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Periodic structure
and filters

Waveguides and transmission lines loaded at periodic intervals with identical
obstacles, e.g., a reactive element such as a diaphragm, are referred to as
periodic structures. The interest in waveguiding structures of this type arises
from two basic properties common to all periodic structures, namely (1)
passband-stopband characteristics, and (2) support of waves with phase
velocities much less than the velocity of light. The passband-stopband
characteristic is the existence of frequency bands throughout which a wave
propagates unattenuated (except for incidental conductor losses) along the
structure separated by frequency bands throughout which the wave is cut off
and does not propagate. The former is called a passband, and the latter is
referred to as a stopband. The passband-stopband property is of some interest
for its frequency filtering aspects.

The ability of many periodic structures to support a wave having a phase
velocity much less than that of light is of basic importance for traveling-
wave-tube circuits. In a traveling-wave tube, efficient interaction between the
electron beam and the electromagnetic field is obtained only if the phase
velocity is equal to the beam velocity. Since the latter is often no greater than
10 to 20 percent of the velocity of light, considerable slowing down of the
electromagnetic wave is required. Periodic structures suitable for use in
traveling-wave tubes are discussed in this chapter. The actual principles of
operation of the tube are covered in Chap. 9.

The last part of the chapter is devoted to an introduction to microwave
filter theory. A complete treatment of all aspects of filter theory and design
would be much too lengthy to include in this text. However, sufficient
material is covered to provide a background so that the technical literature
can be read without difficulty.
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8.1 CAPACITIVELY LOADED TRANSMISSION-LINE-CIRCUIT ANALYSIS

To introduce a number of basic concepts, methods of analysis, and typical
properties of periodic structures, we shall consider a simple example of a
capacitively loaded transmission line. For a physically smooth transmission
line, such as a coaxial line, the phase velocity is given by
L 1

v, =(LC) 2 =(uok &) 3 ®3.1)
where k is the dielectric constant of the medium surrounding the conductor. A
significant reduction in phase velocity can be achieved in a smooth line only
by increasing k. This method has the great disadvantage that the cross-sectional
dimensions of the line must also be reduced to avoid the propagation of higher-
order modes. The phase velocity cannot be decreased by increasing the shunt
capacity C per unit length because any change in the line configuration to
increase C automatically decreases the series inductance L per unit length,
since LC = p,e. However, by removing the restriction that the line should be
physically smooth, an effective increase in the shunt capacitance per unit
length can be achieved without a corresponding decrease in the series
inductance L. That is, lumped shunt capacitance may be added at periodic
intervals without affecting the value of L. If the spacing between the added
lumped capacitors is small compared with the wavelength, it may be anticipated
that the line will appear to be electrically smooth, with a phase velocity

1
v, {(m%ﬂ : (8.2)

where C/d is the amount of lumped capacitance added per unit length (a
capacitor C, added at intervals d). The following analysis will verify

One method of obtaining shunt capacitive loading of a coaxial trans-
mission line is to introduce thin circular diaphragms at regular intervals, as in
Fig. 8.1. The diaphragms may be machined as an integral part of the center
conductor. The fringing electric field in the vicinity of the

Fig. 8.1: Capacitive loading of a coaxial line by means of thin circular diaphragms.
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Fig. 8.2: (a) Equivalent circuit for unit cell of loaded coaxial line; (b) cascade
connection of basic unit-cell networks.
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diaphragm increases the local storage of electric energy and hence may be
accounted for, from a circuit viewpoint, by a shunt capacitance. The local field
can be described in terms of the incident, reflected, and transmitted dominant
TEM mode and a superposition of an infinite number of higher-order £ modes.
If the cylinder spacing b — a is small compared with the wavelength, the
higher-order modes are evanescent and decay to a negligible value in a
distance of the order of b — a away from the diaphragm in either direction. An
approximate expression for the shunt susceptance of the diaphragm is

E:

2
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where Y, = [60 In (b/a)]™" is the characteristic admittance of an air-filled
coaxial line. The expression for B is accurate for b —a < 0.1, In this low-
frequency region, B has a frequency dependence directly proportional to ®.
At higher frequencies B will have a more complicated frequency dependence,
although the thin diaphragm can still be represented by a shunt susceptance.

The circuit, or network, analysis of a periodic structure involves
constructing an equivalent network for a single basic section or unit cell of the
structure first. This is followed by an analysis to determine the voltage and
current waves that may propagate along the network consisting of the cascade
connection of an infinite number of the basic networks. For the structure of
Fig. 8.1 an equivalent network of a basic section is a shunt normalized
susceptance B with a length d/2 of transmission line on either side, as in Fig.
8.2a. Figure 8.2b illustrates the voltage-current relationships at the input and
output of the nth section in the infinitely long cascade connection.

