CHAPTER

1

INTRODUCTIONTO
PARALLEL PROCESSING

Basic concepts of parallel processing on high-performance computers are
introduced in this chapter. We will review the architectural evolution, examine
various forms of concurrent activities in modern computer systems, and assess
advanced applications of parallel processing computers, Parallel computer
structures will be characterized as pipelined computers, array processors, and
multiprocessor systems. Several new computing concepts, including data flow
and VLSI approaches, will be introduced. The material presented in this
introductory chapter will provide an overview of the field and pave the way to
studying in subsequent chapters the details of theories of parallel computing,
machine architectures, system controls, fast algorithms, and programming
requirements.

1.1 EVOLUTION OF COMPUTER SYSTEMS

Over the past four decades the computer industry has experienced four generations
of development, physically marked by the rapid changing of building blocks from
relays and vacuum tubes (1940-1950s) to discrete diodes and transistors (1950-
1960s), to small- and medium-scale integrated (SSI/MSI) circuits (1960-1970s),
and to large- and very-large-scale integrated (LSI/VLSI) devices (1970s and
beyond). Increases in device speed and reliability and reductions in hardware cost
and physical size have greatly enhanced computer performance. However, better
devices are not the sole factor contributing to high performance. Ever since the
stored-program concept of von Neumann, the computer has been recognized as
more than just a hardware organization problem. A modern computer system is
really a composite of such items as processors, memories, functional units,
interconnection networks, compilers, operating systems, peripheral devices,
communication channels, and database banks.

To design a powerful and cost-effective computer system and to devise
efficient programs to solve a computational problem, one must understand the

2 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

underlying hardware and software system structures and the computing
algorithms to be implemented on the machine with some user-oriented
programming languages. These disciplines constitute the technical scope of
computer architecture. Computer architecture is really a system concept
integrating hardware, software, algorithms, and languages to perform large
computations. A good computer architect should master all these disciplines.
It is the revolutionary advances in integrated circuits and system architecture
that have contributed most to the significant improvement of computer
performance during the past 40 years. In this section, we review the generations
of computer systems and indicate the general trends in the development of
high performance computers.

1.1.1 Generations of Computer Systems

The division of computer systems into generations is determined by the device
technology, system architecture, processing mode, and languages used. We con-
sider each generation to have a time span of about 10 years. Adjacent generations
may overlap in several years as demonstrated in Figure 1.1. The long time span is
intended to cover both development and use of the machines in various parts of
the world. We are currently in the fourth generation, while the fifth generation is
not materialized yet.

The first generation (1938-1953): The introduction of the first electronic analog
computer in 1938 and the first electronic digital computer, ENIAC (Electronic
Numerical Integrator and Computer), in 1946 marked the beginning of the first
generation of computers. Electromechanical relays were used as switching

Computer

generation
A

Fourth]

Third

E—
Second [— G
 —

First

| | | | | | >
1940 1950 1960 1970 1980 1990 Year

Figure 1.1: The evolution of computer systems.

INTRODUCTION TO PARALLEL PROCESSING 3

devices in the 1940s, and vacuum tubes were used in the 1950s. These devices
were interconnected by insulated wires. Hardware components were expensive
then, which forced the CPU structure to be bit-serial: arithmetic is done on a bit-
by-bit fixed-point basis, as in a ripple-carry addition which uses a single full adder
and one bit of carry flag.

Only binary-coded machine language was used in early computers. In 1950,

the first stored-program computer, EDVAC (Electronic Discrete Variable
Automatic Computer), was developed. This marked the beginning of the use of
system software to relieve the user’s burden in low-level programming. However,
it is not difficult to imagine that hardware costs predominated and software
language features were rather primitive in the early computers. By 1952, IBM had
announced its 701 electronic calculator. The system used Williams’ tube memory,
magnetic drums, and magnetic tape.
The second generation (1952-1963): Transistors were invented in 1948. The first
transistorized digital computer, TRADIC, was built by Bell Laboratories in 1954.
Discrete transistors and diodes were the building blocks: 800 transistors were
used in TRADIC. Printed circuits appeared. By this time, coincident current
magnetic core memory was developed and subsequently appeared in many
machines. Assembly languages were used until the development of high-level
languages, Fortran (formula translation) in 1956 and Algol (algorithmic language)
in 1960.

