
CHAPTER

1
INTRODUCTION TO  

PARALLEL PROCESSING

Basic concepts of parallel processing on high-performance computers are 
introduced in this chapter. We will review the architectural evolution, examine 
various forms of concurrent activities in modern computer systems, and assess 
advanced applications of parallel processing computers, Parallel computer 
structures will be characterized as pipelined computers, array processors, and 
multiprocessor systems. Several new computing concepts, including data flow 
and VLSI approaches, will be introduced. The material presented in this 
introductory chapter will provide an overview of the field and pave the way to 
studying in subsequent chapters the details of theories of parallel computing, 
machine architectures, system controls, fast algorithms, and programming 
requirements.

1.1  EVOLUTION OF COMPUTER SYSTEMS
Over the past four decades the computer industry has experienced four generations 
of development, physically marked by the rapid changing of building blocks from 
relays and vacuum tubes (1940-1950s) to discrete diodes and transistors (1950-
1960s), to small- and medium-scale integrated (SSI/MSI) circuits (1960-1970s), 
and to large- and very-large-scale integrated (LSI/VLSI) devices (1970s and 
beyond). Increases in device speed and reliability and reductions in hardware cost 
and physical size have greatly enhanced computer performance. However, better 
devices are not the sole factor contributing to high performance. Ever since the 
stored-program concept of von Neumann, the computer has been recognized as 
more than just a hardware organization problem. A modern computer system is 
really a composite of such items as processors, memories, functional units, 
interconnection networks, compilers, operating systems, peripheral devices, 
communication channels, and database banks.

To design a powerful and cost-effective computer system and to devise 
efficient programs to solve a computational problem, one must understand the 
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underlying hardware and software system structures and the computing 
algorithms to be implemented on the machine with some user-oriented 
programming languages. These disciplines constitute the technical scope of 
computer architecture. Computer architecture is really a system concept 
integrating hardware, software, algorithms, and languages to perform large 
computations. A good computer architect should master all these disciplines. 
It is the revolutionary advances in integrated circuits and system architecture 
that have contributed most to the significant improvement of computer 
performance during the past 40 years. In this section, we review the generations 
of computer systems and indicate the general trends in the development of 
high performance computers. 

1.1.1  Generations of Computer Systems 
The division of computer systems into generations is determined by the device 
technology, system architecture, processing mode, and languages used. We con
sider each generation to have a time span of about 10 years. Adjacent generations 
may overlap in several years as demonstrated in Figure 1.1. The long time span is 
intended to cover both development and use of the machines in various parts of 
the world. We are currently in the fourth generation, while the fifth generation is 
not materialized yet. 
The first generation (1938-1953): The introduction of the first electronic analog 
computer in 1938 and the first electronic digital computer, ENIAC (Electronic 
Numerical Integrator and Computer), in 1946 marked the beginning of the first 
generation of computers. Electromechanical relays were used as switching

Figure 1.1: The evolution of computer systems.
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devices in the 1940s, and vacuum tubes were used in the 1950s. These devices 
were interconnected by insulated wires. Hardware components were expensive 
then, which forced the CPU structure to be bit-serial: arithmetic is done on a bit-
by-bit fixed-point basis, as in a ripple-carry addition which uses a single full adder 
and one bit of carry flag.

Only binary-coded machine language was used in early computers. In 1950, 
the first stored-program computer, EDVAC (Electronic Discrete Variable 
Automatic Computer), was developed. This marked the beginning of the use of 
system software to relieve the user’s burden in low-level programming. However, 
it is not difficult to imagine that hardware costs predominated and software 
language features were rather primitive in the early computers. By 1952, IBM had 
announced its 701 electronic calculator. The system used Williams’ tube memory, 
magnetic drums, and magnetic tape.
The second generation (1952-1963): Transistors were invented in 1948. The first 
transistorized digital computer, TRADIC, was built by Bell Laboratories in 1954. 
Discrete transistors and diodes were the building blocks: 800 transistors were 
used in TRADIC. Printed circuits appeared. By this time, coincident current 
magnetic core memory was developed and subsequently appeared in many 
machines. Assembly languages were used until the development of high-level 
languages, Fortran (formula translation) in 1956 and Algol (algorithmic language) 
in 1960.

