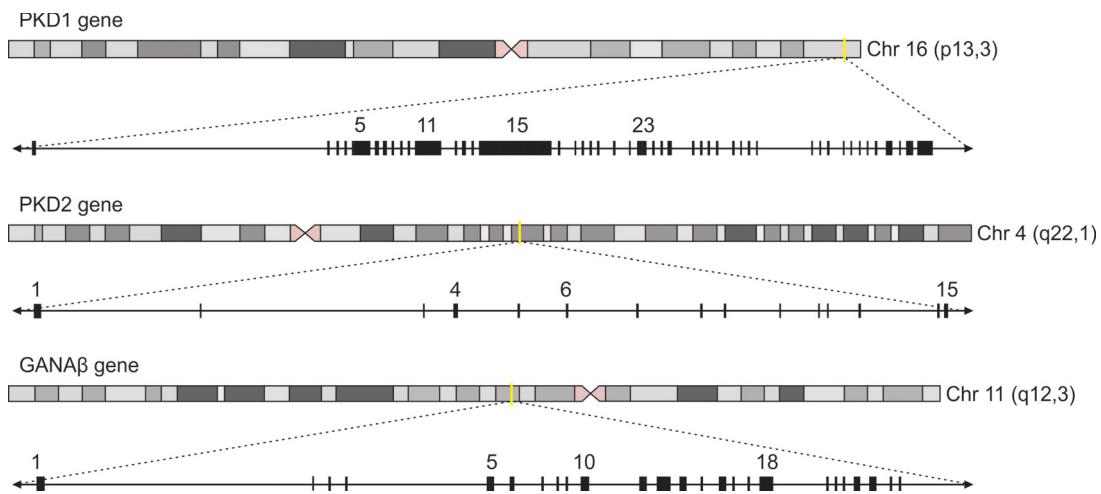


Genetics of Autosomal Dominant Polycystic Kidney Disease

Abhijit Konnur, Hardik Patel, Avinash Rao

Autosomal dominant polycystic kidney disease (ADPKD) is a disease having renal and extrarenal manifestations. ADPKD is commonly associated with mutations in two primary genes; PKD1 on chromosome 16p13.3 and PKD2 on chromosome 4q21 (type II). There is an interaction of polycystin 1 and polycystin 2 (encoded on PKD1 and PKD2) located on the endoplasmic reticulum of cells lining the tubules. This is required for the mature polycystin complex to reach the cell surface. The two primary methods available for gene mutation are DNA linkage analysis and gene-based mutation screening. Linkage analysis involves highly informative microsatellite markers flanking PKD1 and PKD2. For the routine genetic screening of ADPKD direct DNA sequencing is employed.

INTRODUCTION


Polycystic kidney disease (PKD) refers to a variety of monogenic disorders characterized by the cyst formation in renal units with increase in size of these cysts. These changes lead to deterioration of renal function over the years.¹ Among the different forms, autosomal dominant polycystic kidney disease (ADPKD) is common.^{2,3} As the disease is clinically silent in many individuals, the number of patients diagnosed during their lifetime is estimated

to be less than half.⁴ Major chunk of affected population develops the disease between the age group of 20 and 40 years although sporadic cases have been reported from *in utero* onset to late adulthood.⁵ Renal cysts may have association with cysts in liver, spleen, pancreas, dysfunctional heart valves and aneurysms in brain.⁶

The genetics, types of protein anomalies and mutation detection strategies of ADPKD are discussed in this chapter.

Genes

PKD1, responsible for ADPKD type 1 is mapped on chromosome 16 (Fig. 1.1)⁷ (16p13.3) and PKD2, responsible for ADPKD type 2 is mapped on chromosome 4q21. The PKD1 gene and gene for tuberous sclerosis (TSC2) are adjacently located. As per the available literature, approximately, PKD1 mutation affects 80–85% of ADPKD families, and 15–20% of the families are affected by PKD2 mutations.⁸ If a given patient is negative for PKD1 and PKD2 it is prudent to look for the mutations in gene GANAB located on chromosome 11q12.3 (Fig. 1.1). GANAB gene presents with autosomal dominant polycystic liver disease. The ADPKD component is not severe. It accounts for ~0.3% of total ADPKD.⁹ Similar to GANAB, four other genes, i.e.

