

. Forward Path Gains

There are six forward paths. .. K=6

Let the forward path gains be P', P2, P3, P4, PS> and P®.

3 G, 4
G
R(s) 1 G. 1 C(s)
2 5 6
70 o8

Fig 3 : Forward path-1. Fig 4 : Forward path-2.
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-H,
Fig 7 : Forward path-5 Fig 8 : Forward path-6

Gain of forward path-1, P, = G,G,G
Gain of forward path-2, P, = G,G,G,
Gain of forward path-3, P, = G,G,G,
Gain of forward path-4, P, = G,G,G,
Gain of forward path-5, P, = -G,G,G,G,H

778 1
Gain of forward path-6, P, = -G,G,G,G,H,
Il. Individual Loop Gain
-H
There are three individual loops. 3 . 4
Let individual loop gains be P,,, P,, and P,,.
G
G 8
Y N
Fig 9 : Loop-1 Fig 10 : Loop-2
Loop gain of individual loop-1, P,, =-G,H, 7 8
—H,

Loop gain of individual loop-2, P,, =-G.H, Fig 11 : Loop-3
Loop gain of individual loop-3, P,, = G,G,H,H

178 "1 2

lll. Gain Products of Two Non-touching Loops

There is only one combination of two non-touching ‘ Ej

| .L f - hing | P2,
oops. Let gain product of two non-touching loops be Fig 12 : Combination of 2 non-touching loops

Gain product of first combination
P ) P, =P;,Py = (- G4H) (- GsH,) =G,G,H,H,
of two non - touching loops

IV. Calculation of A and A,

A=1-(P,+P, +P,)+P, =1-(-GH, - GH, + G,G;H,H,) + G,GH,H

178 17 72 475 1 72

=1+G,H, +GH,-G,GHH,+G,GHH

178 17 72 475" 17 72
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The part of the graph non-touching forward path - 1 is shown in fig 13.

Gs
© A =1-(-GH)=1+GH, 7 8
The part of the graph non-touching forward path -2 is shown in fig 14. —H;
L A=1-(-GH)=1+GH, Fig 13

There is no part of the graph which is non-touching with forward paths 3, 4, 5 and 6.

) -H
A=A =A=A =1
3 4

V. Transfer Function, T Fig 14

By Mason’s gain formula the transfer function, T is given by,

T= %( ; Py ) (Number of forward paths is six and soK = 6)

1
x (PA+P A+ P A +P A + P A +PAY)
G,G,Gg(1+GgH,y) + G3G5G,(1+G4Hy) + G,G,G,+ G3G¢ Gy
-G;G;G,GgH, - G;G,GzGgH,
1+ G,H;+ GgH, - G,GgHH, + G,GzHH,

EXAMPLE 1.27

Find the overall gain C(s)/R(s) for the signal flow graph shown in fig 1.

R(s) g,
o
1

SOLUTION

|l. Forward Path Gains

There are two forward paths. .. K=2. Letthe forward path gains be P, and P,

R(s) g, G, G, G, C(s)
o B o > > o > o
1 2 3 4 5
Fig 2 : Forward path-1

R(s) g, G, C(s)
o B> o > o
1 2 3 4 5

Fig 3 : Forward path-2 G,

Gain of forward path-1, P, = G,G,G,G

1727374

Gain of forward path-2, P, =G,G,G,
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Il. Individual Loop Gain

There are five individual loops. Let the individual loop gains be p,,, p,,, P;;, P, @and py,.

_H1 G2
(oo
2 3 4 -H,
Fig 4 : loop-1 Fig 5 : loop-2

Fig 6 : loop-3

G,

Fig 7 : loop-4 Fig 8%' loop-5
Loop gain of individual loop-1, P, =-G,G,H,
Loop gain of individual loop-2, P,,=-H,G,
Loop gain of individual loop-3, P, =-G,GH,
Loop gain of individual loop-4, P, =-G,G,GH

273743
Loop gain of individual loop-5, P, =G;

lll. Gain Products of Two Non-touching Loops

There are two combinations of two non-touching loops.

Let the gain products of two non-touching loops be P,, and P,,, .

G, G, 4 5
—-H 4

2
Fig 9 : First combination of Fig 10 : Second combination of
two non-touching loops two non-touching loops
P

12 = PoiPsy = (= G,H ) (Gg) = - G,GgH,

Gain product of first combination
of two non touching loops

Gain product of second combination } P -
22

~P.P.=(-G,G.H)(Gy)=-G,G.GH
of two non touching loops 3151~ (0 G,GeHY (Go) 27576 3

IV. Calculation of A and A,

A=1-(P,+Py,+P,+P, +P,)+(P,+P,)

=1- (—G2G3H1 - H2G2 - G2G3G4H3 + Gs - G2G6H3) (- G2H2G5 -G

G.GH

27576 3)
Since there is no part of graph which is not touching forward path-1, A, = 1. Gs
The part of graph which is not touching forward path-2 is shown in fig 11.
C A= 4
L A=1-Gy Fig 11
V. Transfer Function, T

By Mason'’s gain formula the transfer function, T is given by,

T= % ; PcA  (Number of forward pathis 2and soK = 2)
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- % [P+ Py4,]= % [G1G,G3Gy X 1+ G,G,Gg(1 - Go)]

G,G,G,G,+ G,G,Gg - G,G,Gs Gy

e G,G;3H,+H,G,+G,G;G,H;- G5+ G,GgH; - G,GgH; - G,H,G; - G,G;GgH4

EXAMPLE 1.28

Find the overall gain C(s)/R(s) for the signal flow graph shown in fig 1.

R(s) 1 1 C(s)
o > »> )
1 7
SOLUTION
l. Forward Path Gains
There is only one forward path. .. K=1.
Let the forward path gain be P,.
R(s) 1 G, G, G, G, 1 C(s)
o > o »>- > »>- O »>- > )
1 2 3 4 5 6 7
Fig 2 : Forward path-1
Gain of forward path-1, P, = G,G,G,G,
Il. Individual Loop Gain
There are three individual loops. Let the loop gains be P, P,,, P,,.

Fig 3 : loop-1

Fig 4 : loop-2 Fig 5 : loop-3

Loop gain of individual loop-1, P,, =-G,GH,

1=

Loop gain of individual loop-2, P,, =-G,G,H,
Loop gain of individual loop-3, P,, =-G,G,G,G

1727374

lll. Gain Products of Two Non-touching Loops

There are no possible combinations of two non-touching loops, three non-touching loops, etc.

IV. Calculation of A and A,

A=1-(P,,+P,+P,)
=1-(-G,GH,-GGH,-G,GG,G,)

3741 273 2 1727374

=1+G,GH, + G,GH,+G,G,G,G

1727374

Since no part of the graph is non-touching with forward path-1, A, = 1.
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V. Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

Z PcAg = —P1A1 (Number of forward pathis TandsoK = 1)

— G1G'2G3G'4
T 1+G,G,H,+G,G;H, + G,G,G,G,

EXAMPLE 1.29

The signal flow graph for a feedback control system is shown in fig 1. Determine the closed loop transfer function
C(s)/R(s).