In 1959, Sperry Rand built the Larc system and IBM started the Stretch 
projeet. These were the first two computers attributable to architectural 
improvement. The Larc had an independent I/O processor which operated in 
parallel with one or two processing units. Stretch featured instruction lookahead 
and error correction, to be discussed in Section 1.2. The first IBM scientific, 
transistorized computer, IBM 1620, became available in 1960. Cobol (common 
business oriented language) was developed in 1959. Interchangeable disk packs 
were introduced in 1963. Batch processing was popular, providing sequential 
execution of user programs, one at a time until done.
The third generation (1962-1975) This generation was marked by the use of 
small-scale integrated (SSI) and medium-scale integrated (MSI) circuits as the 
basic building blocks. Multilayered printed circuits were used. Core memory was 
still used in CDC-6600 and other machines but by 1968, many fast computers, 
like CDC-7600, began to replace cores with solid-state memories. High-level 
languages were greatly enhanced with intelligent compilers during this period. 

Multiprogramming was well developed to allow the simultaneous execution 
of many program segments interleaved with I/O operations. Many high-
performance computers, like IBM 360/91, Illiac-IV, TI-ASC, Cyber-175, STAR-
100, and C.mmp, and several vector processors were developed in the early 
seventies. Time-sharing operating systems became available in the late 1960s. 
Virtual memory was developed by using hierarchically structured memory 
systems.
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The fourth generation (1972-present) The present generation computers 
emphasize the use of large-scale integrated (LSI) circuits for both logic and 
memory sections. High-density packaging has appeared. High-level languages 
are being extended to handle both scalar and vector data like the extended Fortran 
in many vector processors. Most operating systems are time-sharing, using virtual 
memories. Vectorizing compilers have appeared in the second generation of 
vector machines, like the Cray-1 (1976) and the Cyber-205 (1982). High-speed 
mainframes and supers appear in multiprocessor systems like the Univac 1100/80 
(1976), Fujitsu M 382 (1981), the IBM 370/168 MP, the IBM 3081 (1980), the 
Burroughs 8-7800 (1978), and the Cray X-MP (1983). A high degree of pipe 
lining and multiprocessing is greatly emphasized in commercial supercomputers. 
A massively parallel processor (MPP) was custom-designed in In2. This MPP 
consisting of 16,384 bit-slice microprocessors, is under the control of one array 
controller for satellite image processing. 

The future Computers to be used in the 1990s may be the next generation. 
Very-large-scale integrated (VLSI) chips will be used along with high-density 
modular design. Multiprocessors like the 16 processors in the S-I project at 
Lawrence Livermore National Laboratory and in the Denelcor’s HEP will be 
required. Cray-2 is expected to have four processors, to be delivered in 1985. 
More than 1000 mega float-point operations per second (megaflops) are expected 
in these future supercomputcrs. We will study major existing systems and discuss 
possible future machines in subsequent chapters. 

1.1.2  Trends Towards Parallel Processing 
According to Sidney Fernbach: “Today’s large computers (mainframes) would 
have been considered ‘supercomputers’ 10 to 20 years ago. By the same token, 
today supercomputer will be considered ‘state-of-art’ standard equipment 10 to 
20 years from now” from an application point of view, the mainstream usage of 
computers is experiencing a trend of four ascending levels of sophistication: 

•	 Data processing 
•	 Information processing 
•	 Knowledge processing 
•	 Intelligence processing 

The relationships between data, information, knowledge, and intelligence are 
demonstrated in Figure 1.2. The data space is the largest, including numeric 
numbers in various formats, character symbols, and multidimensional measures. 
Data objects are considered mutually unrelated in the space. Huge amounts of 
data are being generated daily in all walks of life, especially among the scientific. 
business, and government sectors. An information item is a collection of data 
objects that are related by some syntactic structure or relation. Therefore, 
information items form a subspace of the data space. Knowledge consists of 
information items plus some semantic meanings. Thus knowledge items form a 



	 Introduction To Parallel Processing  5

Figure 1.2: The spaces of data, information, knowledge, and intelligence  
from the viewpoint of computer processing.

subspace of the information space. Finally, intelligence is derived from a collection 
of knowledge items. The intelligence space is represented by the innermost and 
highest triangle in the Venn diagram.

