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Periodic structure 

and filters

Waveguides and transmission lines loaded at periodic intervals with identical 
obstacles, e.g., a reactive element such as a diaphragm, are referred to as 
periodic structures. The interest in waveguiding structures of this type arises 
from two basic properties common to all periodic structures, namely (1) 
passband-stopband characteristics, and (2) support of waves with phase 
velocities much less than the velocity of light. The passband-stopband 
characteristic is the existence of frequency bands throughout which a wave 
propagates unattenuated (except for incidental conductor losses) along the 
structure separated by frequency bands throughout which the wave is cut off 
and does not propagate. The former is called a passband, and the latter is 
referred to as a stopband. The passband-stopband property is of some interest 
for its frequency filtering aspects.

The ability of many periodic structures to support a wave having a phase 
velocity much less than that of light is of basic importance for traveling-
wave-tube circuits. In a traveling-wave tube, efficient interaction between the 
electron beam and the electromagnetic field is obtained only if the phase 
velocity is equal to the beam velocity. Since the latter is often no greater than 
10 to 20 percent of the velocity of light, considerable slowing down of the 
electromagnetic wave is required. Periodic structures suitable for use in 
traveling-wave tubes are discussed in this chapter. The actual principles of 
operation of the tube are covered in Chap. 9.

The last part of the chapter is devoted to an introduction to microwave 
filter theory. A complete treatment of all aspects of filter theory and design 
would be much too lengthy to include in this text. However, sufficient 
material is covered to provide a background so that the technical literature 
can be read without difficulty.
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8.1 CAPACITIVELY LOADED TRANSMISSION-LINE-CIRCUIT ANALYSIS
To introduce a number of basic concepts, methods of analysis, and typical 
properties of periodic structures, we shall consider a simple example of a 
capacitively loaded transmission line. For a physically smooth transmission 
line, such as a coaxial line, the phase velocity is given by
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where k is the dielectric constant of the medium surrounding the conductor. A 
significant reduction in phase velocity can be achieved in a smooth line only 
by increasing k. This method has the great disadvantage that the cross-sectional 
dimensions of the line must also be reduced to avoid the propagation of higher-
order modes. The phase velocity cannot be decreased by increasing the shunt 
capacity C per unit length because any change in the line configuration to 
increase C automatically decreases the series inductance L per unit length, 
since LC = m0∈. However, by removing the restriction that the line should be 
physically smooth, an effective increase in the shunt capacitance per unit 
length can be achieved without a corresponding decrease in the series 
inductance L. That is, lumped shunt capacitance may be added at periodic 
intervals without affecting the value of L. If the spacing between the added 
lumped capacitors is small compared with the wavelength, it may be anticipated 
that the line will appear to be electrically smooth, with a phase velocity
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where C0/d is the amount of lumped capacitance added per unit length (a 
capacitor C0 added at intervals d). The following analysis will verify

One method of obtaining shunt capacitive loading of a coaxial trans-
mission line is to introduce thin circular diaphragms at regular intervals, as in 
Fig. 8.1. The diaphragms may be machined as an integral part of the center 
conductor. The fringing electric field in the vicinity of the

Fig. 8.1: Capacitive loading of a coaxial line by means of thin circular diaphragms.
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Fig. 8.2: (a) Equivalent circuit for unit cell of loaded coaxial line; (b) cascade 
connection of basic unit-cell networks.

diaphragm increases the local storage of electric energy and hence may be 
accounted for, from a circuit viewpoint, by a shunt capacitance. The local field 
can be described in terms of the incident, reflected, and transmitted dominant 
TEM mode and a superposition of an infinite number of higher-order E modes. 
If the cylinder spacing b – a is small compared with the wavelength, the 
higher-order modes are evanescent and decay to a negligible value in a 
distance of the order of b – a away from the diaphragm in either direction. An 
approximate expression for the shunt susceptance of the diaphragm is †

		
2

2
0

8( ) ln( / ) ln csc
2[ln( / )]c

B b c b a b c
Y c bb c

B
a

− π − = =  λ − 
� (8.63)

where Yc = [60 ln (b/a)]–1 is the characteristic admittance of an air-filled 
coaxial line. The expression for B is accurate for b – a ≤ 0.1l0. In this low-
frequency region, B has a frequency dependence directly proportional to w. 
At higher frequencies B will have a more complicated frequency dependence, 
although the thin diaphragm can still be represented by a shunt susceptance.