G
R(s) @, G, G, G, G, <O
o P » > > P> )
1 2 A4 5 6
H, H, H
SOLUTION Fig 1
I. Forward Path Gains
There are two forward paths. .. K=2.
Let forward path gains be P, and P,
R(S) g, G, G, G, G, C6)
o —o > o > o »> o »> o
1 2 3 4 5 6
Fig 2 : Forward path-1
G
R(s) g, G, g, CG
o > > o
1 2 3 4 5 6

Fig 3 : Forward path-2
Gain of forward path-1, P, =G,G,G,G,G

172737475

Gain of forward path-2, P, =G,G,G,G,
Il. Individual Loop Gain

There are four individual loops. Let individual loop gains be P, P,,, P,, and P,

@ @ v : 5
HZ H3

Fig4: loop 1 Fig5: loop 2 Figé: lOOp 3 Fig 7 : loop-4

Loop gain of individual loop-1, P, = G,H,

Loop gain of individual loop-2, P,, = G,H,

Loop gain of individual loop-3, P,, = GH,

31

Loop gain of individual loop-4, P,, = GH,H, v v

lll. Gain Products of Two Non-touching Loops

Fig 8 F irst combination of

There is only one combination of two non-touching loops. Let the two non touching loops

gain products of two non-touching loops be P,



Chapter 1 - Mathematical Models of Control Systems

1.83

Gain product of first combination P, = (G,H)(G,Hy)
of two non - touching loops

=G,G,H,H;
IV. Calculation of A and A,

A=1-(P,+P,+P, +P,)+P,
=1-(GH, + GH, + GH, + GHH,) + G,G,H,H,

6 27 '3

=1-G,H, - GH, - GH, - GH,H, + G,G,HH

27471773

Since there is no part of graph which is non-touching with forward path-1and 2, A, = A, = 1

V. Transfer Function, T

By Mason'’s gain formula the transfer function, T is given by,
T= % ; PcAg = a1 (P1A +P,A;) (Number of forward paths is two and soK = 2)

_ G,G,G;G,G5+G,G,G5Gg
1-G,H;-G3H,-G,H;-GgH,H;+ G,G,HH,

EXAMPLE 1.30

Convert the given block diagram to signal flow graph and determine C(s)/R(s).

> G,

C(s)

R(s)

H Flgl

SOLUTION

The nodes are assigned at input, output, at every summing point & branch point as shown in fig 2.

R(s)
1 > 3
Fig 2
7]
The signal flow graph of the above system is shown in fig 3.
-G,
R(s) 1 1 G, G, 1 C(s)
o > > > > o
1 5 6

|l. Forward Path Gains

There are two forward paths. .. K=2
Let the forward path gains be P, and P,.
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R(s) 1 1 G, G, 1 C@s)
o > O > o > O > O > o
1 2 3 4 5 6
Fig 4 : Forward path-1
-G,
R(s) 1 1 1 C@s)
o > O > o
1 2 3 4 5 6
Fig 5 : Forward path-2
Gain of forward path-1, P.=G,G,
Gain of forward path-2, P,=-G,
Il. Individual Loop Gain 1 G,

There is only one individual loop. Let the individual loop gain be P, . 2 ! ?3 - 4
Loop gain of individual loop-I, P,,= -G H.

lll. Gain Products of Two Non-touching Loops

There are no combinations of non-touching loops.

IV. Calculation of A and A,

A=1-[P ] =1+GH
Since there are no part of the graph which is non-touching with forward path-1 and 2,
A=A,=1

V. Transfer Function, T

By Mason'’s gain formula the transfer function, T is given by,

_1 _ 1 _ GGy, -Gy
T—X; PKAK = K[P1A1+ P2A2] = W

Fig 6 : loop-1

EXAMPLE 1.31

Convert the block diagram to signal flow graph and determine the transfer function using Mason’s gain formula.

SOLUTION

C(s)
—>

Fig1

The nodes are assigned at input, ouput, at every summing point & branch point as shown in fig 2.

C(s)
—>

p10

Fig 2
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The signal flow graph for the above block diagram is shown in fig 3.

G,
Ris) 1 1 G, 1 G, G, 1 1 C(s)
[ P> > > > > > > > o

. Forward Path Gains

There are two forward paths. .. K=2.
Let the gain of the forward paths be P, and P,
R(s) 1 1 G, 1 G, G, 1 1 C(s)
o —0 P o > o > o P o > o > o > )
1 2 3 4 5 6 7 8 9
Fig 4 : Forward path-1
G,
Rs) 1 1 G, 1 1 1 Cs)
[ P> o P> o »> > o > o »> )
1 2 3 4 5 6 7 8 9
Gain of forward path-1, P,=G,G,G, Fig 5 : Forward path-2

Gain of forward path-2, P,=G,G,
Il. Individual Loop Gain

There are five individual loops. Let the individual loop gain be P,,, P,,, P,,, P,, and P_,.
Loop gain of individual loop-1, P,,=-G,G,G,
Loop gain of individual loop-2, P, =-G,G,H,
Loop gain of individual loop-3, P,, =-G,G,H,
Loop gain of individual loop-4, P, =-G,G,
Loop gain of individual loop-5, P,, =-G,H,
G L G S ]

6

\ A

N ¢
[«

Fig 6 : loop-1.

A A

G
LZ
>

Y-

10 Fig 10 : loop-5.

Fig 8 : loop-3.
1

Fig 9 : loop-4.
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lll. Gain Products of Two Non-touching Loops

There are no possible combinations of two non-touching loops, three non-touching loops, etc.,.

IV. Calculation of A and A,

A=1-[P,+P,+P, +P, +P]1=1+GG,G,+GGH,+GGH,+GG,+GH,
Since no part of graph is non touching with forward paths-1and 2, A=A =1.

V. Transfer Function, T

By Mason'’s gain formula the transfer function, T is given by,
_1 _ 1
T_Z; Fedk = 2 [Pdit Ay

_ G1G,G3+ GG,
~1+G,G,G,+G,G,H,+G,G,H,+ GG, + G,H,

EXAMPLE 1.32

Convert the block diagram to signal flow graph and determine the transfer function using Mason’s gain formula.

R(s) C(s)
9
G Fig 1
L=
SOLUTION
The nodes are assigned at input, output, at every summing point & branch point as shown in fig 2.
P -
Ry
C(s)
7 8
Fig 2
R(s) 1 1 C()
o > > )
1 8

I. Forward Path Gains

There are two forward path, .. K=2.
Let the forward path gains be P, and P,.
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R(s) 1

y—
v O

G, G,
> >
> >

Y

1

O

\ A

C(s)

Fig 4 : Forward path-1.

Gain of forward path-1, P,=G,G,G,
Gain of forward path-2, P =G

Il. Individual Loop Gain

There are three individual loops with gains P

P,,andP,,.

1

G, G, —-H,

37475/\
s G o % >

A o—H —-

Fig 6 : loop-1. Fig 7 : loop-2.

Gain of individual loop-1, P, ;= - G,G,H,

Gain of individual loop-2, P, = - G,G,H,
Gain of individual loop-3, P, = - G,H,

lll. Gain Products of Two Non-touching Loops

There are no possible combinations of two-non touching loops, three non-touching loops, etc.,.

IV. Calculation of A and A,

A=1-[P,+P, +P,] =1+GGH, +G,GH,+GH,
Since no part of graph touches forward path-1, A, = 1.
The part of graph non touching forward path-2 is shown in fig 9.

O

7

Fig 8 : loop-3.

1

o

8

C(s)

Fig 5 : Forward path-1

A, = 1-[-G,G,H, - G,G,H, - G,H,]
= 1+G,GH,+G,G,H, + GH,
V. Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

T= %; Pely = % [PjAq+P,A,] (Number of forward paths is 2 and soK = 2)

- % [G1G,Gy+ Gy(1+GyG,H,+ G,GyHy + GoHy )]
=1 [G1G,Gy+ Gy + GyGoHy + GGGy Hy + GGy H, |

_ G,G,Gy+ Gy +GG,G,H,+G,G,G,H,+G,G,H,
- 1+G,G,H,+G,G;H,+ G,H,

Fig 9
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EXAMPLE 1.33

Draw a signal flow graph and evaluate the closed loop transfer function of a system whose block diagram is

shown in fig 1.
R(s) €O
SOLUTION

The nodes are assigned at input, output, at every summing point & branch point as shown in fig 2.

o

. Forward Path Gains

There are four forward paths, .. K=4

Let the forward path gains be P, P,, P, and P,.

