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1.6 VECTOR DERIVATIVES

In physics, normally we come across differentiation of a vector with respect to time,
i.e. scalar and that with respect to space coordinates x, y and z. Here, we shall discuss
both types of derivatives:

sin O =

(a) Differentiation of a Vector w.r.t Scalar
Let a vector A be a continuous function of a continuous scalar variable ¢, i.e.
A =A(t)
If the variable ¢ is increased by At, the vector will change by an amount

AA = A(t + At) - A(t)

and in complete analogy with scalar functions, we define the derivative é—? as the

limit
A = dA _ lim A(t+ At)— A(t)

dt a0 At

Since, division by a scalar does not alter the vectorial properties, the derivative of a
vector with respect to a scalar variable is itself a vector.

(1.39)

Derivatives of a higher order are defined similarly, e.g.

d[ dA)
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Ar= NAt)_dA_y, ATHAD AT (1.40)
dt dt At—0 At

As an example of differentiation of a vector w.r.t. a scalar, let us consider vector A
to be a position vector r joining the origin O of a coordinate system at any point
(x, y, z), then

r(t) = x(t)i + y(t)j + z(Hk
and specification of the vector function r(t) defines x, y and z functions of t. As t changes,
the terminal point of r describes a space curve having parametric equations.

x=x(t)  y=y@) z = z(t)
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1.9 THE CONCEPT OF DIVERGENCE AND GAUSS’S THEOREM

Mathematically, the divergence of a vector A is defined as the scalar product of the
vector operator V and the vector A, i.e.

divA= V-A=[i%+j%+k%j-(iAx+jAy+kAZ)
0A, 04, 0A
= —= £ 1.57
ox " ay " 0z 1.57)

We see that div A is not a vector but is a scalar.

Physical Interpretation

Let us consider flow of a fluid of density p(x, y, z, t) and velocity v = v (x, y, z, t) and
let A represent the mass of fluid flowing through a unit area normal to the direction of
v per unit time. The Y-component of A through the area ABOC (indicated in Fig. 1.18)
of infinitesimal element of volume with sides dx, dy, and dz parallel to axes x, y, z
in vector field, per unit time is given by A, dxdz. 2

The flow through the area DEFG per unit TB dy

time may be represented by the following 1 EA w28
Taylor’s series: J| b ' _fy
o, A | =,
A,y +dy) dx dz={Ay(y)+Edy+--}dxdz P /// © / F y

We will neglect higher-order terms in the
above expansion. The net increase in the mass ~ x
of the fluid inside the volume element per unit Fig. 1.18
time due to the flow through the two faces is

0A 0A 0A
Adxdz—| A, +—Ldy |dxdz = ——Ldxdydz=-—"dr
! Ty dy %Y
Similarly, the net increase in the mass of fluid per unit time due to the flow through
BEFO and ADGC is
0A,
%y
ox
and that through FGCO and EDAB is

0A,
—-——Z2dt
0z
The total increase in mass of fluid per unit volume per unit time due to the excess of

inward flow over the outward flow is
J0A
ox dy 0z

dt
which is just the rate of increase of the density of the fluid inside the volume element
dt. That is to say

=-V-A

P __voa (1.58)
ot
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Consider a very small region of such a vector field, several lines of flow of which
are shown in (Fig. 1.24), the portion is chosen small enough for the lines to be regarded
as nearly straight and parallel. Place a small plane area in this field, shown for
convenience as rectangular. If the surface element is placed so that its normal is in the
direction ofA, then A is perpendicular to ds along

the entire circuit and the integral vanishes. On the * 2
other hand, if the normal is perpendicular to A,

then the net contribution of the edges .
perpendicular to A is zero, but that of the edges

parallel to A is not zero since the magnitude of A
along the upper edge is assumed to be different
from that along the lower edge, the line integral Fig. 1.24
round the boundary has a finite value. The value

of the limit

L = limpA-dl (1.77)

novs—l

is thus a function of the direction of the normal to the surface element.

In general, if we put a small vector area of any shape at any point in a vector field
and compute the line integral of the vector A around its bounding edge there will be
an orientation of the area for which the line integral is the greatest. The amount of this
maximum line integral expressed per unit area is called the curl of the vector field at

the point. The curl of a vector field is a vector A =Ad
. . ¥y

quantity directed along the normal to the ’

exploring area which is in the position giving the W

greatest integral.

To calculate the curl in terms of its cartesian
components, take three infinitesimal rectangular
areas intersecting mutually at right angles at a
point where the vector field A has components of
magnitudes A,, A, A, as in Fig. 1.25. Taking the
positive normal to the areas along the positive
directions of the x-, y- and z-axes respectively, the
circular arrows indicate the positive senses in
which their boundaries must be traversed to
accord with the right-hand screw rule for vector areas.

Take one of these areas such as abcd in (Fig. 1.25) with sides dx, dy, its normal being
along the axis of z. Since the rectangle is very small, the numerical value of the
component of A at the middle of any side may reasonably be taken as the average
value for that side; the arrows show the directions in which the components act. Since
A, A, A, are functions of the coordinates (x, y, z) of the middle of the rectangle, the
average value along the four sides ab, bc, dc, ad will be respectively:

Fig. 1.25

A, - 1aA‘dyA+— Ayd A+1aA vy,
20y 2 ox 2 dy
0A
and A—l—ydx

2 ox
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Integrating, we have

where c is a constant vector.

(b) If f(r) < 0, the acceleration has direction opposite to r;, hence the force is directed
towards O and the particle is always attracted towards O.
If f(r) > 0, the force is directed away from O and the particle is under the influence
of a repulsive force at O.
A force directed towards or away from a fixed point O and having magnitude
depending only on the distance r from O is called central force.

(c) In time AT, the particle moves from M to N (Fig. 1.30). The area swept out by the
position vector in this time is approximately half the area of parallelogram with

sides r and Vr or %rxAr. Then the approximate area swept out by the radius

. 1A : . .
vector per unit time 1s Erxzz, hence the instantaneous time of rate of change in

area is

1 Ar 1 _dr 1 e |
lim —rX— = —rX—=—rXxv P
2 A 2 ar 2 s H = areal velocity

where v is the instantaneous velocity of the 1

dr _
particle. The quantity T X g = onst.

7Y
H = l1‘><£=—1fxv /
2 dt 2 p N /
is called the areal velocity. From part (a), /S M i
areal velocity X
Fig. 1.30
H= lrxﬂ = constant.
2 dt

Since r - H = 0, the motion takes place in plane, which we take as the xy plane as
shown in (Fig. 1.30).

(d) A planet (such as the Earth) is attracted towards the Sun according to Newton’s
universal law of gravitation, which states that any two objects of mass m and M
GMm
r?
where 7 is the distance between objects and G is a universal constant. Let m and M
be the masses of the planet and sun respectively and choose a set of coordinate axis
with the origin O at the sun. Then the equation of motion of the planet is

respectively are attracted towards each other with a force of magnitude F =

d*r B GMm

m—s- 1, or d—zr __GM
dar? 2! dr? 2

assuming the influence of the other objects to be negligible.

n

According to part (c), a planet moves around the sun, so that its position vector
sweeps out equal area in equal time. This result is one of Kepler’s famous three laws
which he deduced empirically from volumes of data complied by, Tycho Brahe (an
astronomer). These laws enabled Newton to formulate his universal law of gravitation.