Computer usage started with data processing, which is still a major task o 
today’s computers. With more and more data structures developed, many users 
are shifting to computer roles from pure data processing (mainly number 
crunching) to information processing. Most of today’s computing is still confined 
within these two processing levels. A high degree of parallelism has been found at 
these levels. As the accumulated knowledge bases expanded rapidly in recent 
years, there grew a strong demand to use computers for knowledge processing. 
For example, the various expert computer systems listed in Table 1.1 are used for 
problem solving in specific areas where they can reach a level of performance 
comparable to that of human experts. It has been projected by some computer 
scientists that knowledge processing will be the main thrust of computer usage in 
the 1990s.

Today’s computers can be made very knowlegeable but are far from being 
intelligent. Intelligence is very difficult to create; its processing even more so. 
Today’s computers are very fast and obedient and have many reliable memory 
cells to be qualified for data-information-knowledge processing. But none of the
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Table 1.1: Some existing expert computer systems for knowledge processing 

System name Expertise

AQ11 Diagnosis of plant diseases

Internist, casnet Medical consulting

Dendral Hypothesizing molecular structure from mass spectrograms

Dipmeter, advisor Oil exploration

EL Analyzing electrical circuits

Macsyma Mathematical manipulation

Prospector Mineral exploration

RI Computer configuration

SPERIL Earthquake damage estimation

existing computers can be considered a really intelligent thinking system. Com
puters are still unable to communicate with human beings in natural forms like 
speech and written languages, pictures and images, documents, and illustrations. 
Computers are far from being satisfactory in performing theorem proving, logical 
inference, and creative thinking. We are in an era which is promoting the use of 
computers not only for conventional data-information processing, but also toward 
the building of workable machine knowledge-intelligence systems to advance 
human civilization. Many computer scientists reel that the degree of parallelism 
exploitable at the two highest processing levels should be higher than that at the 
data-information processing levels. 

From an operating system point of view, computer systems have improved 
chronologically in four phases: 

•	 Batch processing 
•	 Multiprogramming 
•	 Time sharing 
•	 Multiprocessing 

In these four operating modes, the degree of parallelism increases sharply from 
phase to phase. The general trend is to emphasize parallel processing of 
information. In what follows, the term information is used with an extended 
meaning to include data, information, knowledge, and intelligence. We formally 
define parallel processing as follows: 

Definition Parallel processing is an efficient form of information processing 
which emphasizes the exploitation of concurrent events in the computing 
process. Concurrency implies parallelism, simultaneity, and pipelining. 
Parallel events may occur in multiple resources during the same time interval; 
simultaneous events may occur at the same time instant; and pipelined events 
may occur in overlapped time spans. These concurrent events are attainable 
in a computer system at various processing levels. Parallel processing 
demands concurrent execution of many programs in the computer. It is in 
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contrast to sequential processing. It is a cost-effective means to improve 
system performance through concurrent activities in the computer.
The highest level of parallel processing is conducted among multiple jobs or 

programs through multiprogramming, time sharing, and multiprocessing. This 
level requires the development of parallel processable algorithms. The 
implementation of parallel algorithms depends on the efficient allocation of 
limited hardware-software resources to multiple programs being used to solve a 
large computation problem. The next highest level of parallel processing is 
conducted among procedures or tasks (program segments) within the same 
program. This involves the decomposition of a program into multiple tasks. The 
third level is to exploit concurrency among multiple instructions. Data dependency 
analysis is often performed to reveal parallelism among instructions. Vectorization 
may be desired among scalar operations within DO loops. Finally, we may wish 
to have faster and concurrent operations within each instruction. To sum up, 
parallel processing can be challenged in four programmatic levels:

•	 Job or program level
•	 Task or procedure level
•	 Interinstruction level
•	 Intrainstruction level
The highest job level is often conducted algorithmically. The lowest intra-

instruction level is often implemented directly by hardware means. Hardware 
roles increase from high to low levels. On the other hand, software implementations 
increase from low to high levels. The trade-off between hardware and software 
approaches to solve a problem is always a very controversial issue. As hardware 
cost declines and software cost increases, more and more hardware methods are 
replacing the conventional software approaches. The trend is also supported by 
the increasing demand for a faster real-time, resource-sharing, and fault-tolerant 
computing environment.

The above characteristics suggest that parallel processing is indeed a 
combined field of studies. It requires a broad knowledge of and experience with 
all aspects of algorithms, languages, software, hardware, performance evaluation, 
and computing alternatives. This book concentrates on parallel processing with 
centralized computing facilities. Distributed processing on physically dispersed 
and loosely coupled computer networks is beyond the scope of this book, though 
a high degree of concurrency is often exploitable in distributed systems.

Parallel processing and distributed processing are closely related. In some 
cases, we use certain distributed techniques to achieve parallelism. As data 
communications technology advances progressively, the distinction between 
parallel and distributed processing becomes smaller and smaller. In this extended 
sense, we may view distributed processing as a form of parallel processing in a 
special environment.

To achieve parallel processing requires the development of more capable and 
cost-effective computer systems. This book emphasizes the design and application 
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of parallel processing computers, including various architectural configurations,  
functional capabilities, operating systems, algorithmic and programming 
requirements, and performance limitations of parallel-structured computers. The  
ultimate goal is to achieve high performance at lower cost in performing large 
scale scientific-engineering computing tasks in the various application areas to be  
introduced in Section 1.5.

Most computer manufacturers started with the development of systems with 
a single central processor, called a uniprocessor system. We will reveal various 
means to promote concurrency in uniprocessor systems in Section 1.2. 
Uniprocessor systems have their limit in achieving high performance. The 
computing power in a uniprocessor can be further upgraded by allowing the use 
of multiple processing elements under one controller. One can also extend the 
computer structure to include multiple processors with shared memory space and 
peripherals under the control of one integrated operating system. Such a computer 
is called a multi processor system.

As far as parallel processing is concerned, the general architectural trend is  
being shifted away from conventional uniprocessor systems to multiprocessor  
systems or to an array of processing elements controlled by one uniprocessor. In 
all cases, a high degree of pipe lining is being incorporated into the various system 
levels. We will introduce these parallel computer structures in Section 1.3. After 
learning the parallelism in both uniprocessor and multiprocessor systems, we will 
then study several architectural classification schemes based on the machine 
structures and operation modes. 

1.2  PARALLELISM IN UNIPROCESSOR SYSTEMS 
Most general-purpose uniprocessor systems have the same basic structure. In  this 
section, we will briefly review the architecture of uniprocessor systems. The 
development of parallelism in uniprocessors will then be introduced categorically, 
It is assumed that readers have had at least one basic course in the past on 
conventional computer organization. Therefore, we will provide only concise 
specifications of the architectural features of two popular commercial computers. 
Parallel-processing mechanisms and methods to balance subsystem bandwidths 
will then be described for a typical uniprocessor system. Details of these structures, 
mechanisms, and methods can be found in references suggested in the bibliographic 
notes.

1.2.1  Basic Uniprocessor Architecture 
A typical uniprocessor computer consists of three major components: the main  
memory, the central processing unit (CPU), and the input-output (I/O) subsystem. 
The architectures of two commercially available uniprocessor computers are 
given below to show the possible interconnection of structures among the three 
subsystems. We will examine major components in the CPU and in the I/O 
subsystem.
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Figure 1.3: The system architecture of the supermini VAX-11/780 uniprocessor system 
(Courtesy of Digital Equipment Corporation)

Figure 1.3 shows the architectural components of the super minicomputer 
VAX-11/780, manufactured by Digital Equipment Company. The CPU 
contains the master controller of the VAX system. There are sixteen 32-bit 
general-purpose registers, one of which serves as the program counter (PC). 
There is also a special CPU status register containing information about the 
current state of the processor and of the program being executed. The CPU 
contains an arithmetic and logic unit (ALU) with an optional floating-point 
accelerator, and some local cache memory with an optional diagnostic 
memory. The CPU can be intervened by the operator through the console 
connected to a floppy disk.