The circuit, or network, analysis of a periodic structure involves 
constructing an equivalent network for a single basic section or unit cell of the 
structure first. This is followed by an analysis to determine the voltage and 
current waves that may propagate along the network consisting of the cascade 
connection of an infinite number of the basic networks. For the structure of 
Fig. 8.1 an equivalent network of a basic section is a shunt normalized 
susceptance B with a length d/2 of transmission line on either side, as in Fig. 
8.2a. Figure 8.2b illustrates the voltage-current relationships at the input and 
output of the nth section in the infinitely long cascade connection.

The relationships between the input variables Vn, In and the output 
variables Vn+1, In+1  are readily found by using the abcd transmission matrix 
discussed in Sec. 4.9. The Vn and In are the total voltage and current 
amplitudes, i.e., the sum of the contributions from the incident and reflected 
TEM waves at the terminal plane. The circuit for a unit cell may be broken 

† N. Marcuvitz (ed.), “Waveguide Handbook,” p. 229, McGraw-Hill Book Company, 
New York, 1951.
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down into three circuits in cascade, namely, a section of transmission line of 
length d/2 (electrical length q/2 = k0d/2), followed by a shunt susceptance B, 
which in turn is followed by another length of transmission line. The abcd 
matrix for each of these individual networks is, respectively (Prob. 4.18),
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The transmission matrix for the unit cell is obtained by the chain rule 
[see (4.75)], i.e., the product of the above three matrices, and hence we have
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Note that a = d, which is always true for a symmetrical network, i.e., a 
symmetrical unit cell.

If the periodic structure is capable of supporting a propagating wave, it 
is necessary for the voltage and current at the (n + 1) st terminal to be equal 
to the voltage and current at the nth terminal, apart from a phase delay due to 
a finite propagation time. Thus we assume that

			   Vn+1 = e–gdVn� (8.5a)

			   In+1 = e–gdIn� (8.5b)
where g = jb + a is the propagation constant for the periodic structure. In 
terms of the transmission matrix for a unit cell, we now have
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This equation is a matrix eigenvalue equation for g. A nontrivial solution for 
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Vn+1, In+1 exists only if the determinant vanishes. Hence
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For a reciprocal network the determinant ad – bc of the transmission 
matrix equals unity (Sec. 4.9); so we obtain
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For the capacitively loaded coaxial line, (8.8), together with (8.4), yields

			   cosh cos sin
2
Bdγ = θ− θ � (8.9)

When |cos q – (B/2)sin q|< 1, we must have g = jb and a = 0; that is,
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When the right-hand side of (8.9) is greater than unity, g = a and b = 0; so
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Finally, when the right-hand side of (8.9) is less than –1, we must have  
gd = jp + a, so that

		  cos gd = cosh (jp + ad) = – cosh ad
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It is apparent, then, that there will be frequency bands for which unattenuated 
propagation can take place separated by frequency bands in which the wave 
is attenuated. Note that propagation in both directions is possible since –g is 
also a solution.

A detailed study of the passband-stopband characteristic is made in Sec. 
8.6. For the present we shall confine our attention to the low-frequency 
limiting value of b. When d  l0, q = k0d is small, and bd will then also be 
small. Replacing cos q by 1 – q2/2 and sin q by q in (8.10a) gives
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and hence
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Therefore we find that, at low frequencies where d  l0, the loaded line 
behaves as an electrically smooth line with a shunt capacitance C + C0/d per 
unit length. The increase in b results in a reduction of the phase velocity by a 
factor k0/b.

Another parameter of importance in connection with periodic structures 
is the normalized characteristic impedance ZB presented to the voltage and 
current waves at the reference terminal plane, i.e., input terminals of a unit 
cell. An expression for ZB may be obtained from (8.6), which may be written 
as
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Replacing 2e gd by 
1

2 2[( ) 4]a d a d+ ± + −  from (8.7), we obtain
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where the upper and lower signs refer to propagation in the +z and –z 
directions, respectively. We are using the convention that the positive 
directions of Vn and In are those indicated in Fig. 8.2, independent of the 
direction of propagation. For a symmetrical network, a = d, and since  
ad – bc = 1, we have a2 – 1 = BC. In this case (8.13a) reduces to
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In general, for a lossless structure, ZB– = – (ZB+)*in the passband, since 
 |a + d| < 2, as (8.8) shows.