1 1 G, G, 1 ]
o > O > > O > O > O- > o
1 2 3 4 5 6 7
Fig 4 : Forward path-1.
1 1 G, ﬂ:\ 1 1
o > > > > > o
1 2 3 4 5 6 7

Fig 5 : Forward path-2.

)
O > o
6 7

y—

Fig 6 : Forward path-3.

Fig 7 : Forward path-4.
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Gain of forward path-1, P.= G.,G

Gain of forward path-2,
Gain of forward path-3, P, =

Gain of forward path-4, P,=-G.G,G,H
Il. Individual Loop Gain

There are two individual loops, let individual loop gains be P, and P,,.

Loop gain of individual loop-1, P
Loop gain of individual loop-2, P,, = G,G,H,H

Fig 8 : loop-1

G,HH

173 17 2

1=_G

1

Fig 9 : loop-2

1727717 2

lll. Gain Products of Two Non-touching Loops

There are no possible combinations of two non-touching loops, three non-touching loops, etc.,.

IV. Calculation of A and A,

A =1- [sum of individual loop gain]=1- (P,,+ P,,)
=1-[-G,GHH,+GGHH,)] = 1+G,GHH,- GGHH

130 2 1930 T MMt T

Since no part of graph is non touching with the forward paths, A,=A,=A,=A,=1.
V. Transfer Function, T

By Mason’s gain formula the transfer function, T is given by,

T= % D Pl = % (Number of forward pathsis 4 and soK = 4)
K
_ GyG3 -GG, + G4G5G4H, - GG, G H,
B 1+G,G;HH,-G,G,H{H,
_ Gy(Gy~Gyp) +G1G4Hp(Gy—Gy) _ Gy(Gy—Gy)(1+GyHy)

1+GH{H,(G;-Gy) 1+GH{H,(G;-Gy)

1.13 THERMAL SYSTEM

List of symbols used in thermal system

q
0

0

[S)

>
)

-

AT AR P

>

X

a =~

Heat flow rate, Kcal/sec

Absolute temperature of emitter, °K
Absolute temperature of receiver, °K
Temperature difference, °C

Area normal to heat flow, m?

Conduction or Convection coefficient, Kcal/sec-°C
Radiation coefficient, Kcal/sec-°C
K/A=Convection coefficient, Kcal/m?-sec-°C
Thermal conductivity , Kcal/m-sec-°C
Thickness of conductor, m

Thermal resistance, °C-sec/Kcal

Thermal capacitance, Kcal/°C
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HEAT FLOW RATE

Thermal systems are those that involve the transfer of heat from one substance to another. There
are three different ways of heat flow from one substance to another. They are conduction, convection and
radiation.

For conduction,

Heat flow rate, q:KAG:% ..... (1.36)

For convection,

Heat flow rate, =K AO=HAAO . (1.37)

For radiation,

Heat flow rate, q = K, (6 —03)
If 6, >>0, thenq=xK,0¢* (1.38)
Where 6* = (6] — 0,)i

Note : 94 is called effective temperature difference of the emitter and receiver.

BASIC ELEMENTS OF THERMAL SYSTEM

The model of thermal systems are obtained by using thermal resistance and capacitance which are
the basic elements of the thermal system.

The thermal resistance and capacitance are distributed in nature. But for simplicity in analysis
lumped parameter models are used. In lumped parameter model it is assumed that the substances that
are characterized by resistance to heat flow have negligible heat capacitance and the substances that are
characterized by heat capacitance have negligible resistance to heat flow.

The thermal resistance, R for heat transfer between two substances is defined as the ratio of change
in temperature and change in heat flow rate.

Change in Temperature,’C

R= Change in heat flow rate, Kcal/sec

Thermal resis tan ce,

For conduction or convection,
Heat flow rate, q = K A0

On differentiating we get,

dq =K d(A6)
. d(A6) 1
" dq K
But thermal resistance , g _ d(20)
dq
.". Thermal resistance, R = % for conduction

-1

= = for convection
K HA

For radiation,
Heat flow rate, q = K, 6*
On differentiating we get

dq=K, 46 do
L
dq K 46°
But thermal resistance, R = %
.". Thermal resistance, R = 1 —
(for radiation) 4K, 0

Thermal capacitance, C is defined as the ratio of change in heat stored and change in temperature

Change in heat stored, Kcal

Thermal capacitance, C=

Change in temparature, °C

Let M = Mass of substance considered, Kg

c, = Specific heat of substance, Kcal/Kg -°C

Now, Thermal capacitance, C = Mc,
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EXAMPLE OF THERMAL SYSTEM

Consider a simple thermal system shown in fig 1.28. Let us assume that the tank is insulated to
eliminate heat loss to the surrounding air, there is no heat storage in the insulation and liquid in the tank is
kept at uniform temperature by perfect mixing with the help of a stirrer. Thus, a single temperature is used
to describe the temperature of the liquid in the tank and of the outflowing liquid. The transfer function of
this system can be derived as shown below.

Let 0, = Steady state temperature of inflowing liquid, °C
0, = Steady state temperature of outflowing liquid, °C
G = Steady state liquid flow rate, Kg/sec

M = Mass of liquid in tank, Kg

~
——

¢ = Specific heat of liquid, Kcal/Kg °C Loand e
R = Thermal resistance, °C - sec/Kcal Heater Hot liquid
C = Thermal capacitance, Kcal/°C
Q = Steady state heat input rate, Kcal/sec
Let us assume that the temperature of inflowing liquid is Mixer
kept constant. Let the heat input rate to the system supplied by N
the heater is suddenly changed from Q to Q + q, . Due to this, Cold liauid

the heat output flow rate will gradually change from Q to Q + q;
The temperature of the outflowing liquid will also be changed
from 9; to 0, + 6

Fig 1.28 : Thermal system.

For this system the equation for q,, C and R are obtained as follows,

Change in output} q. = Liquid flow < Specific heat of % change in
)=

heat flow rate rare, G liquid, ¢ temperature, 0
=Ge6 Ll (1.41)
Thermal capacitance, C = Mass, M x Specific heat of liquid,¢c = M¢c ... (1.42)
Thermal resistance, R = Change n temperature, 0 L (1.43)
Change in heat rate,q,  q,
On substituting for q, from equation (1.41) in equation (1.43) we get,
-6 _ 1
=G0 - Ge e (1.44)
In this system, rate of change of temperature is directly proportional to change in heat input rate.
((11—? aq,—q, ; the constant of proportionality is capacitance C of the system.
.'.C%=qi—q0 ..... (1.45)

Equation (1.45) is the differential equation governing the system. Since equation (1.45) is of first
order equation, the system is first order system.

From equation (1.43), R = qﬁ S, = % ..... (1.46)
0



1. 92 Control Systems

On substituting for q, from equation (1.46) in equation (1.45) we get,

do _ do _ Rq,-6 do _ g
Cdt_qi :Cdt_ R = RCdt_que

RC%+6:Rq1 . (1.47)
Let, £{0}=0(s); L{%}ﬂ@(S); L£{q,}=Q(s)
On taking Laplace transform of equation (1.47) we get,
RCs6(s)+6(s)=RQ,(s)
0(s)[sRC+1]=R Q,(s)

Q@ ((SS)) is the required transfer function of the system
o(s) 1
. s R R C
. = = = ... (1.48)
Q, sRC+1 1 1
RC (s +RC ) St RE

1.14 HYDRAULIC SYSTEM

The Hydraulic system of interest to control engineers may be classified into,
1. Liquid Level system and
2. Hydraulic devices

The liquid level system consists of storage tanks and connecting pipes. The variables to be controlled
are liquid height in tanks and flow rate in pipes. The driving force is the relative difference of the liquid
heights in the tanks.