The CPU, the main memory (232 words of 32 bits each), and the I/O 
subsystems are all connected to a common bus, the synchronous backplane 
interconnect (SBI). Through this bus, all I/O devices can communicate with each 
other, with the CPU, or with the memory. Peripheral storage or I/O devices can be 
connected directly to the SBI through the unibus and its controller (which can be 
connected to PDP-11 series minicomputers), or through a massbus and its 
controller.

Another representative commercial system is the mainframe computer IBM 
System 370/Model 168 uniprocessor, shown in Figure 1.4. The CPU contains the 
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Figure 1.4: The system architecture of the mainframe IBM System 370/Model 168 
uniprocessor computer (Courtesy of International Business Machines Corp.).

instruction decoding and execution units as well as a cache. Main memory is 
divided into four units, referred to as logical storage units (LSU), that are four-
way interleaved. The storage controller provides multiport connections between 
the CPU and the four LSUs. Peripherals are connected to the system via high-
speed I/O channels which operate asynchronously with the CPU. In Chapter 9, we 
will show that this uniprocessor can be modified to assume some multiprocessor 
configurations. 

Hardware and software means to promote parallelism in uniprocessor systems 
are introduced in the next three subsections. We begin with hardware approaches 
which emphasize resource multiplicity and time overlapping. It is necessary to 
balance the processing rates of various subsystems in order to avoid bottlenecks 
and to increase total system throughput, which is the number of instructions (or 
basic computations) performed per unit time. Finally, we study operating system 
software approaches to achieve parallel processing with better utilization of the 
system resources. 
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1.2.2  Parallel Processing Mechanisms
A number of parallel processing mechanisms have been developed in uniprocessor 
computers. We identify them in the following six categories:

•	 Multiplicity of functional units
•	 Parallelism and pipelining within the CPU
•	 Overlapped CPU and I/O operations
•	 Use of a hierarchical memory system
•	 Balancing of subsystem bandwidths
•	 Multiprogramming and time sharing

We will describe below the first four techniques and discuss the remaining two 
approaches in the subsections to follow.
Multiplicity of functional units: The early computer had only one arithmetic and 
logic unit in its CPU. Furthermore, the ALU could only perform one function at a 
time, a rather slow process for executing a long sequence of arithmetic logic 
instructions. In practice, many of the functions of the ALU can be distributed to 
multiple and specialized functional units which can operate in parallel. The CDC-
6600 (designed in 1964) has 10 functional units built into its CPU (Figure 1.5). 
These 10 units are independent of each other and may operate simultaneously. A 
scoreboard is used to keep track of the availability of the functional units and 
registers being demanded. With 10 functional units and 24 registers available, the 
instruction issue rate can be significantly increased.

Figure 1.5: The system architecture of the CDC-6600 computer  
(Courtesy of Control Data Corp.).

Another good example of a multifunction uniprocessor is the IBM 360/91 
(1968), which has two parallel execution units (E units): one for fixed-point 
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arithmetic, and the other for floating-point arithmetic. Within the floating-point E 
unit are two functional units: one for floating-point add-subtract and the other for 
floating-point multiply-divide. IBM 360/91 is a highly pipelined, multifunction, 
scientific uniprocessor. We will study 360/91 in detail in Chapter 3. Almost all 
modern computers and attached processors are equipped with multiple functional  
units to perform parallel or simultaneous arithmetic logic operations. This practice 
of functional specialization and distribution can be extended to array processors 
and multiprocessors, to be discussed in subsequent chapters. 
Parallelism and pipelining within the CPU: Parallel adders, using such 
techniques as carry-lookahead and carry-save, are now built into almost all ALUs. 
This is in contrast to the bit-serial adders used in the first-generation machines. 
High-speed multiplier recoding and convergence division are techniques for 
exploring parallelism and the sharing of hardware resources for the functions of 
multiply and divide (to be described in Section 3.2.2). The use of multiple 
functional units is a form of parallelism with the CPU. 