If the unit cell is represented by a T network with parameters Z11, Z12, 
and Z22, then, by using the relations between the abcd parameters and the 
impedance parameters given in Sec. 4.9, we can also show that
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The waves that may propagate along a periodic structure are often called 
Bloch waves by analogy with the quantum-mechanical electron waves that 
may propagate through a periodic crystal lattice in a solid. It is for this reason 
that we have denoted the characteristic impedance as  ZB for the Bloch wave. 
The voltage and current at the nth terminal plane will be denoted by VBn±, IBn±  
for the Bloch waves from now on instead of by the quantities Vn, In. The  
+ and – signs refer to Bloch waves propagating in the +z and –z directions. 
We shall also adopt the convention that the positive direction of current flow 
for Bloch waves is always in the +z direction; thus IB+ = YB+VB+ and IB– = YB–

VB–. However, for a symmetrical structure such that a = d, we shall have  
YB– = – YB+ = –(ZB+)–1.

If (8.13) is used, we find that, for the loaded coaxial line,
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In the low-frequency limit, where we can replace sin q by
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Again we see that, in the low-frequency limit, the loaded line is electrically 
smooth and the characteristic impedance is modified in the anticipated 
manner by the effective increase in the shunt capacitance per unit length.

The characteristic impedance of a periodic structure is not a unique 
quantity since it depends on the choice of terminal planes for a unit cell. If the 
terminal planes are shifted a distance l in the –z direction, the new characteristic 
impedance becomes
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8.2 WAVE ANALYSIS OF PERIODIC STRUCTURES
Periodic structures may be analyzed in terms of the forward- and back-ward-
propagating waves that can exist in each unit cell with about the same facility
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Fig. 8.8: Wave amplitudes in a periodic structure.
as the network approach gives. In the wave approach the wave-amplitude 
transmission matrix [A] discussed in Sec. 4.9 is used.

With reference to Fig. 8.3, let the amplitudes of the forward- and 
backward-propagating waves at the n th and (n + 1)st terminal plane be  
c+
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–
n, c

+
n+1, and c–
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amplitude transmission matrix as follows:
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The solution for a Bloch wave requires c+
n+1 = c+

n and c–
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A nontrivial solution for c+
n+1, c–

n+1 is obtained only if the determinant 
vanishes. Consequently, the eigenvalue equation for g is
		  A11A22 – A12A21 + e2gd – egd(A11 + A22) = 0
or
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since the determinant of the transmission matrix, that is, A11A22 – A12A21, 
equals 1 when normalized wave amplitudes are used.

The Bloch wave which can propagate in the periodic structure is made 
up from forward- and backward-propagating normal transmission-line or 
waveguide waves that exist between discontinuities. When g has been 
determined from (8.21), the ratio of c–

n to c+
n is fixed. This ratio is called the 

characteristic reflection coefficient GB. Thus the transverse electric field of 
the Bloch wave will have an amplitude
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at the zeroth terminal plane and an amplitude
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at the nth terminal plane. The transverse magnetic field of the Bloch wave 
will have an amplitude
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at the nth terminal plane.
The characteristic reflection coefficient may be found from the pair of 

equations (8.20) by eliminating e–gd by the use of (8.21). It is usually more 
convenient to express GB in terms of ZB by using the relation ZB = (1 + GB)/ 
(1 – GB). Thus we have
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where the + and – signs refer to Bloch waves propagating in the +z and –z 
directions, respectively.

The above wave formulation is now applied to the capacitively loaded 
transmission line discussed earlier. The unit cell is chosen as in Fig. 8.3. The 
wave-amplitude transmission matrices for the three sections of the unit cell 
are (Sec. 4.9 and Prob. 8.7)
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and another matrix like the first one. The [A] matrix for the unit cell is 
obtained by multiplying the three component matrices together; thus
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Making use of (8.21), we find that
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which is the same as (8.9) obtained earlier.
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