The Hydraulic devices are devices using incompressible oil as their working medium. These devices
are used for controlling the forces and motions. The driving force is the high pressure oil supplied by the
Hydraulic pumps.

Liquids are slightly compressible at high pressures. In hydraulic system, the compressibility effects
may be neglected and conservation of volume is used as the basic physical law. The variables of hydraulic
system are volumetric flow rate, q and pressure, P. The volumetric flow rate, q is through variable and it
is analogous to current. The pressure, P is across variable and it is analogous to voltage.

Three basic elements of hydraulic systems are the Resistance, Capacitance and Inertance. The
liquid flowing out of a tank can meet the resistance in several ways. Liquid while flowing through a pipe
meet with resistance due to the friction between pipe walls and liquid. Presence of valves, bends, coupling
of pipe of different diameter also offer resistance to liquid flow.

The capacitance is an energy storage element and it represents storage in gravity field. The inertance
represents fluid inertia and is derived from the inertia forces required to accelerate the fluid in a pipe. It is
also an energy storage element. But the energy storage due to inertance element is negligible compared
to that of capacitance element.

Consider the flow through a short pipe connecting two tanks. The Resistance, R for liquid flow in

such a pipe or restriction, is defined as the change in the level difference, necessary to cause a unit change
in the flow rate.

Change in level differenc, m

Change in flow rate,m’/sec
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The Capacitance, C of a tank is defined to be the change in quantity of stored liquid,
necessary to cause a unit change in the potential (head).

C - Chnge in liquid stored, m’
B Change in head,m
EXAMPLE OF LIQUID LEVEL SYSTEM

A simple liquid level system is shown in figure 1.29 with steady state flow rate, Q and steady state
head, H. Control valve

Load valve

/
Capacitance,C T
Resistance, R
Fig 1.29:Liquid level system

Let, = Steady-state flow rate ( before any change has occured ), m*/sec
= Small deviation of inflow rate from its steady-state value, m?/sec
Small deviation of outflow rate from its steady-state value, m*/sec

= Steady state head (before any change has occured), m

== o]
[

= Small deviation of head from its steady-state value, m

Let the system be considered linear. The differential equation governing the system is obtained by
equating, the change in flow rate to the amount stored in the tank. In a small time interval dt, let the change
in flow rate be (q,—q,), and the change in height be dh.

Now, Change in storage = Change in flow rate

~Ccdh=(—q)d (1.49)
The resistance, R = Chagge in head - h
Change in outflow rate  q_
qO:% ..... (1.50)
On substituting for q, from equation (1.50) in equation (1.49) we get,
—(q_h (4R~ h ) dh _ B
th_(qi R)dt = th_< R Jdt =RCGE=qR-h
Re h=qr (1.51)

dt

The equation (1.51) is the differential equation governing the system. The term RC is the time
constant of the system. On taking Laplace’s transform of equation (1.51), we get,

Note: L{h}=H(s); L{((ii—lg}st(s); L£{q;}=Q,(s)
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RCsH(s)+H(s)=Q;(s)R
(sRC+1)H(s)=Q,(s)R

JH(Gs) R R _c 5
""Q,(s) (sRC+1) RC(s+1/RC) s+I1/RC 77 .

The equation (1.52) is the required transfer function of the system.

HYDRAULIC DEVICES

The hydraulic devices are used in hydraulic feedback systems and in combined electro-mechanical-
hydraulic systems. In hydraulic devices, power is transmitted through the action of fluid flow under pressure
and the fluid is incompressible. The fluid used are petroleum based oils or non-inflammable synthetic oils.

The hydraulic devices used in control systems are generally classified as hydraulic motors and
hydraulic linear actuators.

The output of hydraulic motor is rotary motion and that of linear actuator is translational. The
hydraulic motor is physically smaller in size than an electric motor for the same power output. Also, the
hydraulic components are more rugged than the corresponding electrical components. The applications of
hydraulic devices are power steering and brakes in automobiles, the steering mechanism of large ships,
the control of large machine tools, etc.

ADVANTAGES OF HYDRAULIC DEVICES

(i)  Hydraulic fluid acts as a lubricant and coolant.
(i1))  Comparatively small sized hydraulic actuators can develop large forces or torques.

(iii))  Hydraulic actuators can be operated under continuous, intermittent, reversing and stalled
conditions without damage.

(iv)  Hydraulic actuators have a higher speed of response. They offer fast starts, stops and speed
reversals.

(v)  With availability of both linear and rotary actuators, the design has become more flexible.

(vi) Because of low leakages in hydraulic actuators, when loads are applied the drop in speed
will be small.

(vii) For the same power output, hydraulic motor is much smaller in physical size than an electric
motor.

(viil) Hydraulic components are rapidly acting and more rugged compared to the corresponding
electrical component.

DISADVANTAGES OF HYDRAULIC DEVICES
(i)  Hydraulic power is not readily available compared to electric power.

(i1))  They have the inherent problems of leaks and of sealing them against foreign particles.
(iii))  Operating noise.

(iv)  Costs more when compared to electrical system.

(v)  Tendency to become sluggish at low temperature because of increasing viscosity of fluid.
(vi)  Fire and explosion hazards exist.

(vii) Hydraulic lines are not flexible as electric cables.

(viii) Because of the non-linear and other complex characteristics involved, it is difficult to design
sophisticated hydraulic systems.
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EXAMPLE OF HYDRAULIC DEVICE

The most frequently used hydraulic device in control system is hydraulic motor-pump set. It consists
of a variable stroke hydraulic pump and a fixed stroke hydraulic motor as shown in fig 1.30. The device
accepts a linear displacement (stroke length) as input and delivers a large output torque.

X
stroke control

q_» .
—> 4
v> """ Pump | high pressure line P Motor C
Prime mover - v

low pressure line
Fig 1.30 : Hydraulic motor-pump set.

The hydraulic motor is controlled by the amount of oil delivered by the pump. By mechanically
changing the pump stroke, the oil delivered by the pump is controlled. Like in a DC generator and motor,
there is no essential difference between hydraulic pump and motor. In a pump the input is mechanical
power and output is hydraulic power and in a motor, it is viceversa.

Let, g = Rateat which the oil flows from the pump
= Oil flow rate through the motor

m

= Leakage flow rate

Compressibility flow rate
= Input stroke length

D X L 0 0
Il

= Output angular displacement of motor
P = Pressure drop across motor

The rate at which the oil flow from the pump is proportional to stroke angle, i.e., q o x.

~.Oil flow rate from the puymp,q =K x .. (1.53)
where K = Ratio of rate of oil flow to unit stroke angle.
The rate of oil flow through the motor is proportional to motor speed, i.e., q_o ((11—? .
- Oil flow rate through motor, q =K | % ..... (1.54)

where K = Motor displacement constant.

All the oil from the pump does not flow through the motor in the proper channels. Due to back
pressure in the motor, a portion of the ideal flow from the pump leaks back past the pistons of motor and
pump. The back pressure is the pressure that is built up by the hydraulic flow to overcome the resistance
to free movement offered by load on motor shaft.

It is usually assumed that the leakage flow is proportional to motor pressure, i.e. q o P
.. Leakage flow rate,q =K. P (1.55)
where K. = constant.