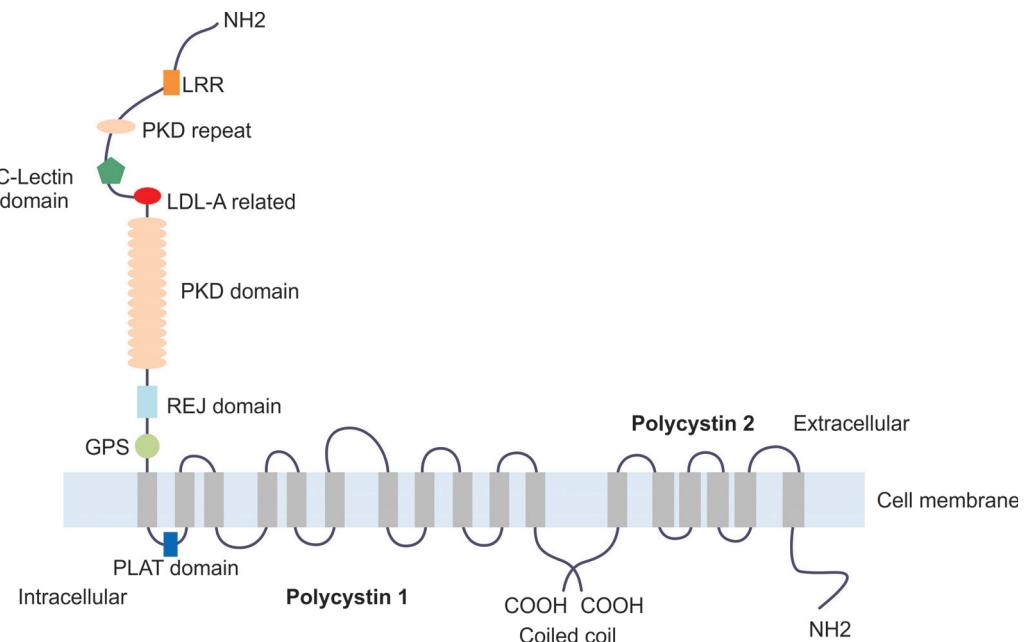


Fig. 1.1: Chromosome localization and genomic structure of *PKD1*, *PKD2*, and *GANA β* genes and structure of polycystin 1 (PC1) and polycystin 2 (PC2). Schematic representation of chromosomes and genomic structure for the genes⁷

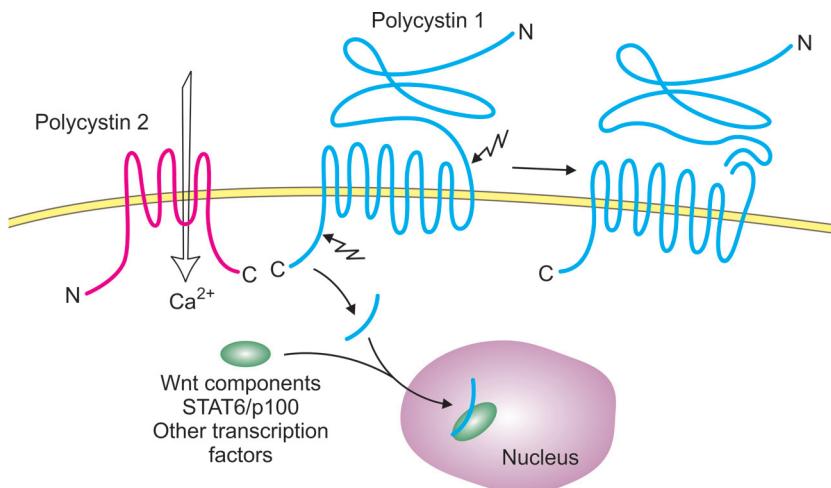
ALG8, SEC61B, SEC63, and PRKCSH, have been identified.^{10, 11} With the use of whole genome sequencing (WGS), an additional new gene, DNAJB11, has been identified recently, which presents with small renal cysts, non-enlarged kidneys, liver cysts and progressive renal failure.¹²