In 1959, Sperry Rand built the Larc system and IBM started the Stretch

projeet. These were the first two computers attributable to architectural
improvement. The Larc had an independent I/O processor which operated in
parallel with one or two processing units. Stretch featured instruction lookahead
and error correction, to be discussed in Section 1.2. The first IBM scientific,
transistorized computer, IBM 1620, became available in 1960. Cobol (common
business oriented language) was developed in 1959. Interchangeable disk packs
were introduced in 1963. Batch processing was popular, providing sequential
execution of user programs, one at a time until done.
The third generation (1962-1975) This generation was marked by the use of
small-scale integrated (SSI) and medium-scale integrated (MSI) circuits as the
basic building blocks. Multilayered printed circuits were used. Core memory was
still used in CDC-6600 and other machines but by 1968, many fast computers,
like CDC-7600, began to replace cores with solid-state memories. High-level
languages were greatly enhanced with intelligent compilers during this period.

Multiprogramming was well developed to allow the simultaneous execution
of many program segments interleaved with I/O operations. Many high-
performance computers, like IBM 360/91, Illiac-IV, TI-ASC, Cyber-175, STAR-
100, and C.mmp, and several vector processors were developed in the early
seventies. Time-sharing operating systems became available in the late 1960s.
Virtual memory was developed by using hierarchically structured memory
systems.

4 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

The fourth generation (1972-present) The present generation computers
emphasize the use of large-scale integrated (LSI) circuits for both logic and
memory sections. High-density packaging has appeared. High-level languages
are being extended to handle both scalar and vector data like the extended Fortran
in many vector processors. Most operating systems are time-sharing, using virtual
memories. Vectorizing compilers have appeared in the second generation of
vector machines, like the Cray-1 (1976) and the Cyber-205 (1982). High-speed
mainframes and supers appear in multiprocessor systems like the Univac 1100/80
(1976), Fujitsu M 382 (1981), the IBM 370/168 MP, the IBM 3081 (1980), the
Burroughs 8-7800 (1978), and the Cray X-MP (1983). A high degree of pipe
lining and multiprocessing is greatly emphasized in commercial supercomputers.
A massively parallel processor (MPP) was custom-designed in In2. This MPP
consisting of 16,384 bit-slice microprocessors, is under the control of one array
controller for satellite image processing.

The future Computers to be used in the 1990s may be the next generation.
Very-large-scale integrated (VLSI) chips will be used along with high-density
modular design. Multiprocessors like the 16 processors in the S-I project at
Lawrence Livermore National Laboratory and in the Denelcor’s HEP will be
required. Cray-2 is expected to have four processors, to be delivered in 1985.
More than 1000 mega float-point operations per second (megaflops) are expected
in these future supercomputers. We will study major existing systems and discuss
possible future machines in subsequent chapters.

1.1.2 Trends Towards Parallel Processing

According to Sidney Fernbach: “Today’s large computers (mainframes) would
have been considered ‘supercomputers’ 10 to 20 years ago. By the same token,
today supercomputer will be considered ‘state-of-art’ standard equipment 10 to
20 years from now” from an application point of view, the mainstream usage of
computers is experiencing a trend of four ascending levels of sophistication:

» Data processing

* Information processing
* Knowledge processing
» Intelligence processing

The relationships between data, information, knowledge, and intelligence are
demonstrated in Figure 1.2. The data space is the largest, including numeric
numbers in various formats, character symbols, and multidimensional measures.
Data objects are considered mutually unrelated in the space. Huge amounts of
data are being generated daily in all walks of life, especially among the scientific.
business, and government sectors. An information item is a collection of data
objects that are related by some syntactic structure or relation. Therefore,
information items form a subspace of the data space. Knowledge consists of
information items plus some semantic meanings. Thus knowledge items form a

INTRODUCTION TO PARALLEL PROCESSING 5

A

Intelligence
processing

Knowledge
processing

v

Increasing
complexity and
sophistication
in processing

Increasing volumes
of raw material
to be processed

Information
processing

Data
processing

Figure 1.2: The spaces of data, information, knowledge, and intelligence
from the viewpoint of computer processing.

subspace of the information space. Finally, intelligence is derived from a collection
of knowledge items. The intelligence space is represented by the innermost and
highest triangle in the Venn diagram.