The relationships between the input variables ¥V, I, and the output
variables V |, I ., are readily found by using the abcd transmlss10n matrix
discussed in Sec. 4.9. The V, and [, are the total voltage and current
amplitudes, i.e., the sum of the contributions from the incident and reflected
TEM waves at the terminal plane. The circuit for a unit cell may be broken

+ N. Marcuvitz (ed.), “Waveguide Handbook,” p. 229, McGraw-Hill Book Company,
New York, 1951.
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down into three circuits in cascade, namely, a section of transmission line of
length d/2 (electrical length 0/2 = k,d/2), followed by a shunt susceptance B,
which in turn is followed by another length of transmission line. The abcd
matrix for each of these individual networks is, respectively (Prob. 4.18),

cos9 'sin9 cos9 'sing
2 PPa[ 1 0] S
.. 0 jB 1||.. 0 0
jsin— cos— jsin— cos—
2 2 2
The transmission matrix for the unit cell is obtained by the chain rule
[see (4.75)], i.e., the product of the above three matrices, and hence we have

cosg 'sing cos9 'sing
{Vn}: 2 M {1 0} 2 {Vnﬂ}
I ‘B
" jsin9 cosg JB 1 jsin9 cos9 L
2 2 2

cosf— Esin@ j [Ecose +5sin6 — EJ
— 2 2 2 |:Vn+l :|

n+l

J (E cosO +sinb + E) cos0 — EsinG
2 2 2

Note that @ = d, which is always true for a symmetrical network, i.e., a
symmetrical unit cell.

If the periodic structure is capable of supporting a propagating wave, it
is necessary for the voltage and current at the (n + 1) st terminal to be equal
to the voltage and current at the nth terminal, apart from a phase delay due to
a finite propagation time. Thus we assume that

V. =elv (8.50)
I, =evl (8.50)

where vy = j + a is the propagation constant for the periodic structure. In
terms of the transmission matrix for a unit cell, we now have

_Vn — a b Vn+] — eyd Vn+]

_In c d [n+1 1n+1
a b] [ 0 ||V, o 06
c d 0 eyd In+1 - ( . )

This equation is a matrix eigenvalue equation for y. A nontrivial solution for

or
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V. .1» 1, exists only if the determinant vanishes. Hence
a—e" b
y =ad—bc+ezyd—eyd(a+d)=0 (8.7)
c d-eé'

For a reciprocal network the determinant ad — bc of the transmission
matrix equals unity (Sec. 4.9); so we obtain
a+d

2

For the capacitively loaded coaxial line, (8.8), together with (8.4), yields

coshyd = (8.8)

coshyd =cos0 —gsine (8.9)
When |cos 0 — (B/2)sin 0|< 1, we must have y = jB and o = 0 that is,
cosPd = cose—gsine
When the right-hand side of (8.9) is greater than unity, y = o and 3 = 0; so
coshad = cose—gsine >1

Finally, when the right-hand side of (8.9) is less than —1, we must have
yd =jm + o, so that
cos yd = cosh (jn + ad) =— cosh ad

:cosﬁ—gsin9<—l (8.10¢)

It is apparent, then, that there will be frequency bands for which unattenuated
propagation can take place separated by frequency bands in which the wave
is attenuated. Note that propagation in both directions is possible since —y is
also a solution.

A detailed study of the passband-stopband characteristic is made in Sec.
8.6. For the present we shall confine our attention to the low-frequency
limiting value of B. When d < A, 0 = k,d is small, and Bd will then also be
small. Replacing cos 0 by 1 —0%2 and sin 0 by 0 in (8.10a) gives

pd’ _ | _kyd® Bkyd
2 2 2

cospd~1-
_ 1
Using the relations k2 = 0’*p e, = w?’LC and B = B/Y, =Cy(L/C)? , where
oC, = B, we obtain

B2 _wrcs O LG
d
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—o S
B=o L(C+ dj (8.11)

Therefore we find that, at low frequencies where d < A, the loaded line
behaves as an electrically smooth line with a shunt capacitance C + C/d per
unit length. The increase in 3 results in a reduction of the phase velocity by a
factor &/B.

Another parameter of importance in connection with periodic structures
is the normalized characteristic impedance 73 presented to the voltage and
current waves at the reference terminal plane, i.e., input terminals of a unit
cell. An expression for 73 may be obtained from (8.6), which may be written
as

and hence

(a— eV“’)Vn+1 =-bl
- CVn+1 =(d- eyd)]nﬂ

Hence
Zy =V —ii -
ZBoZp=tml o M (8.12)
Uc n+l a _'eY
1
Replacing 2e¥ by a+d £[(a+ a’)2 —4]2 from (8.7), we obtain
= 2b
Zp* = (8.13a)
d-atyfia+d > -

where the upper and lower signs refer to propagation in the +z and —z
directions, respectively. We are using the convention that the positive
directions of ¥, and /, are those indicated in Fig. 8.2, independent of the
direction of propagation. For a symmetrical network, a = d, and since
ad — bc =1, we have a®> — 1 = BC. In this case (8.13a) reduces to

— 2b b
ZfBi = =4 |—
T e (8.13b)
In general, for a lossless structure, Z, = — (Z,*)"in the passband, since

l|a +d| <2, as (8.8) shows.
If the unit cell is represented by a T network with parameters Z