Types of Protein Anomalies

PKD1 and *PKD2* encode proteins, polycystin 1 (PC1) and polycystin 2 (PC2) respectively (Fig. 1.2).^{13, 15} Polycystin 1 (PC1) is characterized by a 11-transmembrane domain. Majority of the protein is in the extracellular region. The

Fig. 1.2: Representation of *PKD1* and *PKD2* protein products: PC1 and PC2⁷

NH₂ terminal of the extracellular domain is important in protein-protein interactions. NH₂ terminal has a GPCR proteolytic site (GPS domain) and 12 PKD domains.^{16,18} Among the several cleavage events, polycystin 1 undergoes, cleavage event at a juxtamembrane G protein-coupled receptor (GPCR) is significant. This is “*Cis*-autoproteolysis”, as it occurs in the absence of any exogenous protease. Two non-covalently associated fragments by cleavage at the GPS domain (Fig. 1.3).¹⁹ The importance of this cleavage event is that, it is fundamentally essential to maintain renal tubular morphology and mutation at the GPS site results in ADPKD with cysts primarily affecting the collecting duct as evidenced by knock-in mouse model with a mutation.^{16,20}


Polycystin 2 (PC2) is a member of family of nonselective cation channels.²¹ Morphologically, PC2 is characterized by a short N-terminal cytoplasmatic region, six transmembrane domains that are homologous with a portion of the transmembrane domain of PC1, and a short C-terminal fragment. A tetrameric structure is formed by four polycystin 2 channels with a voltage-sensing domain and

a novel “TOP” domain comprised of the large extracellular loop between TM1 and TM2. The TOP domain is a hotspot for missense disease-causing variants and is important for channel assembly and/or function.^{22,23}

Polycystins are membrane proteins situated in plasma membranes and primary cilium. They are localized in renal tubular epithelia, pancreatic ducts and hepatic bile ductules.²⁴ The interaction of PC1 and PC2 in the endoplasmic reticulum is required for the mature polycystin complex to reach the cell surface, including the cilium. PC1 is involved in multiple cellular and matrix interactions.²⁵ Polycystin 2, located in endoplasmic reticulum, is involved in calcium signaling. PC1 and PC2 interact in a common signaling pathway which results in identical clinical manifestation of ADPKD1 and ADPKD2.²¹

Genotype-Phenotype Relationship

The molecular diagnosis of the mutations associated with ADPKD is important in prognostication of the disease. Patients with PKD1 mutations have larger kidneys and early onset of the disease than in patients with PKD2 mutations.^{26,27} GANAB mutation is associated

Fig. 1.3: Cleavage in extracellular and intracellular regions of polycystin 1 protein¹⁹

with a mild renal phenotype.⁹ Truncated PKD1 mutations have a more serious disease. Milder form of disease is associated with non-truncated PKD1 mutations or mutations in PKD2. Truncating PKD1 mutations are associated with larger kidneys and that too in men, in women they manifest with liver disease.^{27, 28} Genetic interaction and epistasis is a variation in the modifier gene, this leads to difference in the presentation as regards to progression of the disease in members of same family with same mutation.²⁹

The PRO-PKD score, a prognostic index, developed by Corne Le Gall et al, is based on both, genetic and clinical data.³⁰

Detection Strategies

DNA linkage analysis along with gene-based mutation screening are the two primary methods available for the detection of the mutations.³¹ Haplotype reconstruction can be used to predict the status of other members of the family by performance of linkage analysis. This method may be considered in situations such as prenatal testing in which the mutation is unknown and for pre-implantation genetic diagnosis (PGD).³²