Computer usage started with data processing, which is still a major task o
today’s computers. With more and more data structures developed, many users
are shifting to computer roles from pure data processing (mainly number
crunching) to information processing. Most of today’s computing is still confined
within these two processing levels. A high degree of parallelism has been found at
these levels. As the accumulated knowledge bases expanded rapidly in recent
years, there grew a strong demand to use computers for knowledge processing.
For example, the various expert computer systems listed in Table 1.1 are used for
problem solving in specific areas where they can reach a level of performance
comparable to that of human experts. It has been projected by some computer
scientists that knowledge processing will be the main thrust of computer usage in
the 1990s.

Today’s computers can be made very knowlegeable but are far from being
intelligent. Intelligence is very difficult to create; its processing even more so.
Today’s computers are very fast and obedient and have many reliable memory
cells to be qualified for data-information-knowledge processing. But none of the

6 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Table 1.1: Some existing expert computer systems for knowledge processing

System name Expertise
AQ11 Diagnosis of plant diseases
Internist, casnet Medical consulting
Dendral Hypothesizing molecular structure from mass spectrograms

Dipmeter, advisor Oil exploration

EL Analyzing electrical circuits
Macsyma Mathematical manipulation
Prospector Mineral exploration

RI Computer configuration
SPERIL Earthquake damage estimation

existing computers can be considered a really intelligent thinking system. Com-
puters are still unable to communicate with human beings in natural forms like
speech and written languages, pictures and images, documents, and illustrations.
Computers are far from being satisfactory in performing theorem proving, logical
inference, and creative thinking. We are in an era which is promoting the use of
computers not only for conventional data-information processing, but also toward
the building of workable machine knowledge-intelligence systems to advance
human civilization. Many computer scientists reel that the degree of parallelism
exploitable at the two highest processing levels should be higher than that at the
data-information processing levels.

From an operating system point of view, computer systems have improved
chronologically in four phases:

* Batch processing

e Multiprogramming

e Time sharing

e Multiprocessing
In these four operating modes, the degree of parallelism increases sharply from
phase to phase. The general trend is to emphasize parallel processing of
information. In what follows, the term information is used with an extended
meaning to include data, information, knowledge, and intelligence. We formally
define parallel processing as follows:

Definition Parallel processing is an efficient form of information processing

which emphasizes the exploitation of concurrent events in the computing

process. Concurrency implies parallelism, simultaneity, and pipelining.

Parallel events may occur in multiple resources during the same time interval,

simultaneous events may occur at the same time instant; and pipelined events

may occur in overlapped time spans. These concurrent events are attainable

in a computer system at various processing levels. Parallel processing

demands concurrent execution of many programs in the computer. It is in

INTRODUCTION TO PARALLEL PROCESSING 7

contrast to sequential processing. It is a cost-effective means to improve
system performance through concurrent activities in the computer.

The highest level of parallel processing is conducted among multiple jobs or
programs through multiprogramming, time sharing, and multiprocessing. This
level requires the development of parallel processable algorithms. The
implementation of parallel algorithms depends on the efficient allocation of
limited hardware-software resources to multiple programs being used to solve a
large computation problem. The next highest level of parallel processing is
conducted among procedures or tasks (program segments) within the same
program. This involves the decomposition of a program into multiple tasks. The
third level is to exploit concurrency among multiple instructions. Data dependency
analysis is often performed to reveal parallelism among instructions. Vectorization
may be desired among scalar operations within DO loops. Finally, we may wish
to have faster and concurrent operations within each instruction. To sum up,
parallel processing can be challenged in four programmatic levels:

e Job or program level

e Task or procedure level

e Interinstruction level

* Intrainstruction level

The highest job level is often conducted algorithmically. The lowest intra-
instruction level is often implemented directly by hardware means. Hardware
roles increase from high to low levels. On the other hand, software implementations
increase from low to high levels. The trade-off between hardware and software
approaches to solve a problem is always a very controversial issue. As hardware
cost declines and software cost increases, more and more hardware methods are
replacing the conventional software approaches. The trend is also supported by
the increasing demand for a faster real-time, resource-sharing, and fault-tolerant
computing environment.

The above characteristics suggest that parallel processing is indeed a
combined field of studies. It requires a broad knowledge of and experience with
all aspects of algorithms, languages, software, hardware, performance evaluation,
and computing alternatives. This book concentrates on parallel processing with
centralized computing facilities. Distributed processing on physically dispersed
and loosely coupled computer networks is beyond the scope of this book, though
a high degree of concurrency is often exploitable in distributed systems.