The back pressure built up by the motor not only causes leakage flow in the motor and pump but
also causes the oil in the lines to compress. Volume compressibility flow is essentially proportional to
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pressure and therefore the rate of flow is proportional to the rate of change of pressure, i.e. q o ((11?
-.Compressibility flow rate, q =K ((11—? ..... (1.56)

where K _ = Coefficient of compressibility.

The rate at which the oil flows from the pump is given by sum of oil flow rate through the motor,
leakage flow rate and compressibility flow rate.

~q,=q,tqtq. (1.57)
On substituting from equations (1.53) to (1.56) in equation (1.57) we get,

The torque T_ developed by the motor is proportional to pressure drop and balances load torque.

-.Hydraulic motor torque, T =K P (1.59)
where K is motor torque constant.

If the load is assumed to consist of moment of inertia J and viscous friction with coefficient B, then,

d’0 do
Load torque, T, =J == e +B == & e (1.60)
Hydraulic power input=q P (1.61)

On substituting for q_, from equation (1.54) in equation (1.61) we get,
do

Hydraulic power input = K e (1.62)
Mechanical power output= T % ..... (1.63)

On substituting for T from equation (1.59) in equation (1.63) we get,

Mechanical power output= K, p (cil? ..... (1.64)

If hydraulic motor losses are neglected or included as a part of load, then the hydraulic motor input
is equal to mechanical power output of hydraulic motor.

do do
LKk e (1.65)

From equation (1.65), it is clear that, K=K .
Hence, equation (1.59) can be written as
T, =K P=K_ P

Since the motor torque equals load torque, T =T,
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d*6 , p do
K, P=J B

_ ] 40 B do
< wete e (1.66)

On differentiating the above equation with respect to t, we get,

dp_ J d'e, B d%0
GCCE Wt e (1.67)

On substituting for P and dP/dt from equations (1.66) and (1.67) in equation (1.58) we get,

Note: £{x}=X(s); L{0}=0(s); L{ii?}:sne(s)

do J d
Kx=K, 49, K[K

B do J &6, B d°6
K_dit] &R ae T, dﬁ]

_KJ s
Kx—K s70(s)+ (

3

+ KCB)@_{_(K +Q>@
dt? " dt

On taking Laplace transform with zero initial conditions, we get,

K

m m

KX(s)—KJ $0(s)+ ( KB>se(s)+(K KB >se(s)
. 0(s) _ K,
.X(S)—S KJ . KJ+K.B S+Km2+KiB ..... (1.68)
SRR S R
In hydraulic systems, normally K <<K , therefore, Put K_= 0, in equation (1.68).
KP
K *+KB
. e(s> — KP — I<m _ K
" X(s) [KJ KZX2+KB| K.J “s(ts+1)
Ditgy Tm TP gl g [ TN 1.69
'k, 57K, K +KB (1.69)
K )
where, K=—-—"—— and r:ZK—‘J
K. +KB K, +KB
K

m

The equation (1.69) is the required transfer function of the system.

1.15 PNEUMATIC SYSTEM

Pneumatic system uses compressible fluid as working medium usually air. In pneumatic systems,
compressibility effects of gas cannot be neglected and hence dynamic equations are obtained using
conservation of mass.

In pneumatic systems, change in fluid inertia energy and the fluid’s internal thermal energy are
assumed negligible. In pneumatic system, which employs compressible fluid as working fluid, the mass
and volume flow rates are not readily interchangeable and the analysis of gas flow is more complicated.
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The pneumatic devices involve the flow of gas or air, through connected pipe lines and pressure
vessels. Hence the variables of pneumatic system are mass flow rate, q _ and pressure, P. The mass flow
rate is through variable and it is analogous to current. The pressure is across variable and it is analogous
to voltage.

The two basic elements of pneumatic system are the resistance and capacitance. The restrictions in
the pipes and valves offers resistance to gas flow.

The gas flow resistance, R is defined as the rate of change in gas pressure difference for a change
in gas flow rate.

Change in gas pressure difference, N/ m>

R= Change in gas flow rate,Kg/sec

The pnuematic capacitance is defined for a pressure vessel and depends on the type of expansion
process involved. The capacitance of a pressure vessel may be defined as the ratio of change in gas stored
for a change in gas pressure.

_ Change in gas stored,Kg
Change in gas pressure, N /m?

Pneumatic devices are employed in guided missiles,air craft systems, automation of production
machinery and in many other fields as automatic controllers.

The advantages of pneumatic system are,

1. The air or gas used is non-inflammable and so it offers safety from fire hazards.
2. The air or gas has negligible viscosity, compared to the high viscosity of hydraulic fluids.
3. No return pipelines are required since air can be let out, at the end of device work cycle.
The disadvantage in pneumatic system is that the response is slower than that of hydraulic systems,
because of the compressibility of the working fluid.
EXAMPLE OF A PNEUMATIC SYSTEM

A simple pneumatic system is shown in fig 1.31 and it consist of a pneumatic bellows in line with
the restriction. The pneumatic bellows consists of a hollow chamber with thin pneumatic walls. The side
walls of bellows are corrugated and the input and output surface are flat. An increase in pressure within
the bellows results in an increase in separation between the input and output surfaces.

Bellows
Restriction /\/W
with resistance, R

< C
FTi+pi J><| E’+p
Area
—_—>
— A
Qm +qm

/\/\/\

v

LU

Fig 1.31: Pneumatic system
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Let, =  Steady-state value of input air pressure

= Increase in the pressure of air-source

= Steady-state value of pressure inside the bellows
= Increase in pressure inside the bellow

= Steady-state value of air flow rate

= Increase in air flow rate

= Area of each flat surface of the bellows

= Resistance of the restriction

= Capacitance of the bellows

% oA R EO|>-5 oIS

= Displacement of the movable surface of the bellows

Let the pressure of air source be increased from its steady state value by an amount p,. This results
in an increase in air flow by q_ and increase in the pressure inside the bellows by p. Due to increase in
pressure, there will be a displacement of the movable surface of the bellows, by an amount x. Here, the
terms p,, q_, p and x are all functions of time, t and so can be expressed as p(t), q, (1), p(t) and x(t).

The force exerted on the movable surface of the bellows is proportional to increase in pressure
inside the bellows, i.e, f a p(t).
-.Force exerted on the movable surface of the bellow, f=Ap(t) ... (1.70)
The force opposing the movement of the flat surface of bellow walls is proportional to displacement
e, f, a x(t).
.. Force opposing the motion, f =Kx®) . (1.71)
where K = Constant representing stiffness of bellows.
At steady state the above two forces are balanced,

=1
Ap®)=Kxt) (1.72)

i i A(t)—p(t

The resistance, R = Difference betw§en 'change in pressure _ P (t)=p(t)
Change in air flow rate q_(t)
p,()—p(t)
q()=""—%—" (1.73)
Change in air flow rate ¢, (t)

The capacitance, € = Rate of change of pressure  dp(t)/dt

q ()= cdp(t) ..... (1.74)
On equating the two equations of q_(t) we get,
cdp(t) _ p,(t)-p(t)

dt R
Rc%ﬂ)(t):pi(t) ..... (1.75)
From the equation (1.72), we get, p(t)= %x( t)y (1.76)

On differentiating equation (1.76) with respect to t, we get,

dp(t) _ K dx(t)
at A dt e (1.77)
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On substituting for p(t) and dp(t)/dt from equations (1.76) and (1.77) in equation (1.75) we get,

K dx(t)
RCA dt

On taking Laplace transform with zero initial conditions, we get,

+%X(t):pi(t) ..... (1.78)

RC[ s X(s)]+ R X(s)=p (5)

L (RCs+1D)X(s)=p,(s)

X(s)  A/K _ AJK
p.(s) RCs+1 ts+l

where, T = RC = Time constant of the system.

