

Contents

Preface

vii

1. Water—Analysis, Treatment and Industrial Applications	1–52
Introduction	1
Sources of water	1
Types of impurities in water	2
Analysis of water	3
Hardwater	3
Relationship between various units of hardness	7
Estimation of water hardness by EDTA method	7
Determination of alkalinity in water	10
Softening of water	11
Boiler feed water	12
Differences between cold lime-soda process and hot lime-soda process	25
Reverse osmosis method (desalination)	31
Characteristics of municipal water or domestic drinking water	32
Various steps for the purification of municipal water supply	32
Industrial water characteristics and requirements	33
Numerical problems	38
2. Fuels and Combustion	53–106
Introduction	53
Fuel	53
Fossil fuel	53
Characteristics of a good fuel	54
Classification of fuels	55
Calorific value	57
Determination of calorific value	58
Gross and net calorific values	58
Relationship between GCV and LCV	59
Difference between gross and net calorific values	59
Units of calorific values	60
Determination of calorific value by bomb calorimeter	60
Solid fuels	63
Coal	63
Difference between proximate and ultimate analysis of coal	69
Biomass	69
Biogas	70
Combustion of fuel	70
Calculation of air quantities	71
Carbonization of coal (manufacturing of coke)	71
Types of carbonization	72
Metallurgical coke	73

Manufacture of metallurgical coke 73
Differences between coal and coke 76
Synthetic petrol 76
Petroleum 78
Refining of petroleum or crude oil 78
Fuels for internal combustion engine (IC engine) 79
Knocking 79
Antiknocking agents 80
Petrol engine fuel 82
Octane number or octane rating 82
Diesel engine fuels (compression ignition engine fuels) 82
Cetane number or cetane rating 83
Diesel index 84
Aniline point 84
Differentiate between octane number and cetane number 84
Gasoline 85
Diesel fuel 85
Cracking 86
Reforming 89
Numerical problem 89

3. Lubricants and Cement

107–152

Introduction 107
Lubricant 107
Factors to consider while selecting the right industrial lubricant 108
Characteristics of a good lubricant 108
Functions of lubricants 108
Lubrication 109
Mechanisms of lubrication 109
Classification of lubricants 113
Synthetic lubricants 120
Lubricating emulsions 121
Properties of lubricants 122
Abel's flash and fire point tests 126
Cement 138
Classification of cement 139
Properties of cement 140
Portland cement 141
Functions of cement ingredients 142
Functions of the basic constituents of portland cement 143
Types of cement 143
Manufacturing of cement 144
Comparison of dry process and wet process of cement manufacture 147
Setting and hardening of cement 147
ISI specification of portland cement 148
Gypsum 149
Plaster of Paris 150
Decay of concrete and cement 151
Tests for cement 151
Numerical problems 152

4. Polymers and Polymerization 153–210

Introduction 153
Monomer 153
Polymer 153
Classification of polymers 156
Manufacturing processes of thermoplastics and thermosetting plastics 162
Biopolymer 163
Biodegradable polymers 163
Nonbiodegradable polymers 164
Polymerisation 164
Types of polymerisation 164
Thermoplastics 173
Thermosetting resins 188
Rubbers (elastomers) 194
Types of rubber 195
Processes for improving the properties of rubber 199

5. Instrumental Techniques in Chemical Analysis and Refractories 211–250

Introduction 211
Origin of electronic spectra 211
Instrumental methods of analysis 212
Spectrophotometry 212
Lambert-Beer's law 213
Derivation of Lambert-Beer's law 215
UV spectroscopy 216
Electronic transitions 217
Absorption and intensity shifts in UV spectroscopy (special shifts) 220
Infrared spectroscopy 222
Instrumentation and working of IR spectroscopy 223
Fingerprint region in IR spectroscopy 224
Vibrations in infrared rays 225
Vibrational coupling 227
Fourier transform infrared spectrometer (FTIR) 227
Differences between IR and UV spectrum 228
Nuclear magnetic resonance (NMR) 228
Chemical shift (δ) 230
Mapping nonequivalent hydrogen 230
Colorimetry 232
Chromatography 233
Gas chromatography 237
Refractories 240
Properties of refractories 242
Causes of refractory failure 245
Preparation, properties and uses of commercial refractories 245

6. Phase Equilibrium and Corrosion 251–273

Introduction 251
Phase diagram 251
Phase rule 252
Derivation of phase rule 255
Application of phase rule: Water system 257
Eutectic system 260

Silver-copper (Ag-Cu system) eutectic phase diagram for binary eutectic system 261
Corrosion 263
Theories of corrosion 265
Types of corrosion 267
Galvanization 272

7. Periodic Properties**274–213**

Introduction 274
Mendeleev periodic law 274
Mendeleev periodic table 274
Modern periodic law 277
Modern periodic table 277
Long form of periodic table 280
Elements in the periodic table 282
Classification of elements as metals and non-metals in modern periodic table 282
Element blocks in the periodic table 282
Periodic properties of the elements 285
Difference between covalent radius and van der Waals radius 290
Difference between electronegativity and electron affinity 291
Polarizability 291
Factors that influence polarizability 291
Oxidation number 291

Model Question Papers 295–302

Index 303–304