Parallel processing and distributed processing are closely related. In some
cases, we use certain distributed techniques to achieve parallelism. As data
communications technology advances progressively, the distinction between
parallel and distributed processing becomes smaller and smaller. In this extended
sense, we may view distributed processing as a form of parallel processing in a
special environment.

To achieve parallel processing requires the development of more capable and
cost-effective computer systems. This book emphasizes the design and application

8 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

of parallel processing computers, including various architectural configurations,
functional capabilities, operating systems, algorithmic and programming
requirements, and performance limitations of parallel-structured computers. The
ultimate goal is to achieve high performance at lower cost in performing large
scale scientific-engineering computing tasks in the various application areas to be
introduced in Section 1.5.

Most computer manufacturers started with the development of systems with
a single central processor, called a uniprocessor system. We will reveal various
means to promote concurrency in uniprocessor systems in Section 1.2.
Uniprocessor systems have their limit in achieving high performance. The
computing power in a uniprocessor can be further upgraded by allowing the use
of multiple processing elements under one controller. One can also extend the
computer structure to include multiple processors with shared memory space and
peripherals under the control of one integrated operating system. Such a computer
is called a multi processor system.

As far as parallel processing is concerned, the general architectural trend is
being shifted away from conventional uniprocessor systems to multiprocessor
systems or to an array of processing elements controlled by one uniprocessor. In
all cases, a high degree of pipe lining is being incorporated into the various system
levels. We will introduce these parallel computer structures in Section 1.3. After
learning the parallelism in both uniprocessor and multiprocessor systems, we will
then study several architectural classification schemes based on the machine
structures and operation modes.

1.2 PARALLELISM IN UNIPROCESSOR SYSTEMS

Most general-purpose uniprocessor systems have the same basic structure. In this
section, we will briefly review the architecture of uniprocessor systems. The
development of parallelism in uniprocessors will then be introduced categorically,
It is assumed that readers have had at least one basic course in the past on
conventional computer organization. Therefore, we will provide only concise
specifications of the architectural features of two popular commercial computers.
Parallel-processing mechanisms and methods to balance subsystem bandwidths
will then be described for a typical uniprocessor system. Details of these structures,
mechanisms, and methods can be found in references suggested in the bibliographic
notes.

1.2.1 Basic Uniprocessor Architecture

A typical uniprocessor computer consists of three major components: the main
memory, the central processing unit (CPU), and the input-output (I/O) subsystem.
The architectures of two commercially available uniprocessor computers are
given below to show the possible interconnection of structures among the three
subsystems. We will examine major components in the CPU and in the I/O
subsystem.

INTRODUCTION TO PARALLEL PROCESSING 9

Console
CPU 5
®
g R’.O PC @
Floppy | § || e 8 .
disk | € ° @ Ma3|2n memory
S [| rR15| | ALU [& (2 words of
g Registers g 32 bits each)
o -
a ®
ke
[T
A
\ 4 v
< Synchronous backplane interconnect (SBI) >
A A
v v
Unibus Massbus
adapter mm adapter %?
v I/O devices 1/0 devices
SBI /0
devices

Input-output subsytem

Figure 1.3: The system architecture of the supermini VAX-11/780 uniprocessor system
(Courtesy of Digital Equipment Corporation)

Figure 1.3 shows the architectural components of the super minicomputer
VAX-11/780, manufactured by Digital Equipment Company. The CPU
contains the master controller of the VAX system. There are sixteen 32-bit
general-purpose registers, one of which serves as the program counter (PC).
There is also a special CPU status register containing information about the
current state of the processor and of the program being executed. The CPU
contains an arithmetic and logic unit (ALU) with an optional floating-point
accelerator, and some local cache memory with an optional diagnostic
memory. The CPU can be intervened by the operator through the console
connected to a floppy disk.

The CPU, the main memory (232 words of 32 bits each), and the I/O
subsystems are all connected to a common bus, the synchronous backplane
interconnect (SBI). Through this bus, all I/O devices can communicate with each
other, with the CPU, or with the memory. Peripheral storage or I/O devices can be
connected directly to the SBI through the unibus and its controller (which can be
connected to PDP-11 series minicomputers), or through a massbus and its
controller.