Various phases of instruction executions are now pipelined, including instruc
tion fetch, decode, operand fetch, arithmetic logic execution, and store result. To 
facilitate overlapped instruction executions through the pipe, instruction prefetch 
and data buffering techniques have been developed. Instruction and arithmetic 
pipeline designs will be covered in Chapters 3 and 4. Most commercial 
uniprocessor systems are now pipelined in their CPU with a clock rate between 10 
and 500 ns. 
Overlapped CPU and I/O operations: I/O operations can be performed simul
taneously with the CPU computations by using separate I/O controllers, channels, 
or I/O processors. The direct-memory-access (DMA) channel can be used to 
provide direct information transfer between the I/O devices and the main memory. 
The DMA is conducted on a cycle-stealing basis, which is apparent to the CPU. 
Furthermore, 1:0 multiprocessing, such as the use of the 10 I/O processors in 
CDC-6600 (Figure 1.5), can speed up data transfer between the CPU (or memory) 
and the outside world. I/O subsystems for supporting parallel processing will be 
described in Section 2.5. Back-end database machines can be used to manage 
large databases stored on disks. 

Use of hierarchical memory system Usually, the CPU is about 1000 times 
faster than memory access. A hierarchical memory system can be used to close up 
the speed gap. Computer memory hierarchy is conceptually illustrated in Figure 
1.6. The innermost level is the register files directly addressable by ALU. Cache 
memory can be used to serve as a buffer between the CPU and the main memory. 
Block access of the main memory can be achieved through multiway interleaving 
across parallel memory modules (Figure 1.4). Virtual memory space can be 
established with the use of disks and tape units at the outer levels.

Details of memory subsystems for both uniprocessor and multiprocessor  
computers are given in Chapter 2. Various interleaved memory organizations are 
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Figure 1.6: The classical memory hierarchy.

given in Section 3.1.4. Parallel memories for array processors are treated in 
Section 6.2.4, along with the description of the Burroughs Scientific Processor 
(1978). Multiprocessor memory and cache coherence problems will be treated in 
Section 7.3. All these techniques are intended to broaden the memory bandwidth 
to match that of the CPU.

1.2.3  Balancing of Subsystem Bandwidth

In general, the CPU is the fastest unit in a computer, with a processor cycle tp of 
tens of nanoseconds: the main memory has a cycle time tm of hundreds of 
nanoseconds; and the I/O devices are the slowest with an average access time td 
of a few milliseconds. It is thus observed that

	 tp > tm < tp	 ( 1.1)
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For example, the IBM 370/l68 has tm = 5 ms (disk), tm = 320 ns, and tp = 80 ns. 
With these speed gaps between the subsystems, we need to match their processing 
bandwidths in order to avoid a system bottleneck problem. 

The bandwidth of a system is defined as the number of operations performed 
per unit time. In the case of a main memory system, the memory bandwidth is 
measured by the number of memory words that can be accessed (either fetch or 
store) per unit time. Let W be the number of words deliven, xi per memory cycle 
tm.  Then the maximum memory bandwidth Bm, is equal to 

	 Bm = 
m

W
t

 (words/s or bytes/s) 	 (1.2) 

For example, the IBM 3033 uniprocessor has a processor cycle tp = 57 ns, Eight 
double words (8 bytes each) can be requested from an eight-way interleaved 
memory system (with eight LSEs in Figure 1.7) per each memory cycle 1m = 456 
ns, Thus, the maximum memory bandwidth of the 3033 is Bm, = 8 × 8 bytes/456 ns 
= 140 megabytes/s. Memory access conflicts may cause delayed access of some 
of the processor requests. In practice, the utilized memory bandwidth Bu

m is 
usually lower than Bm; that is, Bu

m < Bm. A rough measure of Bu
m has been 

suggested as 

	 Bu
m = mB

M
	 (1.3)