Mutation screening for PKD genes using DNA or mRNA is the other method of detection currently used. Complete gene sequencing remains the gold standard for mutation analysis, but has the disadvantage of being highly expensive and time-consuming. For the routine genetic screening of ADPKD direct DNA sequencing is employed. In order to lower testing costs and minimize turnaround time, several mutation screening tools are available such as denaturing gradient gel electrophoresis (DGGE), single-strand conformation polymorphism (SSCP), DNA high-pressure liquid chromatography (DHPLC) screening method and multiplex ligation dependent probe assay (MLPA).³³⁻³⁹ But, these methods have lower definite mutation detection rates. Presently, long-range polymerase chain reaction (PCR)

strategy with specific primers are considered as a key strategy of gene mutation detection, as it has faster turnaround time, cost saving and reliable in the genetic diagnosis of ADPKD.^{40, 41}

REFERENCES

1. Lee K, Battini L, Gusella GL. Cilium, centrosome and cell cycle regulation in polycystic kidney disease. *Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease*. 2011 Oct 1;1812(10):1263-71.
2. Davies F, Coles GA, Harper PS, Williams AJ, Evans C, Cochlin D. Polycystic kidney disease re-evaluated: a population-based study. *QJM: An International Journal of Medicine*. 1991 Jun 1;79(3):477-85.
3. Grantham JJ. Autosomal dominant polycystic kidney disease. *New England Journal of Medicine*. 2008 Oct 2;359(14):1477-85.
4. Lanktree MB, Haghghi A, Guiard E, Iliuta IA, Song X, Harris PC, Paterson AD, Pei Y. Prevalence estimates of polycystic kidney and liver disease by population sequencing. *Journal of the American Society of Nephrology*. 2018 Oct 1;29(10):2593-600.
5. Loftus H, Ong AC. Cystic kidney diseases: many ways to form a cyst. *Pediatric nephrology*. 2013 Jan 1;28(1):33-49.
6. Peltola P, Lumiaho A, Miettinen R, Pihlajamaeki J, Sandford R, et al. Genetics and phenotypic characteristics of autosomal dominant polycystic kidney disease in Finns. *J Mol Med*. 2005;83: 638-646.
7. Cordido A, Besada-Cerecedo L, García-González MA. The genetic and cellular basis of autosomal dominant polycystic kidney disease—a primer for clinicians. *Frontiers in pediatrics*. 2017 Dec 18;5:279.
8. Corne Le Gall E, Audrézet MP, Renaudineau E, Hourmant M, Charasse C, Michez E, Frouget T, Vigneau C, Dantal J, Siohan P, Longuet H. PKD2-related autosomal dominant polycystic kidney disease: Prevalence, clinical presentation, mutation spectrum, and prognosis. *American Journal of Kidney Diseases*. 2017 Oct 1;70(4): 476-85.
9. Porath B, Gainullin VG, Corne Le Gall E, Dillinger EK, Heyer CM, Hopp K, Edwards ME,

Madsen CD, Mauritz SR, Banks CJ, Baheti S. Mutations in GANAB, encoding the glucosidase II α subunit, cause autosomal-dominant polycystic kidney and liver disease. *The American Journal of Human Genetics*. 2016 Jun 2;98(6):1193–207.

10. Fedele SV, Gallagher AR, Somlo S. Polycystin 1: a master regulator of intersecting cystic pathways. *Trends in molecular medicine*. 2014 May 1;20(5):251–60.

11. Besse W, Dong K, Choi J, Punia S, Fedele SV, Choi M, Gallagher AR, Huang EB, Gulati A, Knight J, Mane S. Isolated polycystic liver disease genes define effectors of polycystin 1 function. *The Journal of clinical investigation*. 2017 May 1;127(5):1772–85.

12. Cornec-Le Gall E, Olson RJ, Besse W, Heyer CM, Gainullin VG, Smith JM, Audrézet MP, Hopp K, Porath B, Shi B, Baheti S. Monoallelic mutations to DNAJB11 cause atypical autosomal-dominant polycystic kidney disease. *The American Journal of Human Genetics*. 2018 May 3;102(5):832–44.

13. Ward C, Peral B, Hughes J, Thomas S, Gamble V, MacCarthy A, Sloane-Stanley J, Buckle P, Kearney P, Higgs D, Ratcliffe C. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. *Cell*. 1994 Jun 17;77(6):881–94.