The equation (1.79) is the required transfer function of the system.

TABLE - 1.10 : Difference Between Hydraulic and Pneumatic System

Pneumatic Hydraulic
1. Working fluid is compressible. 1. Working fluid is incompressible.
2. Working fluid lack lubricating property. 2. Working fluid acts as lubricant.
3. Operating pressure is lower. 3. Higher operating pressure.
4. Output power is less. 4. More output power.
5. Accuracy of actuator is poor. 5. More accuracy can be achieved.
6. External leakage is permissible but 6. Internal leakage is permissible and
internal leakage must be avoided. external leakage must be avoided.
7. No return pipes are required. 7. Return pipes are required.
8. Insensitive to temperature changes. 8. Sensitive to changes in temperature.
9. Fire and explosion proof. 9. Not a fire and explosion proof.
1.16 SHORT - ANSWER QUESTIONS
0l1.1 What is system?
When a number of elements or components are connected in a sequence to perform a specific function,
the group thus formed is called a system.
01.2 What is control system?
A system consists of a number of components connected together to perform a specific function. In a
system when the output quantity is controlled by varying the input quantity, then the system is called
control system. The output quantity is called controlled variable or response and input quantity is called
command signal or excitation.
Q1.3 What are the two major type of control systems?
The two major type of control systems are open loop and closed loop systems.
Q1.4 Define open loop system.

The control system in which the output quantity has no effect upon the input quantity are called open

loop control system. This means that the output is not fedback to the input for correction.
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016

017

01.8

01.9

01.10.
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0112

0113

Define closed loop system.

The control systems in which the output has an effect upon the input quantity in order to maintain the
desired output value are called closed loop control systems.

What is feedback? What type of feedback is employed in control system?

The feedback is a control action in which the output is sampled and a proportional signal is given to
input for automatic correction of any changes in desired output.

Negative feedback is employed in control system.

What are the components of feedback control system?

The components of feedback control system are plant, feedback path elements, error detector and
controller.
error detector

Open loop
system (Plant)

Controller

Feedback

Reference input Output

A

Why negative feedback is invariably preferred in a closed loop system?

The negative feedback results in better stability in steady state and rejects any disturbance signals. It
also has low sensitivity to parameter variations. Hence negative feedback is preferred in closed loop
systems.

What are the characteristics of negative feedback?

The characteristics of negative feedback are as follows :
(i) accuracy in tracking steady state value.
(ii) rejection of disturbance signals.
(iii) low sensitivity to parameter variations.

(iv) reduction in gain at the expense of better stability.

What is the effect of positive feedback on stability?

The positive feedback increases the error signal and drives the output to instability. But sometimes
the positive feedback is used in minor loops in control systems to amplify certain internal signals or
parameters.

Distinguish between open loop and closed loop system.

Open loop Closed loop
1. Inaccurate & unreliable. 1. Accurate & reliable.
2. Simple and economical. 2. Complex and costly.
3. Changes in output due to external 3. Changes in output due to external disturbances
disturbances are not corrected automatically. are corrected automatically.
4. They are generally stable. 4. Great efforts are needed to design a stable system

What is servomechanism?

The servomechanism is a feedback control system in which the output is mechanical position (or time
derivatives of position e.g. velocity and acceleration).

State the principle of homogenity (or) State the principle of superposition.

The principle of superposition and homogenity states that if the system has responses c,(t) and c,(t)
for the inputs r,(t) and r,(t) respectively then the system response to the linear combination of these
input a,r,(t) + a,r,(t) is given by linear combination of the individual outputs a,c,(t) + a,c,(t), where a,
and a, are constants.
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01.14

0115

01.16

0117

01.18

01.19

01.20

01.21

Define linear system.

A system is said to be linear, if it obeys the principle of superposition and homogenity, which states
that the response of a system to a weighed sum of signals is equal to the corresponding weighed sum
of the responses of the system to each of the individual input signals. The concept of linear system is
diagrammatically shown below.

1,(t) c,(t) r,(t)

System

an(t)

System
a;n(t) +ar(t)

If ¢y(t) = a,¢,(t) + a,¢,(0)
a,n,(t) then system G is linear

1,(t) c,(t) r,(t)

System

Fig Q1.14 : Principle of linearity and superposition.
What is time invariant system?
A system is said to be time invariant if its input-output characteristics do not change with time. A linear
time invariant system can be represented by constant coefficient differential equations. (In linear time
varying systems the coefficients of the differential equation governing the system are function of time).

Define transfer function.

The transfer function of a system is defined as the ratio of Laplace transform of output to Laplace

transform of input with zero initial conditions. (It is also defined as the Laplace transform of the impulse

response of system with zero initial conditions).

State whether transfer function technique is applicable to non-linear system and whether the transfer

function is independent of the input of a system.

(i) The transfer function technique is not applicable to non-linear system

(i) The transfer function of a system is independent of input and depends only on system parameters

but the output of a system depends on input.

What are the basic elements used for modelling mechanical translational system?

The model of mechanical translational system can be obtained by using three basic elements mass,
spring and dashpot.

Write the force balance equation of ideal mass element.

Let aforce f be applied to an ideal mass M. The mass will offer an opposing force, f_ which is proportional
to acceleration. *

d?x
t— M f——F =g, =m S
Write the force balance equation of ideal dashpot. m dt?

Let a force f be applied to an ideal dashpot, with viscous frictional coefficient B. The dashpot will offer
an opposing force, f. which is proportional to velocity.
X

dx

f=f,-e— [,
LT

|
reference f—> 1

Write the force balance equation of ideal spring.

Let a force f be applied to an ideal spring with spring constant K. The spring will offer an opposing
force, f_which is proportional to displacement.
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o ’ Fox e

f—> 0 f—» 0
F=f,=Kx K ¢ K f=f=KXX,)
01.22 What are the basic elements used for modelling mechanical rotational system?

The model of mechanical rotational system can be obtained using three basic elements mass
with moment of inertia, J, dash-pot with rotational frictional coefficient, B and torsional spring with

stiffness, K.
01.23 Write the torque balance equation of an ideal rotational mass element. | \) \) J
Let a torque T be applied to an ideal mass with moment of inertia, ™™ ¥0 420
J. The mass will offer an opposing torque T. which is proportional to T=Ti=d—5
! dt

angular acceleration.

01.24 Write the torque balance equation of an ideal rotational dash-pot.

Let a torque T be applied to a rotational dash-pot with frictional coefficient B. The dashpot will offer an
opposing torque which is proportional to angular velocity.

Yyl E ]
Al Z VAVAN
T=T, =B B oo

(o9)

01.25 Write the torque balance equation of ideal rotational spring.

Let a torque T be applied to an ideal rotational spring with spring constant K. The spring will offer an
opposing torque T, which is proportional to angular displacement.

N 2 N \
rarat) Z AL

K
T=Ko T 0 T 6 0, T=T,=K(®-6)

01.26 Name the two types of electrical analogous for mechanical system.
The two types of analogies for the mechanical system are force-voltage and force-current analogy.