where M is the number of interleaved memory modules in the memory system (to 
be described in Section 3.1.4). For the IBM 3033 uniprocessor, we thus have an 
approximate Bu

m = 140 / 8  = 49.5 megabytes/s.
For external memory and I/O devices, the concept of bandwidth is more 

involved because of the sequential-access nature of magnetic disks and tape units. 
Considering the latencies and rotational delays, the data transfer rate may vary. In 
general, we refer to the average data transfer rate Ed as the bandwidth of a disk 
unit A typical modern disk may have a data rate of I megabyte/s. With multiple 
disk drives, the data rate can increase to 10 megabytes/s, say for 10 drives per  
channel controller. A modern magnetic tape unit has a data transfer rate around 
1,5 megabytes/s. Other peripheral devices, like line printers, readers/punch, and 
CRT terminals, are much slower due to mechanical motions. 

The bandwidth of a processor is measured as the maximum CPU computation  
rate Bp’ as in 160 megaflops for the Cray-l and 12.5 million instructions per 
second (MIPS) for IBM 370/168. These are all peak values obtained by 1/tp’ = 
1/12.5 ns and 1/80 ns respectively. In practice, the utilized CPU rate is Bu

p < Bp. 
The utilized CPU rate Bu

p is based on measuring the number of output results (in 
words) per second:

	 Bu
p  = w

p

R
T  (words/s)	 (1.4)
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Figure 1.7: The interleaved memory structure in IBM 3033 uniprocessor.

where Rw is the number of word results and Tp is the total CPU time required to 
generate the Rw results. For a machine with variable word length, the rate will 
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vary. For example, the CDC Cyber-205 has a peak CPU rate of 200 megaflops for 
32-bit results and only 100 megaflops for 64-bit results (one vector processor is 
assumed). 

Based on current technology (1983), the following relationships have been 
observed between the bandwidths of the major subsystems in a high-performance 
uniprocessor: 

	 Bm > Bu
m > Bp > Bu

p > Bd	 (1.5) 

This implies that the main memory has the highest bandwidth. since it must 
be updated by both the CPU and the I/O devices, as illustrated in Figure 1.8. Due 
to the unbalanced speeds (Eq. 1.1), we need to match the processing power of the 
three subsystems. Two major approaches are described below. 

Bandwidth balancing between CPU and memory: The speed gap between the 
CPU and the main memory can be closed up by using fast cache memory between 
them. The cache should have an access time te = tp. A block of memory words is 
moved from the main memory into the cache (such as 16 words/block for the IBM 
3033) so that immediate instructions/data can be available most of the time from 
the cache. The cache serves as a data/instruction buffer. Detailed descriptions of 
cache memories will be given in Sections 2.4 and 7.3 

Bandwidth balancing between memory and I/O device: Input-output channels 
with different speeds can be used between the slow I/O devices and the main 
memory. These I/O channels perform buffering and multiplexing functions to 
transfer the data from multiple disks into the main memory by stealing cycles 
from the CPU. Furthermore, intelligent disk controllers or database machines can 
be used to filter out the irrelevant data just off the tracks of the disk. This filtering 
will alleviate the I/O channel saturation problem. The combined buffering, multi
plexing, and filtering operations thus can provide a faster, more effective data 
transfer rate, matching that of the memory. 

In the ideal case, we wish to achieve a totally balanced system, in which the 
entire memory bandwidth matches the bandwidth sum of the processor and I/O 
devices; that is, 

	 Bu
p + Bd = Bu

p 	 (1.6) 
where Bu

p = Bp and Bu
m = Bm are both maximized. Achieving this total balance 

requires tremendous hardware and software supports beyond any of the existing 
systems. 

1.2.4  Multiprogramming and Time Sharing 
Even when there is only one CPU in a uniprocessor system, we can still achieve a 
high degree of resource sharing among many user programs. We will briefly 
review the concepts of multiprogramming and time sharing in this subsection. 
These are software approaches to achieve concurrency in a uniprocessor system.
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