14. International Polycystic Kidney Disease Consortium. Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. *Cell*. 1995 Apr 21;81(2):289–98.

15. Geng L, Segal Y, Peissel B, Deng N, Pei Y, Carone F, Rennke HG, Glücksmann-Kuis AM, Schneider MC, Ericsson M, Reeders ST. Identification and localization of polycystin, the PKD1 gene product. *The Journal of clinical investigation*. 1996 Dec 15;98(12):2674–82.

16. Qian, F., Boletta, A., Bhunia, A.K., Xu, H., Liu, L., Ahrabi, A.K., Watnick, T.J., Zhou, F. and Germino, G.G., 2002. Cleavage of polycystin 1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. *Proceedings of the National Academy of Sciences*, 99(26), pp.16981–16986.

17. Bycroft M, Bateman A, Clarke J, Hamill SJ, Sandford R, Thomas RL, Chothia C. The structure of a PKD domain from polycystin 1: implications for polycystic kidney disease. *The EMBO journal*. 1999 Jan 15;18(2):297–305.

18. Gunaratne HJ, Moy GW, Kinukawa M, Miyata S, Mah SA, Vacquier VD. The 10 sea urchin receptor for egg jelly proteins (SpREJ) are members of the polycystic kidney disease 1 (PKD1) family. *BMC genomics*. 2007 Dec 1;8(1):235.

19. Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N, Kinter MT, Kane ME, Obara T, Weimbs T. Polycystin 1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. *Developmental cell*. 2006 Jan 1;10(1):57–69.

20. Yu S, Hackmann K, Gao J, He X, Piontek K, García-González MA, Menezes LF, Xu H, Germino GG, Zuo J, Qian F. Essential role of cleavage of polycystin 1 at G protein-coupled receptor proteolytic site for kidney tubular structure. *Proceedings of the National Academy of Sciences*. 2007 Nov 20;104(47):18688–93.

21. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsikas L, Sukhatme VP, Guggino WB, Germino GG. Co-assembly of polycystin 1 and 2 produces unique cation-permeable currents. *Nature*. 2000 Dec;408(6815):990–4.

22. Shen PS, Yang X, DeCaen PG, Liu X, Bulkley D, Clapham DE, Cao E. The structure of the polycystic kidney disease 2 (PKD2) channel in lipid nanodiscs. *Cell*. 2016 Oct 20;167(3):763–73.

23. Griebel M, Pike AC, Shintre CA, Venturi E, El-Ajouz S, Tessitore A, Shrestha L, Mukhopadhyay S, Mahajan P, Chalk R, Burgess-Brown NA. Structure of the polycystic kidney disease TRP channel polycystin 2 (PC2). *Nature structural and molecular biology*. 2017 Feb;24(2):114–22.

24. Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK. The primary cilium as a complex signaling center. *Current Biology*. 2009 Jul 14;19(13):R526–35.

25. Ibraghimov-Beskrovnaya O, Dackowski WR, Foggensteiner L, Coleman N, Thiru S, Petry LR, Burn TC, Connors TD, Van Raay T, Bradley J, Qian F. Polycystin: *in vitro* synthesis, *in vivo* tissue expression, and subcellular localization identifies a large membrane-associated protein. *Proceedings of the National Academy of Sciences*. 1997 Jun 10;94(12):6397–402.

26. Harris PC, Bae KT, Rossetti S, Torres VE, Grantham JJ, Chapman AB, Guay-Woodford LM, King BF, Wetzel LH, Baumgarten DA, Kenney PJ. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. *Journal of the American Society of Nephrology*. 2006 Nov 1;17(11):3013–9.