Another representative commercial system is the mainframe computer IBM
System 370/Model 168 uniprocessor, shown in Figure 1.4. The CPU contains the

10 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Main memory

Logical storage units

LSUO LSU1 LSu2 LSU3

Storage controller

Central processing unit
(CPU)

1/0O channels

1/0O channels

Figure 1.4: The system architecture of the mainframe IBM System 370/Model 168
uniprocessor computer (Courtesy of International Business Machines Corp.).

instruction decoding and execution units as well as a cache. Main memory is
divided into four units, referred to as logical storage units (LSU), that are four-
way interleaved. The storage controller provides multiport connections between
the CPU and the four LSUs. Peripherals are connected to the system via high-
speed I/O channels which operate asynchronously with the CPU. In Chapter 9, we
will show that this uniprocessor can be modified to assume some multiprocessor
configurations.

Hardware and software means to promote parallelism in uniprocessor systems
are introduced in the next three subsections. We begin with hardware approaches
which emphasize resource multiplicity and time overlapping. It is necessary to
balance the processing rates of various subsystems in order to avoid bottlenecks
and to increase total system throughput, which is the number of instructions (or
basic computations) performed per unit time. Finally, we study operating system
software approaches to achieve parallel processing with better utilization of the
system resources.

INTRODUCTION TO PARALLEL PROCESSING 11

1.2.2 Parallel Processing Mechanisms
A number of parallel processing mechanisms have been developed in uniprocessor
computers. We identify them in the following six categories:

* Multiplicity of functional units

* Parallelism and pipelining within the CPU

* Overlapped CPU and I/O operations

» Use of a hierarchical memory system

* Balancing of subsystem bandwidths

* Multiprogramming and time sharing
We will describe below the first four techniques and discuss the remaining two
approaches in the subsections to follow.
Multiplicity of functional units: The early computer had only one arithmetic and
logic unit in its CPU. Furthermore, the ALU could only perform one function at a
time, a rather slow process for executing a long sequence of arithmetic logic
instructions. In practice, many of the functions of the ALU can be distributed to
multiple and specialized functional units which can operate in parallel. The CDC-
6600 (designed in 1964) has 10 functional units built into its CPU (Figure 1.5).
These 10 units are independent of each other and may operate simultaneously. A
scoreboard is used to keep track of the availability of the functional units and
registers being demanded. With 10 functional units and 24 registers available, the
instruction issue rate can be significantly increased.

Peripheral 10 Add
processors functional =
units Multiply
PPO Multiply
PP1 Divide
PP2 Fixed add
PP3 o4 Increment
> Peri;ﬁeral < :PP4 < Central [registers g e
channels PP5 storage Boolean
PP6 Shift
PP7 Branch
PP8
e
I/O subsystem Memory Central processor

Figure 1.5: The system architecture of the CDC-6600 computer
(Courtesy of Control Data Corp.).
Another good example of a multifunction uniprocessor is the IBM 360/91
(1968), which has two parallel execution units (E units): one for fixed-point

12 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

arithmetic, and the other for floating-point arithmetic. Within the floating-point E
unit are two functional units: one for floating-point add-subtract and the other for
floating-point multiply-divide. IBM 360/91 is a highly pipelined, multifunction,
scientific uniprocessor. We will study 360/91 in detail in Chapter 3. Almost all
modern computers and attached processors are equipped with multiple functional
units to perform parallel or simultaneous arithmetic logic operations. This practice
of functional specialization and distribution can be extended to array processors
and multiprocessors, to be discussed in subsequent chapters.

Parallelism and pipelining within the CPU: Parallel adders, using such
techniques as carry-lookahead and carry-save, are now built into almost all ALUS.
This is in contrast to the bit-serial adders used in the first-generation machines.
High-speed multiplier recoding and convergence division are techniques for
exploring parallelism and the sharing of hardware resources for the functions of
multiply and divide (to be described in Section 3.2.2). The use of multiple
functional units is a form of parallelism with the CPU.

Various phases of instruction executions are now pipelined, including instruc-
tion fetch, decode, operand fetch, arithmetic logic execution, and store result. To
facilitate overlapped instruction executions through the pipe, instruction prefetch
and data buffering techniques have been developed. Instruction and arithmetic
pipeline designs will be covered in Chapters 3 and 4. Most commercial
uniprocessor systems are now pipelined in their CPU with a clock rate between 10
and 500 ns.