01.27 Write the analogous electrical elements in force-voltage analogy for the elements of mechanical
translational system.
Force, f — Voltage, e Frictional coefficient , B — Resistance, R
Velocity, v —  Current, i Stiffness, K — Inverse of capacitance, 1/C
Displacement, x — Charge, q Newton’s second law, 2f = 0 — Kirchoff ’s voltage law, Zv =0
Mass, M — Inductance, L

01.28 Write the analogous electrical elements in force-current analogy for the elements of mechanical
translational system.
Force, f —  Current, i Frictional coefficient, B — Conductance, G =1/ R
Velocity, v — Voltage, v Stiffness, K — Inverse of Inductance, 1/L
Displacement, x —  Flux, ¢ Newton’s second law, 2f = 0 — Kirchoff’s current law, i =0

Mass, M — Capacitance, C
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01.29 Write the analogous electrical elements in torque-voltage analogy for the elements of mechanical
rotational system.
Torque, T —Voltage, e |Stiffness of spring, K — Inverse of capacitance, 1/C
Angular velocity, ® —Current, i |Frictional coefficient, B — Resistance, R
Moment of inertia, J —Inductance, L|Newton’s second law, 2T = 0 — Kirchoff’s voltage law, Zv = 0.
Angular displacement, 6 — Charge, q
01.30 Write the analogous electrical elements in torque-current analogy for the elements of mechanical
rotational system.
Torque, T — Current, i | Frictional coefficient , B — Conductance, G = 1/R
Angular velocity, ® — Voltage, v| Stiffness of spring, K — Inverse of inductance, 1/L
Angular displacement, 6 — Flux, ¢ Newton’s second law, =T = 0 — Kirchoff ’s current law, i =0
Moment of inertia, J — Capacitance, C
01.31 What is block diagram? What are the basic components of block diagram?
A block diagram of a system is a pictorial representation of the functions performed by each component
of the system and shows the flow of signals. The basic elements of block diagram are block, branch
point and summing point.
01.32 What is the basis for framing the rules of block diagram reduction technique?
The rules for block diagram reduction technique are framed such that any modification made on the
diagram does not alter the input output relation.
01.33 Write the rule for eliminating negative feedback loop.
Proof
C=(R-CH)G
N R G _’C C=RG-CHG
1+GH C+ CHG =RG
C(1 + HG) =RG
CcC__G
R 1+GH
01.34 Write the rule for moving the summing point ahead of a block.
B
B BG
A (A+B)G =
(%) AG + BG = (A+B)G
01.35 What is a signal flow graph?
A signal flow graph is a diagram that represents a set of simultaneous linear algebraic equations. By
taking Laplace transform, the time domain differential equations governing a control system can be
transferred to a set of algebraic equations in s-domain. The signal flow graph of the system can be
constructed using these equations.
01.36 What is transmittance?
The transmittance is the gain acquired by the signal when it travels from one node to another node in
signal flow graph.
01.37 What is sink and source?

Source is the input node in the signal flow graph and it has only outgoing branches. Sink is a output
node in the signal flow graph and it has only incoming branches.
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01.38 Define non-touching loop.

The loops are said to be non-touching if they do not have common nodes.
01.39 What are the basic properties of signal flow graph?

The basic properties of signal flow graph are,

(i) Signal flow graph is applicable to linear systems.

(ii) It consists of nodes and branches. A node is a point representing a variable or signal. A branch
indicates functional dependence of one signal on the other.

(i) A node adds the signals of allincoming branches and transmits this sum to all outgoing branches.

(iv)  Signals travel along branches only in the marked direction and when it travels it gets multiplied
by the gain or transmittance of the branch.

(v) The algebraic equations must be in the form of cause and effect relationship.
01.40 Write the Mason’s gain formula.
Mason’s gain formula states that the overall gain of the system [transfer function] as follows,

- 1
Overall gain, =+ ; PcAg

T =T(s) = Transfer function of the system

K = Number of forward paths in the signal flow graph

P, = Forward path gain of K" forward path

_ |sum of individual
loop gains

sum of gain products of all possible
combinations of two non — touching loops

+

sum of gain products of all possible
combinations of three non —touching loops

A, = Afor that part of the graph which is not touching K" forward path

Q1.41  For the given signal flow graph, identify the number of forward path and number of individual loop.

Number of forward paths = 2

Number of individual loops = 4



1. 106 Control Systems

Q1.42 What are the basic elements of thermal system?
The basic elements of thermal system are thermal resistance and thermal capacitance.
01.43 Define thermal resistance.

The thermal resistance for heat transfer between two substances is defined as the ratio of change in
temparature and change in heat flow rate.

Change in temparature,” C

Thermal resistance, R = -
I Change in heat flow rate,Kcal /sec

Q1.44 Define thermal capacitance.
Thermal capacitance is defined as the ratio of change in heat stored and change in temparature.

Change in heat stored, Kcal

Thermal capacitance, C = - 5
P Change in temperature,” C

Q1.45 Mention the electrical analogous of simple thermal system.
The electrical analogous of simple first order thermal system is R-C parallel circuit.
Q1.46  What are the basic elements of hydraulic system?
The basic elements of hydraulic system are resistance, capacitance and inductance.
Q1.47  Define hydraulic resistance.
The resistance for liquid flow is defined as the change in the level difference neccessary to cause the

unit change of flow rate.

_ Change in level difference, m
Change in flow rate,m’/sec

Q1.48 Define hydraulic capacitance.

The capacitance C of tank is defined to be change in quantity of stroredliquid neccessary to cause the unit
change in head (height).

_ Change in liquid stored, m’

¢ Change in head, m

01.49 What is inertance?

The inertance represents fluid inertia derived from the inertial forces required to accelerate a fluid in a
pipe. It is an energy storing elements. The energy storage due to inertance is negligible compared to
capacitance elements.

Q1.50 What are the basic elements of pneumatic systems?
The basic elements of pneumatic systems are pneumatic resistance and pneumatic capacitance.
Q1.51 Define pneumatic resistance.

The gas flow resistance, R is defined as,

_ Change in gas pressure difference, N /m’

R
Change in gas flow rate,m’/sec
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01.52

Define pneumatic capacitance.

The capacitance of the pressure vessel is defined as,

Change in gas stored, m’

B Change in gas pressure,N/m’

1.17

EXERCISES

E1.2

E1.3

E1.4

For the mechanical system shown in fig E1.1derive the
transfer function. Also draw the force-voltage and force-current

analogous circuits.

For the mechanical system shown in fig E1.2 draw the ¢

force-voltage and force-current analogous circuits.

f(t)
o

B, N\

-

M,

—>v.

K,

’(566‘82 ~

M,

Fig E1.2

Write the differential equations governing the mechanical system shown in fig E1.3(a) & (b). Also draw

the force-voltage and force-current analogous circuit.

’—> £,

K,

I B

O O B

M,

=l

O 0O B

Fig E1.3(a)

Fig E1.3(b)

Consider the mechanical translational system shown in fig E1.4, Draw(a) force-voltage and (b) force-

current analogous circuits.

F» v, v, o o N
B Ba \ K1 Kz
Bz\ M, E M, ﬂ—} \2 i J; —ve— J. Js
ft) K T LB L B, LB,
AN M1
B\
Fig EL5
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E15 Write the differential equations governing the rotational mechanical system shown in fig E1.5.

Also draw the torque-voltage and torque-current analogous circuits.
E1.6 In an electrical circuit the elements resistance, l
capacitance and inductance are connected in parallel i ii i ‘
3 12 27 1

\ O

across the voltage source E as shown in fig E1.6, Draw(a) +
Translation mechnical analogous system (b) Rotational E R C L
mechanical analogous system. - T

Fig E1.6
E1.7 Consider the block diagram shown in fig E.1.7(a), (b) (c) & (d). Using the block diagram reduction
technique, find C/R.