VA

11° =122

and 722, then, by using the relations between the abcd parameters and the
impedance parameters given in Sec. 4.9, we can also show that
Zn+2Z»
coshyd =———— 8.14
! 2712 ( )
= In-Zn = .
Zp=21"%22 17 sinhyd (8.15)
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The waves that may propagate along a periodic structure are often called
Bloch waves by analogy with the quantum-mechanical electron waves that
may propagate through a periodic crystal lattice in a solid. It is for this reason
that we have denoted the characteristic impedance as 75, for the Bloch wave.
The voltage and current at the nth terminal plane will be denoted by V=, I,
for the Bloch waves from now on instead of by the quantities V,, I . The
+ and — signs refer to Bloch waves propagating in the +z and —z directions.
We shall also adopt the convention that the positive direction of current flow

for Bloch waves is always in the +z direction; thus /,+ = Y,V and [ ,- = ?B—
V- However, for a symmetrical structure such that a = d, we shall have

V= V=7

If (8.13) is used, we find that, for the loaded coaxial line,

Zs— é:\/25m9+§cose—§ (8.16)
c 2sin®+ BcosO+ B
In the low-frequency limit, where we can replace sin 6 by

0=kyd = 0d~NLC
72 :\/ 20 _ C
20+2B C+Cy/d

- I
Z,=7s7, = |—>= 8.17
BT ey (®.17)

Again we see that, in the low-frequency limit, the loaded line is electrically
smooth and the characteristic impedance is modified in the anticipated
manner by the effective increase in the shunt capacitance per unit length.

The characteristic impedance of a periodic structure is not a unique
quantity since it depends on the choice of terminal planes for a unit cell. If the
terminal planes are shifted a distance / in the —z direction, the new characteristic
impedance becomes

and €os 0 by 1, we obtain

and thus

T = ZB -ir_jtankol (8.18)
1+ jZ p tan kol

8.2 WAVE ANALYSIS OF PERIODIC STRUCTURES

Periodic structures may be analyzed in terms of the forward- and back-ward-
propagating waves that can exist in each unit cell with about the same facility
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Fig. 8.8: Wave amplitudes in a periodic structure.
as the network approach gives. In the wave approach the wave-amplitude
transmission matrix [4] discussed in Sec. 4.9 is used.
With reference to Fig. 8.3, let the amplitudes of the forward- and
backward-propagating waves at the »n th and (n + 1)st terminal plane be
L c,c ,andc . The ¢’ ,, ¢,  are related to the ¢, ¢, by the wave-

amplitude transmission matrix as follows:

C:zr {Au A12:| C:.r+1
Ay Ay

Cc

(8.19)

Cn Cotl

The solution for a Bloch wave requires ¢’ ., = ¢! and ¢, = ¢, . Hence

(8.19) becomes

s oyd +

Uy 12 Cnil —0
. Coyd || - (8.20)
Uy 22 Cu+l

A nontrivial solution for ¢’ ,, ¢ is obtained only if the determinant

vanishes. Consequently, the eigenvalue equation for y is
Ay —Appdy, + e —ed ), +4,,) =0

or

Ay + Ay

2
since the determinant of the transmission matrix, that is, 4,,4,, — 4,,4,,,
equals 1 when normalized wave amplitudes are used.

The Bloch wave which can propagate in the periodic structure is made
up from forward- and backward-propagating normal transmission-line or
waveguide waves that exist between discontinuities. When y has been
determined from (8.21), the ratio of ¢, to ¢? is fixed. This ratio is called the
characteristic reflection coefficient I',. Thus the transverse electric field of
the Bloch wave will have an amplitude

Vs, =c¢i+c =ci+Ty

coshyd = (8.21)
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at the zeroth terminal plane and an amplitude
Vy =cr+c, =cr(14T ) =i (1+T p)e ™ (8.22a)
at the nth terminal plane. The transverse magnetic field of the Bloch wave
will have an amplitude
Iy =cg(1-Tp)e ™ (8.22b)
at the nth terminal plane.

The characteristic reflection coefficient may be found from the pair of
equations (8.20) by eliminating ¢ by the use of (8.21). It is usually more
convenient to express I’ in terms of ZB by using the relation 73 =1 +Ty
(1 =Tp). Thus we have

_ Zst —1

B Zp+1

where the + and — signs refer to Bloch waves propagating in the +z and —
directions, respectively.

The above wave formulation is now applied to the capacitively loaded
transmission line discussed earlier. The unit cell is chosen as in Fig. 8.3. The
wave-amplitude transmission matrices for the three sections of the unit cell
are (Sec. 4.9 and Prob. 8.7)

(8.23)

2+j§ B
/2 0 T, 7S
2 2(2+B)

and another matrix like the first one. The [4] matrix for the unit cell is
obtained by multiplying the three component matrices together; thus

2+ jB B
2 0 2 J E 2 0
[4]= 0 /92 —jE 4+ §_ 0 o2
2 2(2+B)
where 0 = kd. After multiplication we obtain
2+ ]B eje j£
VEE ; 8.24
A = — —_ .
B 4, o
2 2(2+/B)

Making use of (8.21), we find that
(4+B)e® 4 (2+ jB)2e”
42+ jB)

which is the same as (8.9) obtained earlier.

coshyd = :cose—gsine
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