Contents

Foreword

١

Preface

vii

ELECTRIC CIRCUITS

Chapter 1 BASIC CIRCUIT CONCEPTS (D.C. CIRCUITS)

3

- Introduction
 Flements of an electric circuit
- Independent and dependent sources
 Passive elements
- Bilateral and unilateral elements The electric current
- The ampere The electric potential Potential difference Volt E.M.F. of a source Ohm's law
- Limitations of Ohm's law
 Power
 Energy
- Resistance
 Resistances in series
 Resistances in parallel
- Current in a parallel branch
 Self inductance
 Energy stored in an inductor
 Capacitance
 Energy stored in a capacitor
 Kirchhoff's laws
 Cramer's rule
 Procedure for solving electric circuits using Kirchhoff's laws
 Linear networks
 Source transformation
 Source shifting
 Stardelta transformation.

Chapter 2

MESH CURRENT AND NODE VOLTAGE ANALYSIS 56

- Introduction A.C. fundamentals Mesh current analysis
- Procedure for solving an electric circuit using mesh current analysis
 Super mesh analysis
 Node voltage analysis
 Procedure for solving an electric circuit using node voltage analysis
 Super nodal analysis
- Network containing dependent sources.

Chapter 3 NETWORK THEOREMS

105

Introduction
 Superposition theorem
 Thevenin's theorem
 Procedure for solving networks using Thevenin's theorem
 Procedure for solving networks using Norton's theorem
 Maximum power transfer theorem
 Reciprocity theorem
 Millman's theorem
 Compensation theorem (Substitution theorem)
 Tellegan's theorem.

Chapter 4 RESONANCE

169

- Introduction Series resonance The quality factor
- Variation of reactances with frequency
 Selectivity and bandwidth
 Effect of R on frequency response curve
- Effect of L/C on frequency response curve
- Expressions for f_1 and f_2 Relation between f_r , f_1 and f_2
- Resonance by varying circuit elements L and C
- Variation of V_R , V_L and V_C w.r.t. frequency Frequency deviation Expressions for f_{Cmax} and f_{Lmax} Parallel resonance Practical parallel resonant circuit Parallel resonant circuit considering the capacitance to have resistance A general parallel resonant circuit Variation of susceptances with frequency Q factor of a parallel resonant circuit Comparison between series and parallel resonance.

Chapter 5 NETWORK TOPOLOGY

214

- Introduction
 Definitions
 Graph of a network
- Oriented graph
 Tree and co-tree
 Network variables
- All incidence matrix
 Reduced incidence matrix
- Kirchhoff's current law and matrix A Equilibrium equations with node to datum voltages as variables Branch admittance matrix The node admittance matrix Number of possible trees of a graph Cut-set Fundamental cut-set
- Cut-set schedule Twig voltages and matrix Q Kirchhoff's current law and matrix Q Equilibrium equations with tree-branch voltages as variables Tie-set and tie-set schedule
- Kirchhoff's current law equations and matrix B Branch voltages and matrix B Equilibrium equations with loop currents as variables The branch impedance matrix
- E shift and I shift
 Duality
 Construction of dual graphs.

Chapter 6 LOCUS DIAGRAMS

- Introduction R-X, series circuit R-X series circuit
- R-X₁-X_C series circuit
 Locus diagrams of parallel circuits.

Chapter 7 COUPLED CIRCUITS

340

305

Introduction
Mutual inductance
Coefficient of coupling
Mutual inductance between two coils which are connected on the same magnetic material
Dot convention
Coupled coils in series aiding and series opposition
Coupled coils in parallel aiding and parallel opposition.

Chapter 8

THREE PHASE BALANCED CIRCUITS

368

- Introduction
 Advantages of three phase systems
 Generation of three phase voltages
 Three phase connections
 Measurement of power in a three phase
- connections Measurement of power in a three phase circuit Two wattmeter method.

Chapter 9

THREE PHASE UNBALANCED CIRCUITS

385

- Introduction
 Phase sequence
 Unbalanced delta connected load
 Unbalanced star connected load
- Three phase, three wire unbalanced system
 Star-delta conversion method
 Maxwell's loop current analysis
- Displacement neutral method Unbalanced 4 wire star connected system.

NETWORK ANALYSIS

Chapter 10 NON-SINUSOIDAL WAVEFORMS

431

• Introduction • Wave analysis • Wave symmetry • Effective value of a non-sinusoidally varying quantity • Power due to a non-sinusoidal wave • Circuit analysis when the waveforms are non-sinusoidal.

Chapter 11 INITIAL CONDITIONS

462

• Introduction • Initial conditions in elements • Procedure for finding the initial conditions • Final conditions in a network.

Chapter 12

LAPLACE TRANSFORMATION

507

- Introduction
 The laplace transformation
 Laplace transform of standard functions
 Procedure to use laplace transformation
 Partial fraction expansion
 Heaviside's partial fraction expansion theorem
- · First shifting theorem · Second shifting theorem
- Convolution theorem Initial value theorem Final value theorem • Laplace transform of unit impulse function
- Unit step function Unit ramp function
- Laplace transform of periodic function
 Step response
 (Dumahel's superposition integral)
 Transformed networks
- · Gate function.

Chapter 13 NETWORK FUNCTIONS

578

Introduction
 One port network
 Two port network
 Poles and zeros
 Pole-zero plot
 Physical significance of poles and zeros
 Time domain response from pole-zero plot
 Restrictions on poles and zeros locations.

Chapter 14

TWO PORT PARAMETERS

604

- Introduction
 Short-circuit admittance parameters
 (y parameters)
 Open circuit impedance parameters
 (z parameters)
 Transmission parameters (T parameters)
- Inverse transmission parameters (T' parameters)
- Hybrid parameters (h parameters)
 Inverse hybrid parameters (g parameters)
 Relation between y parameters and other types of parameters
 Relation between z parameters and other types of parameters
 Relation between T parameters and other types of parameters
- Relation between h parameters and other types of parameters
 Relation between T' and g parameters with other types of parameters
 Cascade connection of two port networks:
 Series connection of two ports
 Permissibility of interconnection of

two port networks • T section representation of a two port network • π section representation of a two port network.

Chapter 15 NETWORK SYNTHESIS

647

- Introduction
 Positive real function (PRF)
 Hurwitz
 Polynomials
 Synthesis of networks
 Properties of L-C immittance functions
- First foster form Second foster form
- First cauer form Second cauer form Properties of R-C impedance functions and R-L admittance functions
- Synthesis of R-C impedance of R-L admittance functions
- Properties of R-L impedance functions and R-C admittance functions
 Synthesis of R-L impedance functions and R-C admittance functions.

Answers to Numerical Problems

685

Index

733