Overlapped CPU and I/O operations: I/O operations can be performed simul-
taneously with the CPU computations by using separate I/O controllers, channels,
or I/O processors. The direct-memory-access (DMA) channel can be used to
provide direct information transfer between the I/O devices and the main memory.
The DMA is conducted on a cycle-stealing basis, which is apparent to the CPU.
Furthermore, 1:0 multiprocessing, such as the use of the 10 I/O processors in
CDC-6600 (Figure 1.5), can speed up data transfer between the CPU (or memory)
and the outside world. I/O subsystems for supporting parallel processing will be
described in Section 2.5. Back-end database machines can be used to manage
large databases stored on disks.

Use of hierarchical memory system Usually, the CPU is about 1000 times
faster than memory access. A hierarchical memory system can be used to close up
the speed gap. Computer memory hierarchy is conceptually illustrated in Figure
1.6. The innermost level is the register files directly addressable by ALU. Cache
memory can be used to serve as a buffer between the CPU and the main memory.
Block access of the main memory can be achieved through multiway interleaving
across parallel memory modules (Figure 1.4). Virtual memory space can be
established with the use of disks and tape units at the outer levels.

Details of memory subsystems for both uniprocessor and multiprocessor
computers are given in Chapter 2. Various interleaved memory organizations are

INTRODUCTION TO PARALLEL PROCESSING 13

CPU

A

Main memory
(RAMs or core)

Fixed-head disks, drum,
charge-coupled devices,
or magnetic bubble memory

Moving head disks

A

Magnetic tape units

Figure 1.6: The classical memory hierarchy.

given in Section 3.1.4. Parallel memories for array processors are treated in
Section 6.2.4, along with the description of the Burroughs Scientific Processor
(1978). Multiprocessor memory and cache coherence problems will be treated in
Section 7.3. All these techniques are intended to broaden the memory bandwidth
to match that of the CPU.

1.2.3 Balancing of Subsystem Bandwidth

In general, the CPU is the fastest unit in a computer, with a processor cycle ¢ of
tens of nanoseconds: the main memory has a cycle time ¢ of hundreds of
nanoseconds; and the I/O devices are the slowest with an average access time t,
of a few milliseconds. It is thus observed that

1> 1, <t (1.1)

14 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

For example, the IBM 370/168 has ¢, = 5 ms (disk), ¢, = 320 ns, and t,= 80 ns.
With these speed gaps between the subsystems, we need to match their processing
bandwidths in order to avoid a system bottleneck problem.

The bandwidth of a system is defined as the number of operations performed
per unit time. In the case of a main memory system, the memory bandwidth is
measured by the number of memory words that can be accessed (either fetch or
store) per unit time. Let W be the number of words deliven, xi per memory cycle
t,.. Then the maximum memory bandwidth B, , is equal to

w
B, = o (words/s or bytes/s) (1.2)

m

For example, the IBM 3033 uniprocessor has a processor cycle t,=57ns, Eight
double words (8 bytes each) can be requested from an eight-way interleaved
memory system (with eight LSEs in Figure 1.7) per each memory cycle 1m =456
ns, Thus, the maximum memory bandwidth of the 3033 is B, , = 8 x 8 bytes/456 ns
= 140 megabytes/s. Memory access conflicts may cause delayed access of some
of the processor requests. In practice, the utilized memory bandwidth B¥ is
usually lower than B, ; that is, BY < B, . A rough measure of B” has been
suggested as

B, = (13)

where M is the number of interleaved memory modules in the memory system (to
be described in Section 3.1.4). For the IBM 3033 uniprocessor, we thus have an
approximate B" = 140/ J8 =49.5 megabytes/s.

For external memory and I/O devices, the concept of bandwidth is more
involved because of the sequential-access nature of magnetic disks and tape units.
Considering the latencies and rotational delays, the data transfer rate may vary. In
general, we refer to the average data transfer rate Ed as the bandwidth of a disk
unit A typical modern disk may have a data rate of I megabyte/s. With multiple
disk drives, the data rate can increase to 10 megabytes/s, say for 10 drives per
channel controller. A modern magnetic tape unit has a data transfer rate around
1,5 megabytes/s. Other peripheral devices, like line printers, readers/punch, and
CRT terminals, are much slower due to mechanical motions.