Fig E1.7(a)

Fig E1.7(b)

H. |« Fig E1.7(c)

C
>

Fig E1.7(d)

E1.8  Convert the block diagram shown in fig E1.8 to signal flow graph and find the transfer function of the
system.
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f ¢
Fig E1.8
E1.9 Consider the system shown in fig E1.9(a), (b), (c) & (d). obtain the transfer function using Mason’s
gain formula.
1 1 A
o > > >
e \‘_/ 1 C(S)

Fig E1.9(a)

Am /’\

1 A
R X\q./xz C(S)

A, A43 Ass Fig E1.9(b)

Fig E1.9(c)

Fig E1.9(d)
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E1.10 Consider the signal flow graph shown in fig E.1.10 obtain
X3
o—> »>
X G G,
G,
o—p—20 »>
X, Gz X, G5
FigEL10

Find the transfer functions of the networks shown in fig E1.11(a), (b), (c) & (d).

E1.11
R, R L
.“—W\,__L—. by
C
() %Rz te (0 R, C Tl te)

A4

Fig E1.11(a)
R, L, L,

VW0
e() .1) c+ Q RS et

[ P

»®

[ P

Fig E1.11(c)
Fig E1.11(d)
E1.12 Find the transfer function of the circuit shown in fig E1.12.
R, R,
VWV ?

e(t)
i1(t)‘> Lc iz(t)) §Lz ey(t)

Fig E112

E1.13 A process plant consists of two tanks of capacitances C, and C, respectively. If the flow rate into the
top tank is Q,, find the transfer function relating this flow with liquid level in the bottom tank. Each tank

has a resistance R in its outlet pipe. Assume tanks to be non-interacting.

\ 4 —RI—]JQ3

Fig E1.13
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ANSWER FOR EXERCISE PROBLEMS

X(s) _ 1

E1.1 The transfer function is = 5
F(s) (Ms?+Bs+K)
v
NW—55" |
R L C
e(t) R piw R T C L
f(t)=e(t) M-L K—=>1/C f(t)—=i(t) M-C K—=>1/L
Vi B-R VoV B-1/R
Force-voltage analogous circuit Force-current analogous circuit
R

v, v,
L
) CTR‘ Lt L%

f>e, M, =L, B—R =i, M,~C, B=1R
f,~e, M~>L,  K~=1/C, f,~1, M,~>C, K1,
v, =i, B,~R, K,=>1/C, v,oV, B,~1/R, K, =1/,
v,~i, B,»R, K=1/C v,2V, B,~1/R, K=1/L
Force-voltage analogous circuit Force-current analogous circuit

E1.3(a) M1C(1Tt+Bv1+B(v1 v2+Kfv1dt+Kf vy—V,) dt=1fi(t)
det +ByVa+ BV~ V) +Ky [Vt 4K [ (vy= v dt=F,(0)

R, L,

—C. i -|—CZ i 2R, —‘VQ R; L, =G,

ft) > e®) ML, B,—R, f(t) — i(t) M,— C, B,— 1R,
v,oi ML, K,— 1/C, vi=>v,  M->C, K-1L,
v,—> 1, B,— R, K,—1/C, V,—>V, B,—» 1R, K,—> 1L,
Force-voltage analogous circuit Force-current analogous circuit

E1.3(b) M1W+Kfv1dt+K f(v1—v dt+Kf —v,)dt=f(t)

K3f V,—V)dt+B(v,—-v5) =0 ; M dv

2T+B(v3—v2 +K2f(v3—v1)dt:0

CJ— "
|3
e(t) i :[[ e %R L,
ho>et) M oL, B, >R, fy >ty M, >C, K, 1L,
M L B R ViV M2—>C2 K2_>1/L2
V‘_’f‘ 27 T v,>v,  BS1UR K o1
Vz_”z Ma_)L3 B3_>R3 V3—)V3
v, =, B—R K—1/C

Force voltage-analogous circuit

Force-current analogous circuit
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E1.4 A%
R,
| \Z ’\F/{\z/\, V, R Vs,
; L.
GD C L CT C/
e(t) i(t) ‘ Rg ’ ’
flty >e) M,—>L, B, >R, fty >itty M, —>C, B, 1R,
v, =i, M,—->L, B,—»R, ViV, M,»C, B,—>1R,
. M L B R v, >V, M,—»>C, B,—> 1R,
Vo=l 37k By R B>1R K- 1L
V, =, B—>R K—1/C
L. Force-current analogous circuit
Force voltage-analogous circuit
do . do
E1.5 Ut +Bio+K, [ (0-y)dt=T(t) I, +B,0,+K, [ (0,-0)dt+K, [ (@,-0,)dt=0
dw,
g + Byt K, [ (0,-0,)dt=0
- vV, L1 V, 2 Vy
L, R L, R, c c
e(t) C C,0= i@ R< G 2 ==
IR T T
T®) >et) J,>L, B >R, K —1/C, TM) —it) J,->C; B = 1R, K 1/,
co1%!1 J,—»>L, B,»R, K,-»1/C, . 0, >V, jz_)gz 22_)::;22 K,—> 1L,
®, >, J,—->L, B,—»>R, Wy > 0, >V, 3y By 3 O3V,
Torque-voltage analogous circuit Torque-current analogous circuit
Vs A Vi
= =
E16 ], ) AW \
e B THO M u ‘/ THO J
K o i K ¥
T) © B 4
et) >f(t) i,->v, i;->v, R-B e) >T) i,> o, i,>o, Ro>B
i,—->v, L->M 1C—-K i, > o, L>J 1C->K
Analogous mechanical translational system Analogous mechanical rotational system
c_ G,G,+G,G,
E1.7 @ g=5 +GH,+G,+ G,G,H,+ G,G;H,
(b) C_ GiG,(1+Gy) (G, +Gp)
R 1+(1+Gy)(G,+Gg)H,y+ (1+Gy) (G, + Gg) G,H,y
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© C- G,G,+ GG,
R~ 1+G,G,H,;+G,G, + G,G; + G,H, + G;H,

G1GZGS
1+G,G3H, + G,G,H,+ G,G,G,

C
@ <=

G,G,Gj + GGG, H, + G,G,H, + G,G,G H,
1+G,G,H, + G,H, + G,G,H,

F1.8

C(s) GG,G;4

E1 -9 (a) R(S) = 1+G1G2H1+G2G3H2+G1G2G3

(b) C_ A12A23A34A 15 A0 + Ar3AgaAL5Ase + AP AsuALe + AraAgsAse
R T = (AAzr+ AgeAgs + AseAgs + (A12A21A3 A 43 + ApAgiAseAgs)
+ AgAuaAseAse) = (ApAn A A3 A5 Ags)

c G,G,G,G,(1+ GG + G4G;) + G, GGG, (1+G,G,+ G,G,)
R

(©) R =T11G,G, 1 G,Gs + GoGg + GgGy + G;G,GGq + GgGgG,04 + G,G,G, Gy + G,G,G,G,

(d) Xg _ [GG,G;Gl[1-(G,;Gy, + G5G,Gg + Gy3) + G,G,Gy4l
X1 1=1GyGgGyg + GGyl + GpG3G5 G Gg + G3 G5 GGy + GGy
+ GGy Gg + Gyl + GpGg GGz + Gi9Giy1Gy3 + G7G12Gya

X X
E110 52 =GGyGGy + G184GrGo + GGaGsCely 5 - =G;CsGyCi

E,(s) 1+sR,C

F1.11 (@) E(s) 1+s(R,+R,)C
Eo(s) 1
(b) E(s)  s’LC+sRC+1
E_(s) sR,C

c) =2~=
(© E(s) (s’L,C+sR,C+1)(s’L,C+sR,C+1)-1

(d) E,(s)  sRR,C+R,
Ei(s)  sRR,C+(R;+R,)
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2
Era2 SO _SL,C
R(s) [sR,C+1][s?(L;+Ly)C+sR,C+1]-1
E1az He(s) _ R,

Qi(s) (1+Ts)(1+Ts)

where T,=R,C,and T, = R,C,
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