27. Heyer CM, Sundsbak JL, Abebe KZ, Chapman AB, Torres VE, Grantham JJ, Bae KT, Schrier RW, Perrone RD, Braun WE, Steinman TI. Predicted mutation strength of nontruncating PKD1 mutations aids genotype–phenotype correlations in autosomal dominant polycystic kidney disease. *Journal of the American Society of Nephrology*. 2016 Sep 1;27(9):2872–84.
28. Hwang YH, Conklin J, Chan W, Roslin NM, Liu J, He N, Wang K, Sundsbak JL, Heyer CM, Haider M, Paterson AD. Refining genotype–phenotype correlation in autosomal dominant polycystic kidney disease. *Journal of the American Society of Nephrology*. 2016 Jun 1;27(6):1861–8.
29. Bergmann C, von Bothmer J, Brüchle NO, Venghaus A, Frank V, Fehrenbach H, Hampel T, Pape L, Buske A, Jonsson J, Sarioglu N. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. *Journal of the American Society of Nephrology*. 2011 Nov 1;22(11):2047–56.
30. Cornec-Le Gall E, Audrézet MP, Rousseau A, Hourmant M, Renaudineau E, Charasse C, Morin MP, Moal MC, Dantal J, Wehbe B, Perrichot R. The PROPKD score: a new algorithm to predict renal survival in autosomal dominant polycystic kidney disease. *Journal of the American Society of Nephrology*. 2016 Mar 1;27(3):942–51.
31. Pei Y. Diagnostic approach in autosomal dominant polycystic kidney disease. *Clinical Journal of the American Society of Nephrology*. 2006 Sep 1;1(5):1108–14.
32. De Rycke M, Georgiou I, Sermon K, Lissens W, Henderix P, Joris H, Platteau P, Van Steirteghem A, Liebaers I. PGD for autosomal dominant polycystic kidney disease type 1. *Mol. Hum. Reprod.* 2005;11:65–71.
33. Perrichot RA, Mercier B, Simon PM, Whebe B, Cledes J, Ferec C. DGGE screening of PKD1 gene reveals novel mutations in a large cohort of 146 unrelated patients. *Human genetics*. 1999 Sep 1;105(3):231–9.
34. Perrichot R, Mercier B, Quere I, Carre A, Simon P, Whebe B, Cledes J, Ferec C. Novel mutations in the duplicated region of PKD1 gene. *European Journal of Human Genetics*. 2000 May;8(5):353–9.
35. Veldhuisen B, Saris JJ, De Haij S, Hayashi T, Reynolds DM, Mochizuki T, Elles R, Fossdal R, Bogdanova N, Van Dijk MA, Coto E. A spectrum of mutations in the second gene for autosomal dominant polycystic kidney disease (PKD2). *The American Journal of Human Genetics*. 1997 Sep 1;61(3):547–55.
36. Watnick T, Germino GG. Molecular basis of autosomal dominant polycystic kidney disease. *Seminars in nephrology* July 1999;19(4):327–43.
37. Rossetti S, Chauveau D, Walker D, Saggar-Malik A, Winearls CG, Torres VE, Harris PC. A complete mutation screen of the ADPKD genes by DHPLC. *Kidney International*. 2002 May 1;61(5):1588–99.
38. Kozlowski P, Bissler J, Pei Y, Kwiatkowski DJ. Analysis of PKD1 for genomic deletion by multiplex ligation-dependent probe assay: absence of hot spots. *Genomics*. 2008 Feb 1;91(2):203–8.
39. Consugar MB, Wong WC, Lundquist PA, Rossetti S, Kubly VJ, Walker DL, Rangel LJ, Aspinwall R, Niaudet WP, Özen S, David A. Characterization of large rearrangements in autosomal dominant polycystic kidney disease and the PKD1/TSC2 contiguous gene syndrome. *Kidney International*. 2008 Dec 1;74(11):1468–79.
40. Garcia-Gonzalez MA, Jones JG, Allen SK, Palatucci CM, Batish SD, Seltzer WK, Lan Z, Allen E, Qian F, Lens XM, Pei Y. Evaluating the clinical utility of a molecular genetic test for polycystic kidney disease. *Molecular genetics and metabolism*. 2007 Sep 1;92(1–2):160–7.
41. Renkema KY, Stokman MF, Giles RH, Knoers NV. Next generation sequencing for research and diagnostics in kidney disease. *Nature Reviews Nephrology*. 2014 Aug;10(8):433.