The bandwidth of a processor is measured as the maximum CPU computation
rate B > as in 160 megaflops for the Cray-l and 12.5 million instructions per
second (MIPS) for IBM 370/168. These are all peak values obtained by l/tp’ =
1/12.5 ns and 1/80 ns respectively. In practice, the utilized CPU rate is B“p < Bp.
The utilized CPU rate B“p is based on measuring the number of output results (in
words) per second:

RW
B" b = i (words/s) (1.4)

INTRODUCTION TO PARALLEL PROCESSING 15

e
Byte 0 LSE 0
L] L]
L] L]
L] L]
Byte 7
o}
[8]
32
£s Byte 8 LSE 1
X £
()
SE
g8
So °
oo
7]
38 < ’
~Q
n O
‘E © °
o o
Bl
O n
2P
30
58 Byte 15
£2
i & ‘ °
L] L]
L] L]
Byte 56 LSE 7
L]
L]
L]
Byte 63
N

Logical storage elements
Figure 1.7: The interleaved memory structure in IBM 3033 uniprocessor.

where R is the number of word results and T is the total CPU time required to
generate the R results. For a machine with variable word length, the rate will

16 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

vary. For example, the CDC Cyber-205 has a peak CPU rate of 200 megaflops for
32-bit results and only 100 megaflops for 64-bit results (one vector processor is
assumed).

Based on current technology (1983), the following relationships have been
observed between the bandwidths of the major subsystems in a high-performance
uniprocessor:

B,>B“,>B >B" >B, (1.5)

This implies that the main memory has the highest bandwidth. since it must
be updated by both the CPU and the I/O devices, as illustrated in Figure 1.8. Due
to the unbalanced speeds (Eq. 1.1), we need to match the processing power of the
three subsystems. Two major approaches are described below.

Bandwidth balancing between CPU and memory: The speed gap between the
CPU and the main memory can be closed up by using fast cache memory between
them. The cache should have an access time ¢, = l, A block of memory words is
moved from the main memory into the cache (such as 16 words/block for the IBM
3033) so that immediate instructions/data can be available most of the time from
the cache. The cache serves as a data/instruction buffer. Detailed descriptions of
cache memories will be given in Sections 2.4 and 7.3

Bandwidth balancing between memory and I/O device: Input-output channels
with different speeds can be used between the slow I/O devices and the main
memory. These I/O channels perform buffering and multiplexing functions to
transfer the data from multiple disks into the main memory by stealing cycles
from the CPU. Furthermore, intelligent disk controllers or database machines can
be used to filter out the irrelevant data just off the tracks of the disk. This filtering
will alleviate the I/O channel saturation problem. The combined buffering, multi-
plexing, and filtering operations thus can provide a faster, more effective data
transfer rate, matching that of the memory.

In the ideal case, we wish to achieve a totally balanced system, in which the
entire memory bandwidth matches the bandwidth sum of the processor and I/O
devices; that is,

B* +Bd=B" (1.6)
P P

where B* =Bp and B¥ = B, are both maximized. Achieving this total balance
requires tremendous hardware and software supports beyond any of the existing
systems.

1.2.4 Multiprogramming and Time Sharing

Even when there is only one CPU in a uniprocessor system, we can still achieve a
high degree of resource sharing among many user programs. We will briefly
review the concepts of multiprogramming and time sharing in this subsection.
These are software approaches to achieve concurrency in a uniprocessor system.

INTRODUCTION TO PARALLEL PROCESSING 17

siaisiboy

*J121ndwiod J0ssadoadiun b ul wasAsqns o/| pub
Aiowaw ‘NdH uaamiaq swisiubydaw buipubipq yipimpuog :8'T a4nsi4

pue

suolnonJsul
10}
Klowaw

1

1

1

1

1

1

1

1

1

m

| ejep
1

1

1

1

1

“

m ayoe)
1

sabelo}s
Kiepuooag
(“y) 1) soIne(Q
I
(Buixajdiynuw .
I ey ‘Buriayng) °
(panesjiaiul) e
u u aseqgejep Jo
sa|npowl Alows| SJ8]|oJjuod
8olAsp so1n8(
"H_| s|auueyo Q| «Cwm___wur:
I — I .
°
°
I
Klowaw uiely wajshs O/ g
(“a) g) oll

